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Abstract. Venn Predictors (VPs) are machine learning algorithms that
can provide well calibrated multiprobability outputs for their predictions.
The only drawback of Venn Predictors is their computational inefficiency,
especially in the case of large datasets. In this work, we propose an In-
ductive Venn Predictor (IVP) which overcomes the computational inef-
ficiency problem of the original Venn Prediction framework. Each VP is
defined by a taxonomy which separates the data into categories. We de-
velop an IVP with a taxonomy derived from a multiclass Support Vector
Machine (SVM), and we compare our method with other probabilistic
methods for SVMs, namely Platt’s method, SVM Binning, and SVM
with Isotonic Regression. We show that these methods do not always
provide well calibrated outputs, while our IVP will always guarantee
this property under the i.i.d. assumption.

Keywords: Support Vector Machine, well calibrated probabilities, mul-
ticlass, Inductive Venn Predictor, Machine Learning.

1 Introduction

Support Vector Machines (SVMs) [13] are widely used in the field of Machine
Learning for classification or regression analysis. To date, several efforts have
been made in order to map the unthresholded SVM outputs into probability
estimates. Some of these methods are Platt’s method [12], SVM binning [5], and
SVM with Isotonic Regression [16]. Nevertheless, there is no guarantee provided
that the probability estimates produced by these methods will always be well
calibrated. In fact as our experiments show, they can become quite misleading.

In this work, we develop a Venn Predictor (VP) based on the SVM classi-
fier in order to produce probability estimates that are always guaranteed to be
well calibrated. Venn Prediction is a novel machine learning framework that can
be combined with conventional classifiers for producing well calibrated multi-
probability predictions under the i.i.d. assumption. In [15], the Venn Prediction
framework is described thoroughly and a proof of the validity of its probabilities
is given.
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In order to overcome the computational inefficiency problem of the original
Venn Prediction approach, which renders it not suitable for application to large
datasets, we propose an Inductive Venn Predictor (IVP) based on the idea of
Inductive Conformal Prediction. As it was shown in many studies, see e.g. [8,
10, 11], Inductive Conformal Predictors are as computationally efficient as the
conventional algorithms they are based on. The same is true for the proposed
IVP, which is based on SVMs for multiclass tasks. We experiment on two multi-
classification datasets, the Car Evaluation [1] and the Wine Quality [2] datasets,
which are freely available at the University of California, Irvine (UCI) machine
learning repository [6]. We compare our method with Platt’s method, SVM Bin-
ning, and SVM with Isotonic Regression. We demonstrate that these methods
do not always provide well calibrated results, while our method can always guar-
antee this property under the i.i.d. assumption.

The rest of the paper is structured as follows. In section 2, we outline re-
lated work that has been conducted for estimating probabilities. In section 3,
we describe the Venn Prediction framework, propose the Inductive version of
the framework, and explain the taxonomy we used with multiclass SVM. In sec-
tion 4, we detail our experimental settings and the obtained results. Finally, in
section 5, we give our conclusions and future plans.

2 Related Work

In this section, we provide related work that has been conducted on methods
that convert the unthresholded output f(xi) of the SVM decision rule into a
probability estimate. Hereon, f(xi) will also be referred as the SVM score of the
example xi. We examine Platt’s method [12], SVM binning [5], and SVM with
Isotonic Regression [16]. Moreover, we describe the approach we have followed
for extending the binary SVM into multiclass SVM.

2.1 Platt’s method

Platt introduced a method in [12] to estimate posterior probabilities based on
the decision function f by fitting a sigmoid:

P (Yj = 1|f(xi)) =
1

1 + exp(Af(xi) +B)
, (1)

where Yj ∈ {−1, 1}. The best parameters A and B are determined so that they
minimise the negative log-likelihood of the training data. Platt uses a Levenberg-
Marquardt (LM) optimisation algorithm to solve this. As indicated in [12], any
method for optimisation can be used. In this work, we use an improved imple-
mentation of Platt’s method which uses Newton’s method with backtracking for
optimisation. Further details of this approach are described in [7].
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2.2 SVM Binning

The SVM binning method [5] sorts the training examples according to their SVM
scores, and then divides them into b equal sized sets, or bins, each having an
upper and lower bound. Given a test example xi, it is placed in a bin according
to its SVM score. The corresponding probability P (Yj = 1|xi) is the fraction of
positive training examples that fall within that bin.

