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Abstract. Quantitative analysis of brain lesions and ischemic infarcts is becom-
ing very important due to their association with cardiovascular disease and 
normal aging. In this paper, we present a semi-supervised segmentation meth-
odology that detects and classifies cerebrovascular disease in multi-channel 
magnetic resonance (MR) images. The method combines intensity based fuzzy 
c-means (FCM) segmentation with spatial probability maps calculated from a 
normative set of images from healthy individuals. Unlike common FCM-based 
methods which segment only healthy tissue, we have extended the fuzzy seg-
mentation to include patient-specific spatial priors for both pathological condi-
tions (lesions and infarcts). These priors are calculated by estimating the statis-
tical voxel-wise variation of the healthy anatomy, and identifying abnormalities 
as deviations from normality. False detection is reduced by knowledge-based 
rules. Assessment on a population of 47 patients from different imaging sites il-
lustrates the potential of the proposed method in segmenting both hyperintense 
lesions and necrotic infarcts.   

Keywords: brain tissue segmentation, lesions, infarcts, fuzzy clustering, outlier 
detection, MRI 

1 Introduction 

Brain lesions might be associated with numerous diseases, such as multiple sclerosis 
(MS), traumatic brain injury, or several cardiovascular symptoms, such as arterial 
fibrillation, impaired cognition and others [1][2]. Many methods in the literature have 
been developed for the automatic segmentation of brain lesions, especially MS le-
sions, using MR imaging [3][4]. Supervised segmentation strategies use features ex-
tracted from manual delineations as a training set to build the segmentation model. 
Those strategies require substantial human effort and are prone to intra- and inter-
observer variability. Semi-supervised strategies model the normal data and then detect 
lesions as outliers that are not well explained by the model [5]. These methods usually 
derive a prior classification from a digital brain atlas that contains information about 
the expected location of white matter (WM), gray matter (GM) and cerebrospinal 
fluid (CSF) [6]. The available digital atlases, such the SPM [7] or ICBM [8] tissue 



probability maps, have very low resolution, thus are suitable only for the detection of 
large lesions.  

Although there have been quite many attempts to segment white matter or MS le-
sions, relatively less attention has been given to the segmentation of stroke related 
infarct lesions in elderly individuals, and Alzheimer’s disease or diabetic patients. 
Cortical infarcts are characterized by a necrotic part with intensity similar to CSF 
imposing ambiguity in segmentation. Shen et al. [9] applied a modified Fuzzy c-
means (FCM) clustering algorithm to classify voxels in an image according to intensi-
ty and prior probability of healthy tissue. They subsequently segment abnormal areas 
by using similarity to measure residual difference between the calculated tissue prob-
abilities maps and the original prior probabilities. In such an approach lesions will be 
originally labeled as CSF or GM and will mislead the computation of class parame-
ters. 

Similarly to [3][9] we propose to segment infarcts within an outlier detection 
framework where the inconsistency between image intensity and spatial location is 
modeled. The proposed framework however differs in that it incorporates individual-
ized spatial priors for both healthy and pathological tissue. The spatial priors for the 
healthy tissues are calculated by exploiting statistics from a healthy population group, 
whereas the spatial priors for the abnormal tissues are constructed in an outlier detec-
tion scheme [4]. For this purpose, all images from the healthy population group and 
testing subjects are firstly registered in a common space. The method furthermore 
classifies the abnormal tissue into gliotic (hyperintense) and necrotic (hypointense) 
regions based on multi-channel MRI (T1w and FLAIR). The five tissue types are 
obtained from FCM clusters by maximum membership segmentation followed by the 
application of some knowledge-based rules which reduce false detections. 

Although the focus of the paper is to detect stroke-related infarcts and separate the 
hyperintense part of the infarct lesion (IL) from the hypointense infarct necrosis (IN), 
the method is also applied for the segmentation of other pathologies with high FLAIR 
signal appearance, such as white matter lesions, and these are marked also as IL.  
The method has been assessed on 47 brain MR images with lesions and compared 
against expert manual segmentations. 

