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Abstract

The fast multipole method is an efficient technique to accelerate the solution of large scale 3D
scattering problems with boundary integral equations. However, the fast multipole accelerated
boundary element method (FM-BEM) is intrinsically based on an iterative solver. It has been
shown that the number of iterations can significantly hinder the overall efficiency of the FM-
BEM. The derivation of robust preconditioners for FM-BEM is now inevitable to increase the
size of the problems that can be considered. The main constraint in the context of the FM-
BEM is that the complete system is not assembled to reduce computational times and memory
requirements. Analytic preconditioners offer a very interesting strategy by improving the spectral
properties of the boundary integral equations ahead from the discretization. The main contribution
of this paper is to combine an approximate adjoint Dirichlet to Neumann (DtN) map as an
analytic preconditioner with a FM-BEM solver to treat Dirichlet exterior scattering problems
in 3D elasticity. The approximations of the adjoint DtN map are derived using tools proposed
in [40]. The resulting boundary integral equations are preconditioned Combined Field Integral
Equations (CFIEs). We provide various numerical illustrations of the efficiency of the method for
different smooth and non smooth geometries. In particular, the number of iterations is shown to
be completely independent of the number of degrees of freedom and of the frequency for convex
obstacles.

Keywords: Scattering, time-harmonic elastic waves, Boundary Element Method, Fast Multipole
Method, Analytical Preconditioner, approximate local DtN map

1. Introduction

The paper is concerned with the numerical solution of high-frequency scattering problems of
time-harmonic elastic waves by a three-dimensional rigid obstacle. The accurate numerical mod-
eling of highly oscillatory elastic problems is a challenging task. It is a timely research field due to
the variety of possible applications (for example seismology, remote sensing or non-destructive test-
ing) [2, 13]. To solve elastodynamic scattering problems in unbounded domains, various numerical
methods are used [68]. We can mention the Finite Element Method [50, 29, 53, 11] or the Finite
Difference Method [65, 47]. Such volume methods are used with nonreflecting boundary conditions
[46, 45] such as Absorbing Boundary Conditions (ABCs) [34, 21, 44] or Perfectly Matched Layers
(PMLs) [9, 49, 31] to truncate the computational domain. Another possible approach is to use the
method of boundary integral equations (BIEs) that enjoys a number of attractive properties (see
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e.g. [12, 51, 56, 55]). The main advantage is to reformulate the exterior boundary value-problem
as an integral equation on the boundary of the scatterer. Thus, the dimensionality of the problem
is reduced by one. Still, the method has its drawbacks. The discretization matrix of a boundary
integral operator is dense. Furthermore, in order to capture the oscillatory phenomenon, one has
to fix typically about ten discretization points per wavelength per dimension. The solution of
these large and fully-populated complex linear systems is handled by iterative solvers, namely
GMRES [69]. On the one hand, the standard Boundary Element Method (BEM) results in high
computational costs in terms of computational time (O(N2) per iteration) and memory require-
ments (O(N2)), where N denotes the number of degrees of freedom (DOFs) of the BEM model.
On the other hand, the spectral properties of the most stable integral equation formulations, the
Combined Field Integral Equations (CFIEs), are not particularly well suited for Krylov-subspace
iterative solvers such as GMRES. We will see in Section 5 that this main drawback of the CFIEs
is exacerbated at high frequencies (see Tables 1-5). To decrease the overall cost of the solver,
two complementary approaches are considered: (i) fast methods to accelerate the computation of
matrix-vector products and (ii) preconditioners to speed up the convergence of the solver.

The Fast Multipole accelerated Boundary Element Method (FM-BEM) is one of the efficient
methods used to speed up the evaluation of matrix-vector products when the matrix is obtained
by the discretization of an integral operator. The method has been introduced by Rokhlin [64]
and then adapted to integral equations for wave propagation problems [36]. The capabilities of
the method have been shown in many fields, including in 3D elastodynamics [24]. In practice, the
theoretical complexity of the multi-level FMM is O(N logN) per iteration both for CPU time and
memory requirements. However, the FM-BEM is intrinsically based on an iterative solver and it
has been shown that the number of iterations can significantly hinder the overall efficiency of the
FM-BEM [25, 26]. The derivation of adequate preconditioners for FM-BEM is now mandatory
to increase the size of the problems that can be considered. The main constraint in the context
of the FM-BEM is that the complete system is not assembled to reduce computational times and
memory requirements.

