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Zero-Shot Object Recognition Based on Haptic Attributes

Zineb Abderrahmane!, Gowrishankar Ganesh2, Andrea Cherubini' and André Crosnier

Robots operating in household environments need to rec-
ognize a variety of objects. Several touch-based object recog-
nition systems have been proposed in the last few years [2]—
[5]. They map haptic data to object classes using machine
learning techniques, and then use the learned mapping to
recognize one of the previously encountered objects. The
accuracy of these proposed methods depends on the mass
of the the training samples available for each object class.
On the other hand, haptic data collection is often system
(robot) specific and labour intensive. One way to cope with
this problem is to use a knowledge transfer based system,
that can exploit object relationships to share learned models
between objects. However, while knowledge-based systems,
such as zero shot learning [6], have been regularly proposed
for visual object recognition, a similar system is not available
for haptic recognition.

Here we developed [1] the first haptic zero-shot learning
system that enables a robot to recognize, using haptic explo-
ration alone, objects that it encounters for the first time. Our
system first uses the so called Direct Attributes Prediction
(DAP) model [7] to train on the semantic representation of
objects based on a list of haptic attributes, rather than the
object itself. The attributes (including physical properties
such as shape, texture, material) constitute an intermediate
layer relating objects, and is used for knowledge transfer.
Using this layering, our system can predict the attribute-
based representation of a new (previously non-trained) object
and use it to infer its identity.

A. System Overview

An overview of our system is given in Fig. Given
distinct training and test data-sets Y and Z, that are described
by an attribute basis a, we first associate a binary label a,
to each object o with o € YU Z and m = 1... M. This
results in a binary object-attribute matrix K. For a given
attributes list during training, haptic data collected from Y
are used to train a binary classifier for each attribute a.,.
Finally, to classify a test sample x as one of Z objects, x is
introduced to each one of the learned attribute classifiers and
the output attributes posteriors p(a., | x) are used to predict
the corresponding object, provided that the ground truth is
available in K.

This extended abstract is a summary of submission [1]
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Fig. 1.

Direct Attribute Prediction for Zero-Shot Haptic Recognition

B. Experimental Setup

To collect haptic data, we use the Shadow anthropo-
morphic robotic hand equipped with a BioTac multimodal
tactile sensor on each fingertip. We developed a force-based
grasp controller that enables the hand to enclose an object.
The joint encoder readings provides us with information on
object shape, while the BioTac sensors provides us with
information about objects material, texture and compliance
at each ﬁngertipﬂ

In order to find the appropriate list of attributes describing
our object set (illustrated in Fig. [2), we used online dictio-
naries to collect one or multiple textual definitions of each
object. From this data, we extracted 11 haptic adjectives,
or descriptions that could be “felt” using our robot hand.
These adjectives served as our attributes: made of porcelain,
made of plastic, made of glass, made of cardboard, made of
stainless steel, cylindrical, round, rectangular, concave, has
a handle, has a narrow part. We grouped the attributes into
material attributes, and shape attributes.

During the training phase, we use the Shadow hand joint
readings x4, to train an SVM classifier for each shape, and
BioTacs readings z; to train an SVM classifier for each
material attribute. SVM training returns a distance s,,(x)
measure for each sample = that gives how far x lies from
the discriminant hyper-plane. We transform this score to an
attribute posterior p(a,, | z) using a sigmoid function.

A video of the experiments has been attached to this paper and can be
found on the IDH YouTube channel: https://youtu.be/GaGHZXHBDG4


https://youtu.be/GaGHZXHBDG4

Fig. 2. Disjoint training (left) and test (right) object sets.

C. Zero-Shot Learning

The last step is to classify a test sample = as one of the
test objects Z = {z1, ..., 21, }. According to the DAP model
[7], we introduce x to each attribute classifier to obtain a
list of attributes posteriors {p(a; | ), ...,p(an | «)}. From
these, we infer the posterior of a test object z;:

plzlz)= > plz|a)pla|z)
et (1)
= alz p(z) alx
- 3 el

Since we have the attributes vector a*' associated to z;,
pla | z) = 1if @ = a® and 0 otherwise. Assuming
independence between attributes, we obtain p(a | z) =

Hi\g:l p(am | ). Replacing in (1)) yields:
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We use MAP estimator to classify = to the best matching
class f(z) = 21

f(z) = argmax p(z; | ). 3)
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D. Accounting for Inter-grasp variability in haptic data

Grasps are usually planned for a given object shape. Here
we aim for the opposite; to recognize the shape (and material)
from a grasp. Our system is thus constrained to work with
unplanned rudimentary grasps, which in turn can lead to
large variability in the observed haptic attributes. First, it
is possible that the size of the object is large and that the
robot grasp is not able to enclose the object completely. This
can lead to the absence of some attributes in each grasp.
Second, the object may be very small, or the grasp orientation
improper, such that certain fingers dont touch the object,
again leading to variability of haptic information across
grasps. Furthermore, even a properly enclosed object may
be made of different materials leading to different BioTacs
readings from each finger and each grasp.

To cope with these problems, we propose an extension of
the DAP model that deals with absent attributes and allows
for the integration of information from different fingers. We
refer to this extended model as Local DAP, or LDAP. LDAP
assumes that if the system reports that an attribute is absent
from the object, then the attribute posterior is replaced by

= e =1 =9
AR EIHEEHHE R
= 2B 8 2w EiEi™i®
b = 2 8
ball 06:01:02: 0 {0:i01: 0 0 0 0
rec. cont.|0.06: 0.75:0.19: 0 : 0: 0 0 0 0 0
tube 0 0 :09: 0 0: 0 0 0 0 :0.1
blender | 0 0 0 i0.53: 0: 0 {0.2: 0 :0.13:0.13
bowl 0 0 0:0:1:0:0:0:0:0
glass 0 0 i03: 0 0i07: 0:0:0:0
plas. cup| 0 0 :03: 0 ;0:01:05: 0 0 :0.1
msr. cup| 0 0 046 0 : 0 :0.08{0.31:0.15{ 0 : O
jar 01:03:04: 0 . 0: 0  0:0:02:0
salter 0 0 0 :i02: 0: 0 0 0 0 0.8

Fig. 3. Confusion matrix of LDAP

a uniform probability to express our uncertainty about the
presence of this attribute. Moreover, the posteriors we obtain
for a material attribute from the B contacting fingers are
averaged to obtain a global posterior of the whole grasp.
We can formulate these two modifications in the following
formulas, for material attributes:

1B
play, =1]x) = 5 Zmax(O.&p(am =1]xp). &)
b=1

and for shape attributes:
p(am =1 | .’K) = ma$(0'5ap(am =1 | xsh))v (5

E. Evaluation

Fig. 3] gives the confusion matrix when applying LDAP
on our test object set. Note again that these objects were
distinct from the objects the robot trained on. Our approach
shows good performance on most objects. It however does
less well with some objects such as the measuring cup and
the jar, which was partly expected due to the heterogeneity
of the objects itself, and the similarity between the objects.

E. Conclusion

In this work, we designed an attribute-based zero-shot
haptic recognition system for recognizing a set of household
objects. We used our robotic setup, namely the Shadow hand
and BioTac sensors, to collect haptic data from each object,
and the DAP model to classify a test sample to one of a set
of classes, that the robot has never been trained on.

We are now working to improve and extend the system to
better combine information from multiple grasps, consider
real-valued attributes [8], and to integrate our zero-shot
learning architecture with previous state of the art methods
for recognizing known objects.
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