2 Methods 

Brain abnormalities manifest themselves due to either unusual intensity characteristics 
(evident in appropriate image modalities) or due to inconsistency between tissue in-
tensity and spatial location. Under this scope the method applies a modified FCM 
algorithm which combines intensity based similarity with prior anatomical 
knowledge. Specifically, image segmentation is performed in two steps. First the 
healthy and pathological regions are extracted by applying a semi-supervised ap-
proach using healthy images as training data. Then the segmented regions are 
smoothed and used as patient-specific prior tissue probability maps in a modified 
FCM algorithm. The first step is described in section 2.1, whereas the modified FCM 
algorithm is presented in section 2.2. 



2.1 Construction of patient-specific spatial priors 

The methodology for calculating prior tissue probability at each voxel is illustrated in 
Fig. 1 and can be separated into two branches, the construction of spatial priors for 
normal classes and abnormal classes. 

The spatial priors for abnormal classes are constructed following an outlier detec-
tion approach. Assuming that voxel intensities are statistically independent and follow 
a multivariate normal distribution we build a statistical atlas from a training set of 
healthy subjects. Let ݊ be the number of parameters used (MR sequences). For each 
voxel the statistical model consists of a 1 ൈ ݊ vector with the mean gray level intensi-
ties and a ݊ ൈ ݊ covariance matrix. Abnormalities are then detected as deviations 
from this model using as distance metric the voxel-wise Mahalanobis distance. This 
distance map, expressing probability of each voxel to be outlier, is then thresholded 
by a spatially varying threshold. The threshold is determined for each voxel by the 
ability of the statistical model to explain the training data. Specifically the average 
voxel-wise Mahalanobis distance is calculated for the healthy population group. Let’s 
note it ܦ௛௘௔௟௧௛௬. The applied voxel-wise threshold is ܽ ∙  ௛௘௔௟௧௛௬, where ܽ is a scalarܦ
(e.g. ܽ ൌ 3). This methodology extracts all abnormal regions including ILs, and INs. 
The abnormal regions are subsequently classified into ILs and INs based on intensity 
characteristics. Voxels with FLAIR intensities higher than the average intensity are 
classified as ILs, whereas hypointense voxels are classified as INs.  

 

 

Fig. 1. Methodology of the calculation of spatial priors for normal tissue (white matter (WM), 
gray matter (GM) and cerebrospinal fluid (CSF)), and abnormal tissue (hyperintense infarct 

lesion (IL) and infarct necrosis (IN)) 
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The healthy tissue priors are calculated by segmenting the patient’s T1w image into 
WM, GM and CSF using the k-means algorithm. Since abnormalities are present, the 
algorithm is not randomly initialized because abnormal tissue might influence the 
cluster center estimation of healthy tissue. The estimation is thus guided by the 
healthy training data. Specifically, the healthy images are segmented by k-means, one 
by one, updating each time the estimate of the clusters centers location. The average 
(over all subjects) center location for WM, GM and CSF clusters is finally used as 
initial estimate in the segmentation process of the patient’s image. Therefore, the 
effect of the presence of abnormalities is reduced.  

All crisp tissue segmentations are converted to prior probabilities by gaussian 
smoothing. If Ω is the set of voxel locations in the image domain and	ܥ the number of 
classes, e.g. ܥ ൌ 5, all probability maps are collected together and normalized to sat-
isfy ∑ ௜௝݌ ൌ 1஼

௜ୀଵ , for each voxel ݆ ∈ Ω. If a class is missing and not detected in the 
outlier detection step described above, e.g. necrosis might not be present in every 
image, ܥ is correspondingly reduced. These maps are utilized as individualized spatial 
priors in equation (1) as shown in the next section. 