There is no imposed lower or upper bound on SVM scores. Therefore, when
using this method it is possible for some scores from the test examples to fall
below or above the low and high scores, respectively, of the training examples.
If this happens the corresponding probability P (Yj = 1|xi) is that of the nearest
bin to the score of xi.

2.3 Isotonic Regression

Isotonic regression has been used in order to map the SVM scores into probability
estimates in [16]. An isotonic function has a monotonically increasing trend. If
the scores of the SVM are ranked correctly, we can assume that the probability
P (Yj = 1|xi) will be increasing as the SVM scores increase. Therefore, we can
use isotonic regression to map SVM scores into probability estimates. The most
common algorithm used for isotonic regression is the Pair-Adjacent-Violators
(PAV) algorithm.

The algorithm learns the probability estimate g(xi) for each ranked example
xi. First, we set g(xi) = 1 if xi is a positive example, and g(xi) = 0 otherwise.
If g is already isotonic the function has been learned. Otherwise, there must
be an example where g(xi−1) > g(xi). The two examples xi−1 and xi are called
pair-adjacent violators, because they violate the isotonic assumption. The values
of g(xi−1) and g(xi) are then replaced by their average, such that their values
no longer violate the isotonic assumption. This process is repeated until an iso-
tonic set of values is obtained. In the end, we have a list of probability estimates
together with the adjacent SVM scores of the training examples. When a new
example arrives, we assign the mapped probability estimate based on the score
that xi has obtained from the SVM decision rule. Normally, there will be inter-
vals of scores with the same probability estimates. Since there are no imposed
boundaries on the SVM scores, the lowest interval begins from −∞ and the
highest interval ends at +∞.

2.4 Multiclass SVM

The original SVM works only for binary classification problems. In this work
we apply the one-against-all procedure [14] to extend the SVM for multiclass
tasks. In one-against-all, we train a binary SVM classifier for each class using
as positives the examples that belong to that class, and as negatives all other
examples. We then convert the SVM scores of each classifier into probability
estimates based on the methods described in the previous subsections, and then
we combine the binary probability estimates to obtain multiclass probabilities.
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The probabilities are combined by finding the probability P (Yj = 1|xi) of each
class j = 1, . . . , c and then by normalizing the probabilities of all classes to 1.
The largest probability is then used to classify the example.

3 Venn Prediction

Venn Prediction has been introduced in [15] where the interested reader can
find a more detailed description of the framework. Since then VPs have been
developed based on k-Nearest Neighbours [4], Nearest Centroid [3] and Neural
Networks [9]. Furthermore, a VP based on a binary SVM has been developed in
[17], and has been compared with Platt’s method in the batch setting.

Typically, we have a training set1 of the form {z1, . . . , zn−1}, where each
zi ∈ Z is a pair (xi, yi) consisting of the object xi and its classification yi. For a
new object xn, we intend to estimate its probability of belonging to each class
Yj ∈ {Y1, . . . , Yc}. The Venn Prediction framework assigns each one of the possi-
ble classifications Yj to xn and divides all examples {(x1, y1), . . . , (xn, Yj)} into
a number of categories based on a taxonomy. A taxonomy is a sequence An, n =
1, . . . , N of finite measurable partitions of the space Z(n)×Z, where Z(n) is the
set of all multisets of elements of Z of length n. We will write An({z1, . . . , zn}, zi)
for the category of the partition An that contains ({z1, . . . , zn}, zi). Every tax-
onomy A1, A2, . . . , AN defines a different VP. In the next subsection, we define
a taxonomy based on the output of the SVM.

After partitioning the examples into categories using a taxonomy, the em-
pirical probability of each classification Yk in the category τnew that contains
(xn, Yj) will be

pYj (Yk) =
|{(x∗, y∗) ∈ τnew : y∗ = Yk}|

|τnew|
. (2)

This is a probability distribution for the class of xn. So after assigning all possible
classifications to xn we get a set of probability distributions Pn = {pYj : Yj ∈
{Y1, . . . , Yc}} that compose the multi-probability prediction of the VP. As proved
in [15], these are automatically well calibrated, regardless of the taxonomy used.

The maximum and minimum probabilities obtained for each label Yk amongst
all distributions {pYj : Yj ∈ {Y1, . . . , Yc}}, define the interval for the probability
of the new example belonging to Yk. We denote these probabilities as U(Yk) and
L(Yk), respectively. The VP outputs the prediction ŷn = Ykbest

, where

kbest = arg max
k=1,...,c

p(k), (3)

and p(k) is the mean of the probabilities obtained for label Yk amongst all proba-
bility distributions. The probability interval for this prediction is [L(Yk), U(Yk)].

