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Abstract. Given an example-feature set, representing the information
context present in a dataset, is it possible to reconstruct the informa-
tion context in the form of clusters to a certain degree of compromise,
if the examples are processed randomly without repetition in a sequen-
tial online manner? A general transductive inductive learning strategy
which uses constraint based multivariate Chebyshev inequality is pro-
posed. Theoretical convergence in the reconstruction error to a finite
value with increasing number of (a) processed examples and (b) gener-
ated clusters, respectively, is shown. Upper bounds for these error rates
are also proved. Nonparametric estimates of these error from a sample of
random sequences of example set, empirically point to a stable number
of clusters.

1 Introduction

This work focuses on approximating the number of clusters in an online unsuper-
vised learning framework with no prior knowledge of the number of clusters. The
current work achieves this using a transductive-inductive (TI) learning strategy.
Motivation for the proposed work comes from the recent works on conformal
learning theory (CLT) [1] and [2], where TI has been widely used to estimate
the prediction of an unlabeled example based on the already processed data.
Also, the estimation of clusters using a multidimensional data is an open area
of research. Finding motivation from [3] on k-means clustering using the Eu-
clidian ball multivariate Chebyshev inequality (MCI) and [4] on image repre-
sentation via a hybrid model based on space filling curve, the proposed work
exploits a generalization of MCI [5], to capture the interactions among examples
with multiple features. MCI provides bounds for multidimensional data which
is afflicted by the curse of dimensionality that make estimation of multivari-
ate probabilities a difficult task. A generalization of MCI is the consideration of
probability content of a multivariate normal random vector to lie in an Euclidean
n-dimensional ball [6]. This work employs a conservative approach of using the
Euclidian n-dimensional ellipsoid to restrict the spread of the probability con-
tent [7]. In abstract terms, let X be a stochastic variable in N dimensions with
a mean E[X]. Further, let Σ be the covariance matrix of all examples, each
containing N features and Cp ∈ R (MCI parameter), then the MCI in [7] states
that: P{(X − E[X])TΣ−1(X − E[X]) ≥ Cp} ≤ NCp and can be transformed into
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P{(X−E[X])TΣ−1(X−E[X]) < Cp} ≥ 1− NCp i.e. the probability of the spread

of the value of X around the sample mean E[X] being greater than Cp, is less
than N/Cp.

The novelty of the current work is in combining the TI learning strategy
with the MCI, as the algorithm processes the examples in an online unsupervised
paradigm. Before presenting the details, a succinct view of why and how the task
is accomplished is given: • The algorithm aims to reconstruct the information
context by building clusters, as it processes a random sequence of unlabeled
examples. The number of clusters is not known apriori. • A compromise level
is used to decide how much loss of information can be tolerated by imposing
constraint on the homogeneity of the generated clusters. The compromise level
is captured by Cp. Cp shares similar but not the same concept of defining con-
fidence level as ε does in the CLT paradigm. The level of confidence generated
in the proposed algorithm is 1 − NCp as opposed to 1 − ε in CLT. • The quality

of the prediction in CLT is checked based on the p-values generated online. The
proposed algorithm generates reconstruction error online as a measure of the
quality of reconstruction. The reconstruction error is computed as follows: (1)
All processed examples present in a cluster are assigned mean feature values
by averaging examples across each feature. (2) For each example, Euclidian dis-
tance between the newly assigned mean feature values and the original feature
values is computed. (3) Summing the individual deviations and averaging over
all examples gives the total reconstruction error. The computed reconstruction
error changes dynamically as new examples are processed. • Dependence on a
sequence makes the algorithm as weak learner. To resolve this, probability dis-
tribution of reconstruction errors generated from a sample of random sequences
is estimated. Empirically, it is found that with a maximum probability value,
there exists a low reconstruction error value to which the algorithm converges.
This low reconstruction error points to the adequate number of clusters also.
Lastly, the algorithm currently does not work on the merging of the clusters.
Section 2 discusses the algorithm in detail followed by implications and analy-
sis of convergence in section 3. Section 4 discusses empirical results followed by
conclusion.

