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Abstract: In multi-(core/mode) optical fiber communication, the transmission channel can be
modeled as a complex sub-matrix of the Haar-distributed unitary matrix (complex Jacobi unitary
ensemble). In this letter, we present new analytical expressions of the upper and lower bounds for
the ergodic capacity of multiple-input multiple-output Jacobi-fading channels. Recent results on
the determinant of the Jacobi unitary ensemble are employed to derive a tight lower bound on the
ergodic capacity. We use Jensen’s inequality to provide an analytical closed-form upper bound to
the ergodic capacity at any signal-to-noise ratio (SNR). Closed-form expressions of the ergodic
capacity, at low and high SNR regimes, are also derived. Simulation results are presented to
validate the accuracy of the derived expressions.
OCIS codes: (110.3055) Information theoretical analysis; (000.3860) Mathematical methods in physics ; (060.2330)
Fiber optics communications; (060.2310 ) Fiber optics.
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1. Introduction

To accommodate the exponential growth of data traffic over the last few years, space-division
multiplexing (SDM) based on multi-core optical fiber or multi-mode optical fiber [1–4] is
expected to overcome the barrier from capacity limit of single-core fiber [5]. The main challenge
in SDM occurs due to in-band crosstalk between multiple parallel transmission channels (cores or
modes). This non-negligible crosstalk can be dealt with by using multiple-input multiple-output
(MIMO) signal processing techniques. Assuming important crosstalk between channels (cores or
modes), negligible backscattering and near-lossless propagation, we can model the transmission
channel as a random complex unitary matrix [6–8]. In [6], authors introduced the Jacobi unitary
ensemble to model the propagation channel for fiber-optical MIMO channel and they gave
analytical expression for the ergodic capacity. However, to the best of the authors’ knowledge, no
bounds for the ergodic capacity of the uncorrelated MIMO Jacobi-fading channels exist in the
literature so far. The two main contributions of this work are: (i) the derivation of a lower/upper
bounds on the ergodic capacity of an uncorrelated MIMO Jacobi-fading channel with identically
and independently distributed input symbols, (ii) the derivation of simple asymptotic expressions
for ergodic capacity in the low and high SNR regimes.
The rest of this paper is organized as follows: Section 2 introduces the MIMO Jacobi-fading

channel model and includes the definition of ergodic capacity. We derive a lower and upper bound,
at any SNR value, and an approximation, in high and low SNR regimes, to the ergodic capacity in
Section 3. The theoretical and the simulation results are discussed in Section 4. Finally, Section 5
provides the conclusion.

2. Problem formulation

Consider a single segment m-channel lossless optical fiber system, the propagation through the
fiber may be analyzed through its 2m × 2m scattering matrix given by [8]

S =
[
Rll Trl

Tlr Rrr

]
(1)

where Tlr and Trl sub-matrices correspond to the transmitted from left to right and from right to
left signals, respectively. The Rll and Rrr sub-matrices present the reflected signals from left to
left and from right to right. Moreover, Rll = Rrr ≈ 0m×m given the fact that the backscattering in
the optical fiber is negligible, andT = Tlr = T†

rl
because the two fiber ends are not distinguishable.

The notation (.)† is used to denote the conjugate transpose matrix. Energy conservation principle
implies that the scattering matrix S is a unitary matrix (i.e. S−1 = S† where the notation (.)−1

is used to denote the inverse matrix.). As a consequence, the four Hermitian matrices TlrT†lr ,
TrlT†rl , Im − RllR†ll , and Im − RrrR†rr have the same set of eigenvalues λ1, λ2, ...., λm. Each of
these m transmission eigenvalues is a real number between 0 and 1. Without loss of generality, the
transmission matrix T will be modeled as a Haar-distributed unitary random matrix of dimension
m × m [6].
We consider that there are mt ≤ m excited transmitting channels and mr ≤ m receiving