Traditional algebraic preconditioning approaches such as incomplete LU, SParse Approxima-
tive Inverse [19, 20], multi-grid methods [18], nested GMRES algorithm [27] have been applied to
electromagnetic or elastodynamic FM-BEMs. However, since algebraic preconditioners use only
a small part of the system matrix, they do not contain enough information on the physics of the
underlying continuous operator. They show only moderate efficiency for high frequency problems.
Analytic preconditioners offer a very interesting alternative. They play the role of regularizing
operators in the integral representation of the scattered field and improve the spectral properties
of the resulting boundary integral equations ahead from the discretization. This precondition-
ing strategy based on Calderón’s relations has been introduced by Steinbach and Wendland [66]
in electromagnetism. Since then, several works have been proposed for constructing Fredholm
boundary integral equations of the second kind for both acoustic and electromagnetic scattering
problems by closed surfaces (e.g. [5, 6, 57, 58, 1, 15, 16, 39, 14, 63, 30]) or open surfaces (e.g.
[32, 33, 4, 17]). Among them, approximations of the DtN map (for Brakhage-Werner type BIEs)
or of the adjoint DtN map (for CFIEs) naturally define robust analytical preconditioners when
considering Dirichlet boundary value-problems. A pseudo inverse of the principal classical symbol
of the single layer boundary integral operator - or equivalently the principal classical symbol of
the Neumann trace of the double layer boundary integral operator - is used to approach the DtN
map and its adjoint operator [7, 6, 38] in the framework of the On-Surface Radiation Condition
(OSRC) methods (e.g. [54, 52, 3]). This is intuitively natural in view of the Calderón’s formulas
and the compactness of the double layer boundary integral operator. In acoustics, the resulting
preconditioner is expressed analytically by a simple square-root of the form i

√
∆Γ + κ2I. More

precisely, a regularization of the square-root, by considering a small complex perturbation of the
exterior wavenumber κ, is considered instead. This allows to model the grazing rays and pro-
vides the existence and uniqueness of the solution to the BIEs for any positive real values of the
frequency. Furthermore, a complex Padé-approximation of the square-root operator [61] leads
to a sparse matrix involving only the mass and rigidity finite element matrices. This makes the
implementation of this analytic preconditioner rather easy with a low additional computational
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cost. Furthermore, it can easily be combined with fast methods such as FMM [39] or H-matrices
techniques [67] since it simply consists in the application of the preconditioner at each iteration
of the iterative solver. This preconditioner has been shown to yield a very fast convergence of
GMRES solver and in particular with a number of iterations independent of the frequency and
the mesh density.

The main contribution of this paper is to combine such an analytic OSRC-preconditioner with
a FM-BEM solver to solve Dirichlet exterior scattering problems in 3D elasticity. The approxima-
tions of the adjoint DtN map are derived using strategies proposed in [40] to overcome difficulties
inherent to elasticity. For this case, the double layer boundary integral operator and its adjoint
are not compact even for sufficiently smooth boundaries. This implies, according to Calderón’s
identities, that regularizing the standard BIEs via a pseudo inverse of the single layer boundary
integral operator is not sufficient to obtain well-conditioned boundary integral equations. The
principal part of the double layer boundary integral operator has also to be taken into account
in the preconditioner to regularize the single layer integral operator. It is not an easy task to
obtain the expressions of the principal parts of each elementary boundary integral operator. To
this end, the tangential Günter derivative plays an important role. The well posedness of these
preconditioned CFIEs has been proved for smooth boundaries. The approximations of the adjoint
DtN map are expressed in terms of surface differential operators, square-root operators and their
inverse. To the best of our knowledge, this is the first numerical contribution in this sense in 3D
elastodynamics.