1 The training set is in fact a multiset, as it can contain some examples more than
once.



Reliable probability estimates 5

3.1 Inductive Venn Prediction

The transductive nature of the original Venn Prediction framework is computa-
tionally inefficient, since it requires training the underlying algorithm for every
possible class of each new test example. To address this problem we follow the
idea of the Inductive Conformal Prediction, and propose an efficient Inductive
Venn Predictor (IVP). Our approach splits the available training examples into
two parts, the proper training set and the calibration set. We then use the proper
training set to train the underlying algorithm and the calibration set to calculate
the set of probability distributions for each new example.

Specifically, on each step of the algorithm in the online mode, we make a Venn
Prediction analogue to a step of the Inductive Conformal Prediction ([15], p.98).
For each number of available training examples n−1, we select q ≤ n−1 examples
to form the training set for the SVM classifier and use the remaining examples as
the calibration set. For the taxonomy the training examples z1, . . . , zq are consid-
ered as fixed parameters. The original taxonomy function A is transformed to an-
other taxonomy A′ such that A′n−q({zq+1, . . . , zn}, zi) = Aq+1({z1, . . . , zq}, zi),
for i = q+1, . . . , n. Although slightly different VPs are applied on different steps,
we will see that the validity of the outputs is not affected in practice.

3.2 SVM Venn Predictor

We define a taxonomy based on the output of the multiclass SVM. As explained
in section 3, the validity of a VP is guaranteed under the i.i.d. assumption, re-
gardless of the taxonomy used. For instance, a taxonomy that puts all examples
in one single category would still give a valid predictor. Nevertheless, the per-
formance of each VP is highly affected by the information provided from the
categories defined in a taxonomy.

In this work, our taxonomy is simply based on the largest SVM score of
the multiclass SVM. Therefore, each example is categorized according to the
SVM classification. This taxonomy will give c categories and it is the simplest
taxonomy we may define using the output of the SVM. If the SVM is good at
classifying examples, then each category should contain sufficient information
for the VP to perform well in terms of accuracy.

4 Experiments and results

In order to show the validity of the probability estimates of our method, we
conduct experiments in the on-line mode. Initially all examples are test examples
and they are added to the training set one by one after a prediction for each one
is made. We calculate the cumulative average accuracy of the predictor, and the
cumulative average probability. The cumulative average accuracy is calculated as
the total accuracy of all tested examples, divided by the total number of tested
examples. In the same way we calculate the cumulative average probability.
If the methods provide well calibrated probability estimates, the cumulative
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average accuracy should be near the cumulative average probability. We test all
algorithms described in this paper: Platt’s method; SVM Binning; SVM with
Isotonic Regression (SVM-IR); and our SVM IVP. In our experiments, we did
not try to improve the accuracy of these methods, instead we focused our work on
testing the validity of the probability estimates. The underlying SVM algorithm
that we have used works with the RBF kernel. We test each algorithm two times,
one with a RBF parameter set to an optimal value, and another with a RBF
parameter set to the optimal value divided by 10 (we do this in order to test
the difference in the results when the predictors do not perform so well). The
optimal value for each experiment was chosen based on offline tests (10-fold
cross validation) that have been conducted with a standard SVM predictor. The
standard SVM predictor was tested with the RBF parameter ranges of [0.1, 1]
with steps of 0.1, and [1, 5] with steps of 1. The number of bins for the SVM
Binning method was set to b = 10. In our experiments with the IVP we have
set q = d0.7(n− 1)e. In the next two subsections, we describe our results on two
multi-classification datasets.

4.1 Car evaluation dataset

The Car Evaluation dataset was derived from hierarchical decision model [1] and
is available at [6]. The dataset contains 1728 examples with 6 features for each
example. There are 4 classes for this dataset which describe the car acceptability
based on features that describe the price, technology, and comfort of a car.
In Figure 1, we show the results of the four methods on the Car Evaluation
dataset. The best RBF parameter for this dataset is 0.2. For the first three
methods we plot the cumulative average probability for the output classifications
along with their cumulative accuracy, while for the proposed approach we plot
the upper and lower cumulative probability for the output classifications along
with their cumulative accuracy. One would expect the curves in each plot to
be relatively near if the probabilities produced by the corresponding method
were well calibrated. However this is true only for the IVP in both experiments
and for Platt’s method only with the optimal RBF parameter. When the RBF
parameter is 0.2 the accuracy is around 90% for all methods which is the expected
accuracy on this dataset. In contrast, when we set the RBF parameter to 0.02
the accuracy is reduced to around 70% (which is near the percentage of the first
class), while the probability estimates are near 100% for all methods except the
IVP. As shown in the last row of the graphs, the IVP probability estimates are
automatically lowered to around 68%, which is near the actual accuracy.