channels coherently excited in the input and output side of the m-channel lossless optical fiber.
Therefore, we only consider a truncated version of the transmission matrix T, which we denote
by H, since not all transmitting or receiving channels may be available to a given link. Without
loss of generality, the effective transmission channel matrix H is the mr ×mt upper-left corner of
the transmission matrix T [11]. As a result, the corresponding multiple-input multiple-output
channel for this system is given by

y = Hx + z (2)
where y ∈ Cmr×1 is the received signal, x ∈ Cmt×1 is the emitted signal with E[x†x] = P

mt
Imt ,

and z ∼ N (0, σ2Imr ) is circular-symmetric complex Gaussian noise. We denote E[W ] the



mathematical expectation of random variable W . The variable P is the total transmit power
across the mt modes/cores, and σ2 is the Gaussian noise variance. We know from [6,9] that when
the receiver has a complete knowledge of the channel matrix, the ergodic capacity is given by

Cm,ρ
mt,mr

=




E
[
ln det

(
Imt +

ρ
mt

H†H
)]

if mr ≥ mt

E
[
ln det

(
Imr +

ρ
mt

HH†
)]

if mr < mt

(3)

where ln is the natural logarithm function and ρ = P

σ2 is the average signal-to-noise ratio
(SNR). In this paper, we consider the case where mr ≥ mt and mt + mr ≤ m. The other case
where mr < mt and mt + mr ≤ m can be treated defining m′t = mr and m′r = mt . In the case
where mt + mr > m, it was shown in [6, Theorem 2,] that the ergodic capacity can be deduced
from (3) as follows:

Cm,ρ
mt,mr

= (mt + mr − m) ln(1 + ρ) + Cm,ρ
m−mr ,m−mt

(4)

The ergodic capacity is defined as the average with respect to the joint distribution of eigenvalues
of the covariance channel matrix J = 1

mt
H†H. The randommatrix J follows the Jacobi distribution

and its ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λmt have the joint density given by

Fa,b,m(λ) = χ−1
∏

1≤ j≤mt

λaj (1 − λ j )bV (λ)2 (5)

where a = mr − mt , b = m − mr − mt , λ = (λ1, . . . , λmt ), V (λ) =
∏

1≤ j<k≤mt
|λk − λ j |, χ is a

normalization constant evaluated using Selberg integral formula [10], and it is given by:

χ =

mt∏
j=1

Γ(a + 1 + j)Γ(b + 1 + j)Γ(2 + j)
Γ(a + b + mt + j + 1)Γ(2)

(6)

3. Tight bounds on the ergodic capacity

In order to obtain simplified closed-form expressions for the ergodic capacity of the Jacobi
MIMO channel, we consider classical inequalities such as Jensen’s inequality and Minkowski’s
inequality. Moreover, we used the concavity property of the ln det(.) function given the fact that
the channel covariance matrix J is positive definite matrix [12, Theorem 17.9.1,].

3.1. Upper bound

The following theorem presents a new tight upper bound on the ergodic capacity of Jacobi MIMO
channel.

Theorem 1 Let mt ≤ mr , and mt + mr ≤ m, the ergodic capacity of uncorrelated MIMO
Jacobi-fading channel, with receiver CSI and no transmitter CSI, is upper bounded by

Cm,ρ
mt,mr

≤ mt ln
(
1 +

ρmr

m

)
(7)

Proof of Theorem 1: We propose to use the well known Jensen’s inequality [13] to obtain
an upper bound for the ergodic capacity. According to this inequality and the concavity of the
ln det(.) function, we can give a tight upper bound on the ergodic capacity (3) as:

Cm,ρ
mt,mr

≤

mt∑
k=1

ln (1 + ρE [λk])

≤ mt ln (1 + ρE [λ1]) (8)