2 Transductive-Inductive Learning Algorithm

Let the examples (zi = xi) be sampled from the example set randomly without
repetition in a sequential manner, thus forming a sequence Zi. The algorithm
works in alternative steps by (a) creating new clusters using 1-Nearest Neighbour
(NN) transductive learning and (b) learning the association of a new example
to an existing cluster by evaluating the MCI (i.e inductive learning). In case
no associations are found to exist, a new cluster is created by employing 1-
Nearest Neighbour (NN) transductive learning. Thus the algorithm starts with
no clusters at all and uses NN to initialize a new cluster. Once a cluster is
initialized (say with xi and xj), the size of the cluster depends on the number of
examples getting associated with it. The MCI controls the degree of uniformity of
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different feature values of examples that constitute the cluster. The association of
the example to a cluster happens as follows: Let the new random example (say xt)
be considered for checking the association to a cluster. If the spread of example xt
from Eq(x) (the mean of the qth cluster {xi, xj} and x is set of all examples in qth

cluster), factored by the covariance matrix Σq, is below Cp, then xt is considered
as a part of the cluster. Using MCI, it boils down to: P{(xt−Eq[xi, xj ])

TΣ−1q (xt−
Eq[xi, xj ]) ≥ Cp} ≤ NCp or P{(xt−Eq[xi, xj ])

TΣ−1q (xt−Eq[xi, xj ]) < Cp} ≥ 1− NCp
Satisfaction of this criterion suggests a possible cluster to which xt could be
associated. This test is conducted for all the existing clusters. If there are more
than one cluster to which xt can be associated, then the cluster which shows
the minimum deviation from the new random point is chosen. Once the cluster
is chosen, its size is extended to one more example i.e. xt. The cluster now
constitutes {xi, xj , xt} and its Eq(x) and Σq recomputed. In case of failure to
find any association, the algorithm employs 1-NN transductive algorithm to find
a closest neighbour (in unseen data), of the current example under consideration.
This neighbour together with the current example forms a new cluster. Thus the
step of cluster formation or association is repeated online to reconstruct the
information content in the dataset.

3 Implications

In this paper, the term decomposition is synonymous to cluster. The proposed
work uses MCI and the probability associated with it to define a decomposition
as follows:

Definition 1. Let the qth cluster Dq be a decomposition, then: Dq = {xi|∀i
((xi −Eq(x))T Σ−1q (xi −Eq(x))) < Cp}

A decomposition expands by testing a new point xt via the inequality (xt −
Eq(x))T Σ−1q (xt − Eq(x)) < Cp. The probability of the satisfaction of this

inequality is given by P{(xt −Eq(x))T Σ−1q (xt −Eq(x)) < Cp} ≥ 1− NCp . Thus

at any point in time, while processing the dataset online, the probability of
existence of Dq is lower bounded by a value of 1− (N/Cp).

Lemma 1. For any cluster q, the probability of existence of Dq is lower bounded
by a value of 1− (N/Cp).

It is important to note that Cp plays a major role in deciding whether a new
example xt belongs to Dq. If the new example cannot be associated to a partic-
ular decomposition, then it is tested with other decompositions using MCI with
same value of Cp. Thus Cp acts as a constraint in checking the homogeneity of
Dq. Now, since all examples (except for those used to from new clusters where
the NN is used) are tested using MCI and finally associated with one or the
other decomposition for which the constraint is satisfied, the total number of
generated clusters is limited. This limitation is enforced indirectly via the Cp.
In this scenario, it can be expected that the total number of clusters is upper
bounded by M/Cp (M being the total number of examples in the dataset).
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Lemma 2. The value of Cp reduces the initial representation of information con-
tent present in M examples to a representation of information content present
in the decompositions whose number is upper bounded by M/Cp.

Since the existence of a homogeneous decomposition is bounded probabilisti-
cally, the reconstruction error associated with all the examples present in the
decomposition are also bounded. For all decompositions, the summation of re-
construction errors is also bounded. Thus for a particular value of Cp a proof of
convergence is needed for the error rates as the number of processed examples
and the number of clusters increase.

Two error rates are computed as the random sequence of examples get pro-
cessed. Let xi ∈ RN (N is the number of features) be in the dataset. Since
the example is assigned to a particular decomposition Dq, it gets a value of
the mean of the all examples that constitute the decomposition. Thus the re-
construction error for the example turns out to be ||xi − Eq(x)||2. For each
cluster q, the reconstruction error is ErrDq =

∑n
i=1 ||xi − Eq(x)||2 (n is the

number of examples in the qth cluster). As new examples are processed based
on the conceptualized information from the previous examples, the total error
computed at after processing the first ptcntr examples in a random sequence is
Errval =

∑clustercntr

q=1 ErrDq
(clustercntr is the total number of clusters gener-

ated after the ptcntr examples have been processed). The error rate for these
ptcntr examples is Err1 = Errval/ptcntr. Finally, the rate of error after every
new cluster formation is also computed. This error is denoted by Err2 (i.e.
Err2 = Errval/clustercntr).