To confirm our observations from the graphs we calculated the 2-sided p-
values of obtaining a total accuracy with the observed deviation from the ex-
pected accuracy given the probabilities produced by each method. In the case
of the IVP we used the mean of the upper and lower probabilities as the proba-
bility of each prediction being correct. The p-values obtained for the outputs of
the Platts’s method with the RBF parameter set to 0.2 and the IVP with both
parameter values were above 0.15. However, the p-values in all other cases were
below 10−50. This shows that the probabilistic outputs produced by the three
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methods can be far from being well calibrated. Even for Platt’s method, a wrong
selection of the RBF parameter leads to misleading outputs. This does not hap-
pen with Venn Prediction which produces well calibrated outputs regardless of
the underlying algorithm or the taxonomy used.

4.2 Red Wine quality dataset

The Red Wine quality dataset contains 1599 examples of physicochemical fea-
tures of red variants of the “Vinho Verde” wine [2]. This dataset can be used as
a regression or a classification problem. Each example has a quality score from
1 to 10. In this work, we have used the scores as 10 different classes from 1 to
10. This dataset is particularly difficult and requires some pre-proccessing to
remove redundant features, or even reduce the number of classes. For instance,
some classes have very few or even no examples in the training set. In our ex-
periments, we have intentionally left the dataset to its original state in order
to demonstrate the reliability of our probability estimates on difficult problems
where the underlying algorithm may not be able to fit the data very well. In
Figure 2, we show the online results of the four methods on the Wine quality
dataset. The best RBF parameter on this dataset is 0.6. From the results, we
can see that Platt’s method, SVM-Binning, and SVM-IR did not give reliable
probability estimates (due to the difficulty of the task), whereas the IVP has
automatically lowered the probability estimates and has given well calibrated
results in both cases. The 2-sided p-values for the IVP were above 0.3, whereas
for all other methods with both RBF parameters the p-values were below 10−50.

5 Conclusion

In this work, we have examined existing methods that convert SVM scores into
probability estimates. We have shown that there is no trust in the probability
estimates produced by these methods, especially when the underlying algorithm
is not well configured or when the dataset is difficult. For the purpose of over-
coming this limitation, we have developed an Inductive Venn Predictor based
on SVMs, which guarantees (under the i.i.d. assumption) that the probability
estimates will be well calibrated, regardless of the configuration of the algo-
rithm or the difficulty of the task. Additionally, the proposed IVP overcomes
the computational inefficiency problem which renders the original Venn Predic-
tion framework unsuitable in the case of large datasets. Our future aim is to
improve the performance of our IVP in terms of accuracy by introducing better
taxonomies that can be derived from the unthresholded scores of SVMs. Fur-
thermore, we wish to investigate whether the one-against-all procedure is one of
the causes for the non calibrated probability estimates of the existing methods,
and we would like to compare our IVP with other multiclass procedures.

Acknowledgments. This work was supported by the Cyprus Research Promo-
tion Foundation through research contract TPE/ORIZO/0609(BIE)/24 (“Devel-
opment of New Venn Prediction Methods for Osteoporosis Risk Assessment”).
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SVM Binning (b=10) on Car Evaluation dataset with RBF parameter 0.02.
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SVM Binning (b=10) on Car Evaluation dataset with RBF parameter 0.2.
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SVM−IR on Car Evaluation dataset with RBF parameter 0.02.
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Fig. 1. Online experiments of all four methods on the Car evaluation dataset, RBF
parameter is 0.02 on the left column and 0.2 on the right column.
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SVM Platts on Wine quality dataset with RBF parameter 0.06
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SVM−IR method on Red Wine dataset with RBF parameter 0.06.
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Fig. 2. Online experiments of all four methods on the Wine quality dataset, RBF
parameter is 0.06 on the left column and 0.6 on the right column.
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