Now, the density of λ1 is given by [6, (67),] as

fλ1 (λ1) =
1

mt

mt−1∑
k=0

e−1
k,a,bλ

a
1 (1 − λ1)b

(
P(a,b)
k

(1 − 2λ1)
)2

(9)

where ek,a,b =
Γ(k+a+1)Γ(k+b+1)

k!(2k+a+b+1)Γ(k+a+b+1) and P(a,b)
k

(x) are the Jacobi polynomials [14, Theorem
4.1.1,]. They are orthogonal with respect to the Jacobi weight functionωa,b (x) := (1−x)a (1+x)b

over the interval I = [−1, 1], where a, b > −1, and they are defined by∫ 1

−1
(1 − x)a (1 + x)bP(a,b)

n (x)P(a,b)
m (x)dx = 2a+b+1en,a,bδn,m (10)

where δn,m is the Kronecker delta function. Using (9), we can write the expectation of λ1 as

E [λ1] =
mt−1∑
k=0

e−1
k,a,b

mt

∫ 1

0
λa+1

1 (1 − λ1)b
(
P(a,b)
k

(1 − 2λ1)
)2

dλ1 (11)

By taking u = 1 − 2λ1, we can write

E [λ1] =
1

mt2a+b+2

mt−1∑
k=0

e−1
k,a,b

∫ 1

−1
(1 − u)a (1 + u)b

P(a,b)
k

(u)
(
P(a,b)
k

(u) − uP(a,b)
k

(u)
)

du (12)

we recall from [14, (4.2.9),] the following three-term recurrence relation of Jacobi polynomials
generation:

uP(a,b)
k

(u) =
P(a,b)
k+1 (u)

Ak
−

CkP(a,b)
k−1 (u)

Ak
−

BkP(a,b)
k

(u)

Ak
, k > 0 (13)

where Ak =
(2k+a+b+1)(2k+a+b+2)

2(k+1)(k+a+b+1) , Bk =
(a2−b2)(2k+a+b+1)

2(k+1)(k+a+b+1)(2k+a+b) , and Ck =
(k+a)(k+b)(2k+a+b+2)

(k+1)(k+a+b+1)(2k+a+b) . Then, by employing (10), (12), and (13), the expectation of λ1 can
be expressed as

E [λ1] =
mt−1∑
k=0

e−1
k,a,b

mt2a+b+2

∫ 1

−1
(1 − u)a (1 + u)bP(a,b)

k
(u)(

P(a,b)
k

(u) − uP(a,b)
k

(u)
)

du (14)

thus, we can write

E [λ1] =
1

2mt

mt−1∑
k=0

(
1 +

Bk

Ak

)
=

mr
m

(15)

Finally, the upper bound on the ergodic capacity can be expressed as:

Cm,ρ
mt,mr

≤ mt ln
(
1 +

ρmr

m

)
(16)

This completes the proof of Theorem 1.
In low-SNR regimes, the proposed upper bound expression is very close to the ergodic capacity.

Thus, we derive the following corollary.



Corollary 1 Let mt ≤ mr , and mt + mr ≤ m. In low-SNR regimes, the ergodic capacity for
uncorrelated MIMO Jacobi-fading channel can be approximated as

Cm,ρ<<<1
mt,mr

≈
mtmr ρ

m
(17)

Proof of Corollary 1: In low-SNR regimes (ρ <<< 1), the function ln
(
1 + mr ρ

m

)
can be

approximated by mr ρ
m .

When the sum of transmit and receive modes, mt +mr , is larger than the total available modes,
m, the upper bound expression of the ergodic capacity can be deduced from (4).

3.2. Lower bound

The following theorem gives a tight lower bound on the ergodic capacity of Jacobi MIMO
channels.