The paper is organized as follows: in Section 2, we introduce the problem setting. We present
the Combined Field Integral Equation (CFIE) formulations that are numerically investigated in
this paper. Furthermore, we summarize the main lines of the Fast Multipole accelerated Boundary
Element Method. In Section 3, we describe the different approximate adjoint DtN maps that we
compare and the associated preconditioned CFIEs. Section 4 presents the discretization of the
approximate adjoint DtN maps (regularization, local representation of square-root operators). In
addition, we give details for an optimal implementation of the CFIEs. In Section 5, we provide
various numerical illustrations of the efficiency of the method for different geometries. We address
numerical investigation of the eigenvalues of the classical and preconditioned CFIEs when the
scatterer is a sphere. The paper ends with some concluding remarks given in Section 6.

2. Solution of the Navier exterior problem with boundary integral equations

2.1. The Navier exterior problem
We consider an obstacle represented by a bounded domain Ω− in R3, with a closed boundary

Γ := ∂Ω− of class C 2 at least. Let Ω+ denote the exterior domain R3\Ω− and n the outer
unit normal vector to the boundary Γ. The Lamé parameters µ and λ and the density ρ are
positive constants. The propagation of time-harmonic waves in a three-dimensional isotropic and
homogeneous elastic medium is governed by the Navier equation [56, Eq. (12.5) page 55]

µ∆u+ (λ+ µ)∇ divu+ ρω2u = 0, (1a)

where ω > 0 is the frequency. The field u is decomposed into a longitudinal field up with vanishing
curl and a transverse divergence-free field us solutions to

∆up + κ2
pup = 0 and curl curlus − κ2

sus = 0,

with respective wavenumbers κ2
p = ρω2(λ + 2µ)−1 and κ2

s = ρω2µ−1. The scattering problem is
formulated as follows : Given an incident displacement wave uinc which is assumed to solve the
Navier equation in the absence of any scatterer, find the solution u to the Navier equation (1a) in
Ω+ which satisfies the Dirichlet boundary condition

u = −uinc on Γ. (1b)
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In addition the behavior of the scattered displacement field u at infinity is described by the
Kupradze radiation conditions [56, Eqs (2.6)-(2.9) page 126]

lim
r→∞

r

(
∂up
∂r
− iκpup

)
= 0, lim

r→∞
r

(
∂us
∂r
− iκsus

)
= 0, r = |x|, (1c)

uniformly in all directions.
We denote by Hs

loc(Ω
+) and Hs(Γ) the standard (local in the case of the exterior domain)

complex valued, Hilbert-Sobolev spaces of order s ∈ R defined on Ω+ and Γ respectively (with
the convention H0 = L2). Spaces of vector functions will be denoted by boldface letters, thus
Hs = (Hs)3. We set ∆∗u := µ∆u + (λ + µ)∇ divu. The radiating solution to (1a)-(1b)-(1c)
belongs to the space

H1
+(∆∗) := H1

loc(Ω
+,∆∗) :=

{
u ∈H1

loc(Ω
+) : ∆∗u ∈ L2

loc(Ω
+)
}
.

For existence and uniqueness results, we refer to Kupradze [55, 56].

2.2. Boundary Integral Equations
The first main difficulty arising in the numerical solution to the exterior boundary value-

problem (1a)-(1b)-(1c) is related to the unboundedness of the computational domain Ω+. Integral
equation based methods are one of the possible tools to overcome this issue. The approach is
based on the potential theory [37]. The Neumann trace, defined by t|Γ := Tu, is given by the
traction operator

T = 2µ
∂

∂n
+ λn div +µn× curl .

We recall that we have u|Γ ∈ H
1
2 (Γ) and t|Γ ∈ H−

1
2 (Γ) for any u ∈ H1

+(∆∗). In the remaining
of the paper, we will use the tangential Günter derivative M defined by [56, Eq. (1.14) page 282]

M =
∂

∂n
− n div +n× curl .

We also use the surface differential operators: The tangential gradient ∇Γ, the surface divergence
divΓ, the surface scalar curl curlΓ, the tangential vector curl curlΓ, the scalar Laplace-Beltrami
operator ∆Γ and the vector Laplace-Beltrami operator ∆Γ. For their definitions we refer to [62,
pages 68-75]. The tangential Günter derivative M is a surface derivative that is rewritten

Mu|Γ =
(
[∇Γu|Γ]− (divΓ u|Γ)I3

)
n, (2)

where [∇Γv] is the matrix whose the j-th column is the tangential gradient of the j-th component
of v. For any real-valued constant α, we introduce the modified Neumann trace tα ∈ H−

1
2 (Γ)

defined by
tα = t|Γ − αMu|Γ .