Theorem 1. From a dataset, if examples are selected randomly and processed
online in a sequential manner without repetition for a particular value of Cp
using the TI, then the reconstruction error rate Err1 converges asymptotically
with a probabilistically lower bound or confidence level of 1−N/Cp or greater.

Proof. Since Cp defines level of compromise in information content via lemma
2 and the decompositions Dq is almost homogeneous, all examples that consti-
tute a decomposition have similar feature values. Due to this similarity between
the feature values, the non-diagonal elements of the covariance matrix in the
inequality above approach to zero or smaller values. Thus, Σ−1q approaches a
diagonal matrix. Multiplying a vector with diagonal matrix scales the vector by
some constant factor (say Sq). Thus, if Σ−1q ≈ Sq × I, were I is the identity

matrix then the inequality equates to: (xt − Eq(x))TSqI(xt − Eq(x)) / Cp ⇒
(xt −Eq(x))T I(xt −Eq(x)) / Cp

Sq ⇒ ||xt −Eq(x))||2 / Cp
Sq

Thus, if xi = xt was the last example to be associated to a decomposition, the
reconstruction error ||xi−Eq(x)||2 for that example would be upper bounded be
Cp
Sq . Consequently, the total error after processing ptcntr examples is also upper

bounded, i.e. Errval =
∑clustercntr

q=1 ErrDq
=

∑clustercntr

q=1

∑n
i=1 ||xi −Eq(x)||2 /∑clustercntr

q=1

∑n
i=1

Cp
Sq . Thus the error rate Err1 = Errval/ptcntr is also upper

bounded. Different decompositions may have different Σ−1q , but in the worst
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Fig. 1. Error rate on left(right) - Err1(Err2) for a particular sequence represent-
ing a 64 × 64 patch of starfish image [4] with increasing number of processed ex-
amples(clusters) with Cp = 7.

case scenario, if the decomposition with the smallest constant factor is substi-
tuted for every other decompositions, then the upper bound on the error is
Cp×Σclustercntr

q=1 Σn
i=1(1)

Ssmallest×ptcntr
which equates to

Cp
Ssmallest

. Since ∀q, Dqs are probabilisti-
cally bounded by the Chebyshev inequality, the error rate converges with the
probability associated with the Chebyshev inequality. Q.E.D

4 Empirical Results

The converging error rate Err1 is depicted in left of figure 1 for a 64×64 patch in
[4] of starfish image. The error rate Err2 is the computation of error after each
new cluster is formed. The proof for upper bound on Err2 follows on similar
lines. For Cp = 7, the error rate Err2 is depicted on right in figure 1 for same
common patch. Intuitively, it can be seen that both the reconstruction error
rates converge to an approximately similar value.

Hitherto, reconstruction error and the number of clusters is dependent on
a sequence presented to the learner. This points to the problem of whether an
image can be reconstructed at a particular Cp where there is a high probability
of finding a low reconstruction error and the number of clusters, from a sample
of sequences. The existence of such a probability value would require the knowl-
edge of the probability distribution of the reconstruction error over increasing
(1) number of examples and (2) number of clusters generated. KDE is used to
estimate the probability distribution of the reconstruction error Err1 and Err2.
The KDE is based on a normal kernel using a window parameter that is a func-
tion of the number of points. The density is evaluated at 100 equally spaced
points that cover the range of the data. The KDE empirically point to the least
error rates with high probability. It was found that the error rates Err1, Err2
and the number of clusters, all converge to a particular value (33.1762, 35.9339
and 38, respectively), for a given image (figure 2).
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Fig. 2. The probability density estimates for (a) Err1 (b) Err2 and (c) the number of
clusters generated over 1000 random sequences representing a 64× 64 patch of starfish
image [4] with Cp = 10.

5 Conclusion

Given a random sequence of examples which are processed in an online sequential
manner, it is possible to converge on a reconstruction of the information content
of the whole dataset to a certain degree compromise with low reconstruction
error using the proposed algorithm.
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