Theorem 2 Let mt ≤ mr , and mt + mr ≤ m, the ergodic capacity of uncorrelated MIMO
Jacobi-fading channel, with receiver CSI and no transmitter CSI, is lower bounded by

Cm,ρ
mt,mr

≥ mt ln *
,
1 +

ρ
mt
√

Fm
mt,mr

+
-

(18)

where Fm
mt,mr

=
∏mt−1

j=0
∏m−mr−1

k=0 exp
(

1
mr +k− j

)
Proof of Theorem 2: We start from Minkowski’s inequality [13] that we recall here for

simplicity. Let A and B be two n × n positive definite matrices, then

[det(A + B)]
1
n ≥ (det(A))

1
n + (det(B))

1
n (19)

with equality iff A is proportional to B. Applying this inequality to (3), a lower bound of the
ergodic capacity can be obtained as

Cm,ρ
mt,mr

≥ mtE
[
ln

(
1 + ρ (det (J))

1
mt

)]

≥ mtE
[
ln

(
1 + ρ exp

(
1

mt
ln det(J)

) )]
(20)

Recalling that ln(1+ c expx ) is convex in x for x > 0, we apply Jensen’s inequality [13] to further
lower bound (20)

Cm,ρ
mt,mr

≥ mt ln
(
1 + ρ exp

(
1

mt
E[ln det(J)]

) )
(21)

Using the Kshirsagar’s theorem [15], it has be shown in [16, Theorem 3.3.3,], and [17] that
the determinant of the Jacobi ensemble can be decomposed into a product of independent beta
distributed variables. We infer from [17] that

ln det (J)
(d)
=

mt∑
j=1

lnTj (22)

where (d)
= stands for equality in distribution, Tj , j = 1, . . . ,mt are independent and

Tj
(d)
= Beta(mr − j + 1,m − mr ) (23)



where Beta(α, β) is the beta distribution with shape parameters (α, β). Taking the expectation
over all channel realizations of a random variable U = ln det (J), we get

E [U] =
mt−1∑
j=0

ψ(mr − j) − ψ(m − j) (24)

where ψ(n) is the digamma function. For positive integer n, the digamma function is also called
the Psi function defined as [18]{

ψ(n) = −γ n = 1
ψ(n) = −γ +

∑n−1
k=1

1
k n ≥ 2 (25)

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Now, we can finish the proof of the Theorem
2 as follows

Cm,ρ
mt,mr

≥ mt ln
(
1 + ρ exp

(
1

mt

∑mt −1
j=0 ψ(mr−j)−ψ(m−j)

) )

≥ mt ln
*.....
,

1 +
ρ

mt

√∏mt−1
j=0

∏m−mr−1
k=0 exp

(
1

mr +k− j

)
+/////
-

≥ mt ln *
,
1 +

ρ
mt
√

Fm
mt,mr

+
-

(26)

where Fm
mt,mr

=
∏mt−1

j=0
∏m−mr−1

k=0 exp
(

1
mr +k− j

)
. This completes the proof of Theorem 2.

In high-SNR regimes, the proposed lower bound expression is closed to the ergodic capacity.
Thus, we derive the following corollary.

Corollary 2 Let mt ≤ mr , and mt + mr ≤ m. In high-SNR regimes, the ergodic capacity for
uncorrelated MIMO Jacobi-fading channel can be approximated as

Cm,ρ>>1
mt,mr

≈ mt ln (ρ) −
mt−1∑
j=0

m−mr−1∑
k=0

1
mr + k − j

(27)

Proof of Corollary 2: In high-SNR regimes (ρ >> 1), the function ln
(
1 + ρ

mt
√
Fm
mt ,mr

)
can be

approximated by ln (ρ) − 1
mt

ln
(
Fm
mt,mr

)
.

4. Simulation results

In this section, we present numerical results to further investigate the resulting analytical equations.
The tightness of the derived expressions is clearly visible in Figs. 1–3.

In Fig. 1(a), we have plotted the exact ergodic capacity obtained by computer simulation and
the corresponding lower and upper bounds, for the uncorrelated MIMO Jacobi-fading channels,
with (mt = mr = 2,m = 6) and (mt = 4,mr = 10,m = 16). At very low SNR (typically below 2
dB), the exact curves and the upper bounds are practically indistinguishable. The gaps between
the exact curves of the ergodic capacity and the lower bounds considerably vanish in moderate to
high SNR (typically above 20 dB). We can observe that the expression in (18) matches perfectly
with the ergodic capacity expression in (3).