2.2 Modified FCM for healthy and abnormal tissue segmentation   

The FCM algorithm [10] is based on minimizing an objective function with respect to 
a fuzzy membership U and set of cluster centroids V. Let ܠ௝ ∈ ܴ௡,		be the feature rep-
resentation (e.g. multi-channel intensities with ݊ ൌ 2) of voxel ݆ ∈ Ω. FCM clusters 
the data by computing the fuzzy membership ݑ௜௝ܷ at each voxel ݆ to the i-th class, 

such that ݑ௜௝ ∈ ሾ0,1ሿ and ∑ ௜௝ݑ ൌ 1, ∀஼
௜ୀଵ ݆ ∈ Ω. The number of classes C is assumed 

to be known. In the conventional approach the objective function expresses the degree 
of intensity based dissimilarity between the data values ܠ௝ and the cluster centroids, 
 includes an additional	௠ܬ ௜ܸ. In this modified approach the objective functionܞ
term reflecting the distance between the fuzzy membership ݑ௜௝	and prior tissue proba-
bility, pij at each voxel ݆, which is calculated as described in the previous section. 
Thus ܬ௠ is expressed as follows: 

,௠ሺܷܬ ܸሻ ൌ ∑ ∑ ௜௝ݑൣ
௠݀୴ଶ൫ܠ௝, ௜൯ܞ ൅ ௜௝ݑ௜ሺݓ െ ௜௝ሻ݌

ଶ ൧஼
௜ୀଵ௝∈Ω  (1) 

where ݀୴ 	is a distance function, m ∈ (1,∞) is a weighting exponent on each fuzzy 
membership controlling the degree of fuzziness and ݓ௜, ݅ ൌ  is a normalization ,ܥ…1
weight controlling the contribution of each distance term per cluster. The use of dif-
ferent weights ݓ௜ allows controlling the penalty on dissimilarity for each class. For 
unbiased results ݓ௜ can take the default value of 1, as performed in this study. For the 
two terms in the objective function to be comparable (intensity dissimilarity and spa-
tial inconsistency) the intensity values ܠ should be scaled in the range ሾ0,1ሿ, similarly 
to the probability range. 

The constrained optimization of ܬ௠ is expressed using Lagrange multipliers and ݑ௜௝ 
and ܞ௜	are determined by setting the derivative of ܬ௠ to zero. For ݉=2 (as usually 
chosen in image segmentation), the fuzzy membership and the cluster center are cal-
culated as follows: 
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where ݍ௜௝ ൌ
ଵ

ௗ౬
మ൫ܠೕ,ܞ೔൯ା௪೔

. The algorithm iteratively optimizes the objective function in 

Eq. (1) with the continuous update of ݑ௜௝ and ܞ௜, until convergence is reached. The 
prior tissue probability maps are utilized as the membership at first iteration.  
In regular FCM, ݀୴ 	is the Euclidean distance. In order not to restrict the detection to 
data classes with hyper-spherical shape, we used the Mahalanobis distance expressed 
as follows: 

݀୴ଶ൫ܠ௝, ௜൯ܞ ൌ ൫ܠ௝ െ ′௜൯ܞ ∙ ଵିߑ ∙ ൫ܠ௝ െ  ௜൯   (4)ܞ
where ିߑଵ is the inverse covariance matrix of the total dataset in this application. An 
improved implementation (to be investigated in the future) would include a different 
covariance matrix for each class and thus require iterative updates of ߑ௜

ିଵ based on the 
class membership at each iteration [11]. 

2.3 Knowledge-based rules 

Knowledge-based rules are finally applied as post-processing steps to automatically 
reduce false positives. Abnormal voxels that are well explained by the statistical mod-
el of healthy anatomy, i.e. exhibiting small Mahalanobis distance, are assumed to be 
false detection and are eliminated. Single ischemic voxels are also removed. Two 
rules are applied for necrosis. Small necrotic clusters that lie across the GM-CSF 
interface are expected to be GM or CSF wrongly detected as IN due to partial volume 
effect. Necrosis is also constraint to be in proximity with a gliotic hyperintense region 
(IL). In contrast to other lesion segmentation methods [6] we didn’t restrict the ILs to 
be situated inside WM in order not to further reduce generality. 

2.4 Data description and preprocessing 

The data consist of transaxial T1w and FLAIR scans obtained from different imaging 
sites. The acquisition of FLAIR (template space) was performed with a 3-mm slice 
thickness, no slice gap, voxel size=0.94×0.94×3 mm3, and in plane matrix 256×256. 
The images which didn’t show any visible pathologies (72 in total) were used as the 
training data for statistical modeling of the healthy tissue. Different sets of data were 
selected for testing the method including lesions with or without necrosis. The first set 
(dataset1) consists of 35 diabetic patients with ILs (in 33 subjects) and necrotic in-
farcts (in 2 subjects). The second set (dataset2) involves 12 subjects selected from an 
ageing population (all subjects have both ILs and INs).  

The abnormality masks used for assessing the method were manually delineated by 
a single rater for dataset1 and by two independent raters for dataset2. Hyperintensities 
in FLAIR images with respect to surrounding healthy white matter tissue were 
marked as IL. Cortical infarcts were separated into two regions. Their necrotic part 



was segmented as IN, while the hyperintense rim, which usually surrounds the necrot-
ic part, was marked as IL. 

All images (from the testing subject and the normal subjects used for building the 
statistical atlas) were preprocessed in the same way by applying skull stripping, bias 
correction, global histogram matching and registration. For each subject the T1w 
image was first registered to the FLAIR image by affine registration. Then, for com-
parison of brains across different subjects, all subjects were spatially normalized to 
one of the subjects chosen as a template, by registering their T1w images with the 
template’s T1w image using the HAMMER registration algorithm [12]. HAMMER 
algorithm achieves registration by hierarchically finding correspondences on edge 
voxels with high (feature-based) similarity. Voxel pairs with low similarity, such as 
the ones around pathology, are not included in the deformation process. Therefore, 
although the algorithm is designed for images without pathology, it has been observed 
that it is also quite robust when the images include small localized abnormalities. The 
FLAIR images and the expert-defined masks were subsequently warped to the tem-
plate space using the deformation fields estimated for their corresponding T1 images.  

2.5 Assessment 

The results of the automated method were compared with lesion and infarct delinea-
tions by human experts. The segmentation of IL was assessed using the Dice coeffi-
cient as measure of spatial overlap. The Dice coefficient over two segmentations, S1 
and S2, is the volume of intersection of the two segmentations divided by the mean of 
the two segmentation volumes: ݁ܿ݅ܦ ൌ 2 ∙ | ଵܵ ∩ ܵଶ|/ሺ| ଵܵ| ൅ |ܵଶ|ሻ. 

The necrotic part of infarcts is usually too small to be appropriately assessed by 
criteria measuring volume overlap, such as the Dice coefficient. Thus necrotic voxels 
were grouped into clusters based on connectivity and segmentation assessment was 
performed based on the number of correctly classified clusters. A necrotic cluster is 
considered as a correct detection if the voxels within the cluster partially overlap with 
manually segmented necrosis. Clusters with a volume smaller than a threshold Vmin 

were not considered in the evaluation process. 

3 Results 

3.1 Segmentation of lesions and infarcts 

Fig. 2 (last row) illustrates some examples of IL and IN segmentation by the proposed 
method. The results are compared against manual delineations (IL available for sub-
jects 3 and 4, and IN available for subjects 1, 2, 3). In case of large lesions overall 
good agreement is observed. In order to quantitatively assess lesion segmentation, 
Dice coefficients have been calculated for both datasets and plotted against the total 
lesion load (or average volume in the case of two raters) for all subjects in Fig. 3. The 
inter-rater variability is also calculated for dataset2 by defining the one of the two 
masks as ground truth and assessing the other. It can be observed that the agreement  



1 (dataset1) 2 (dataset1) 3 (dataset2) 4 (dataset2) 

  

  

  