Figure 1(b) shows the ergodic capacities of uncorrelated MIMO Jacobi fading channels, and it
proves by numerical simulations the validity of the high-SNR regimes lower-bound approximation
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Fig. 1. (a) Comparison of the ergodic capacity and analytical lower-bound and upper-bound
expressions for (mt = mr = 2,m = 6), and (mt = 4,mr = 10,m = 16) uncorrelated MIMO
Jacobi-fading channels, (b) High-SNR lower-bound approximation of the ergodic capacity
in nats per channel use versus SNR in dB.

given in (27). Results are shown for different numbers of transmitted/received modes, with m = 4,
m = 8, and m = 16. We see that the ergodic capacities approximations are accurate over a large
range of high SNR values.

Figure 2(a) shows the ergodic capacity and the analytical low-SNR upper bound expression in
Eq. (17) for several uncorrelated MIMO Jacobi-fading channels configurations. It is clearly seen
that our expression is almost exact at very low SNR and that it gets tighter at low SNR as the
number of available modes (m) increases.
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Fig. 2. (a) Low-SNR upper-bound approximation of the ergodic capacity in nats per channel
use versus SNR in dB, (b) Bounds and simulation results for ergodic capacity of MIMO
Jacobi channel capacity, with number available modes m = 128, for different numbers of
transmitting and receiving channels.

Figure 2(b) shows the comparison of the ergodic capacity of the uncorrelated MIMO Jacobi-
fading channels and the derived expressions of the upper and lower bounds where the number of
available modes is equal to 128. As can be seen in Fig. 2(b), the derived upper and lower bounds
of the ergodic capacity are close to the exact expression given in (7). We verify that our upper
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Fig. 3. (a) Comparison of upper bound, lower bound and ergodic capacity in nats per channel
use versus SNR in dB when mt + mr is larger than the available modes m (b) Bounds, upper
and lower SNR approximation of the ergodic capacity of the MIMO Jacobi-fading channel
where the number of available modes m = 64 and mt + mr > m.

and lower bounds give good approximations of the ergodic capacity even for very large number
of available modes (i.e. m = 128).
In Fig. 3(a), we investigate how close the ergodic capacity is to its upper and lower bounds

in cases where mt + mr > m. We address this particular case using (4). It can be observed that
the proposed upper bound on the ergodic capacity is extremely tight for all SNR regimes when
mr is larger than mt . It is important to note that there exists a constant gap between the lower
bound and the exact ergodic capacity at all SNR levels. When mt is larger than mr , such upper
and lower bounds are close to ergodic capacity at all SNR regimes. For comparison purposes, we
have depicted in Fig. 3(b) the ergodic capacity of the MIMO Jacobi-fading channel obtained
by computer simulation, the upper/lower bounds and the high/low SNR approximations when
the sum of transmit and receive modes, mt + mr , is larger than the total available modes, m. In
the high SNR regimes, the ergodic capacity and its high SNR approximation curves are almost
indistinguishable. Similarly, we observe that there is almost no difference between the ergodic
capacity and its low SNR approximation in the low SNR regions, while there is a significant
difference in the high SNR regimes. This difference can be explained by the fact that the first
order Taylor’s expansion of ln (1 + x) is not valid for high values of x.

5. Conclusion

In this paper, we derive new analytical expressions of the lower-bound and upper-bound on the
ergodic capacity for uncorrelated MIMO Jacobi fading channels assuming that transmitter has no
knowledge of the channel state information. Moreover, we derive accurate closed-form analytical
approximations of ergodic capacity in the high and low SNR regimes. The simulation results
show that the lower-bound and upper-bound expressions are very close to the ergodic capacity.
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