Fig. 2. Visual segmentation assessment on 4 subjects. From top to bottom: FLAIR with manu-
ally outlined IL (available only for subjects 3 and 4), T1w with manually outlined IN, automat-
ed segmentation (blue: CSF, dark green: GM, light green: WM, pink: IN, white: IL). The man-
ual segmentations are shown in color scale with darker color indicating the presence of IL or IN 

in neighboring slices. 

between automatic and manual segmentation increases with increasing lesion load. 
This is expected since small lesion clusters might be missed by the method, due to 
partial volume effects, smoothing and/or warping of the images and manual masks. 
We should note that any further volumetric measurements for clinical assessment 
should be performed in the original space by warping back the images with segment-
ed lesions. 

The segmentation of infarct necrosis is assessed based on the number of correctly 
or incorrectly detected clusters, defined as true positives (TP) and false positives (FP), 
over all subjects. The effect of the cluster volume threshold, Vmin, on segmentation 
accuracy, is shown in Fig. 4. On dataset1 (Fig. 4a) seven necrotic clusters were in 
total manually outlined for the two subjects. Two of them are missed by the automat-
ed method (for Vmin=0). The volume of each of the missed clusters is equal to a single 
voxel; thus it is reasonable to miss these clusters. The assessment of detection rate is 
different for dataset2 where two manual masks (R1 and R2) are available. First we  



 

Fig. 3. Dice scores in relation to total IL volume (in voxels) for each subject in dataset1 (left) 
and dataset2 (right). Comparison of our method (S) with manual segmentations by raters R1 

and R2, and inter-rater variability (R1 vs R2) are shown for dataset2. In this case the total vol-
ume represents the average volume. 
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 dataset1 

(2 subjects) 

dataset2 (13 subjects) 

R1 R2 

# clusters 7 22 22 

median vol. 
(# voxels) 

209 3 5 

Fig. 4. Detection accuracy of IN versus cluster volume threshold. (a) TPs and FPs for dataset1 
where the total number of IN clusters is 7. (b) TP rate for dataset2 by defining manual segmen-

tation R1 and R2 as ground truth (c) Statistics of clusters (number and median volume) 

assumed R1 is ground truth and calculated the sensitivity (TP rate) of the automated 
method as the ratio of correctly detected clusters by the method versus the number of 
clusters correctly detected by the 2nd rater (after volume thresholding). Then we as-
sumed R2 is ground truth and compared our method against the accuracy of the 1st 
rater. The sensitivity is plotted in Fig. 4b. The results show that the method performs 
more similar to rater 2 in necrosis segmentation, and more similar to rater 1 in IL 
segmentation (Fig. 3, right). The total number of clusters (summed over all subjects) 
and their median volume (in voxels) are shown in Fig. 4c. The statistics show that the 
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delineation of the necrotic part of the infarcts in dataset2 included many unconnected 
components making automated detection more difficult. 

4 Discussion and Conclusions 

We presented a method that uses multi-channel MR images to segment healthy and 
abnormal brain tissue employing a statistical model, together with a modified FCM 
algorithm. The segmentation of enhancing lesions approached the accuracy of manual 
segmentation for high lesion load. The detection of infarcts was only slightly worse 
than the performance of human experts. However more validation is required because 
there was a considerable disagreement in spatial correspondence between expert seg-
mentations. The assessment of the method on synthetic databases might provide use-
ful insight. Also the sensitivity of the method to the selected parameters should be 
investigated. 

The method was applied to segment and classify vascular pathology; it can never-
theless also be applied to detect lesions that have not vascular origin. Adaptation of 
the knowledge-based rules might be required in this case.  

Extensions of the FCM algorithm have been proposed in the literature to reduce the 
algorithm’s sensitivity to noise and intensity inhomogeneity. The extensions incorpo-
rate spatial regularisation, topological constraints or bias field correction, as briefly 
reviewed in [13]. In this paper we did not apply any of those extensions since we 
focused on the lesion and infarct segmentation. It is expected however that the im-
proved modeling of the healthy tissue will improve also the segmentation of the ab-
normal tissue. 
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