For any positive real number κ, let

G(κ,x− y) =
eiκ|x−y|

4π|x− y|

be the fundamental solution of the Helmholtz equation ∆v + κ2v = 0. Then, the fundamental
solution of the Navier equation is written

Φ(x,y) =
1

ρω2

(
curl curlx

{
G(κs,x− y) I3

}
−∇x divx

{
G(κp,x− y)I3

})
. (3)
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It is a 3-by-3 matrix-valued function and we have Φ(x,y) = Φ(x,y)
T

= Φ(y,x). The single- and
double-layer potential operators are defined by

Sϕ =

ˆ
Γ

Φ(· ,y)ϕ(y)ds(y) and Dαψ =

ˆ
Γ

[(Ty − αM)Φ(· ,y)]
T
ψ(y)ds(y), (4)

where Ty = T (n(y), ∂y) and TyΦ(x,y) is the tensor obtained by applying the traction operator
Ty to each column of Φ(x,y).

The traces of the single- and double-layer potentials are given by applying the exterior Dirichlet
and Neumann-type trace to S and Dα such that we have [40]

(Sϕ)|Γ = Sϕ,
(
(T − αM)Sϕ

)
|Γ = −1

2
ϕ+D

′

αϕ,

(Dαψ)|Γ =
1

2
ψ +Dαψ, and

(
(T − αM)Dαψ

)
|Γ = Nαψ,

(5)

where I is the identity operator. Given vector densities ϕ and ψ, the boundary integral operators
S, Dα, D

′

α and Nα are defined, for x ∈ Γ, by

Sϕ(x) =

ˆ
Γ

Φ(x,y)ϕ(y) ds(y),

Dαψ(x) =

ˆ
Γ

[(Ty − αM)Φ(x,y)]
T
ψ(y) ds(y),

D
′

αϕ(x) =

ˆ
Γ

(Tx − αM) {Φ(x,y)ϕ(y)} ds(y),

Nαψ(x) =

ˆ
Γ

(Tx − αM)
{

[(Ty − αM)Φ(x,y)]
T
ψ(y)

}
ds(y).

The operator S is a pseudo-differential operator of order −1, i.e it is bounded from H−
1
2 (Γ)

to H
1
2 (Γ) and compact from H−

1
2 (Γ) to itself. The operators Dα and D

′

α are of order 0, i.e.
they have a strongly singular kernel and are bounded from H

1
2 (Γ) and H−

1
2 (Γ) to themselves,

respectively. The operator Nα is of order 1, i.e. it has a hypersingular kernel and is bounded from
H

1
2 (Γ) to H−

1
2 (Γ). Noting that the modified potential theory consists in replacing the traction

operator T with T − αM, the following relations hold

D′α = D′ − αMS (6)

Nα = N − αD′M− αMD + α2MSM (7)

where D′ := D′0 and N := N0 are the standard elementary boundary integral operators.
There exists various possible integral equations to obtain the Cauchy data (u|Γ, t|Γ). We

consider the direct method based on the following integral representation formula

u = −S
(
t|Γ + tinc|Γ

)
,

with tinc|Γ = Tuinc. Taking the exterior Dirichlet and Neumann-type traces of the right hand side,
we obtain on Γ

S
(
t|Γ + tinc|Γ

)
= −u|Γ = uinc|Γ and (− I

2
+D

′

α)
(
t|Γ + tinc|Γ

)
= −tα ⇔ (

I

2
+D

′

α)
(
t|Γ + tinc|Γ

)
= tincα .

Combining the previous two equations, we construct the well-known CFIE: find the physical
unknown ϕ = −

(
t|Γ + tinc|Γ

)
∈H− 1

2 (Γ) solution to

(
I

2
+D

′

α + iηS)ϕ = −
(
tincα + iηuinc|Γ

)
, on Γ, (8)
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with η a non-zero real constant. The integral equation (8) is well-posed for any frequency ω and
any non-zero real parameter η [51, 55, 56]. The choice α = 0 leads to the standard CFIE

(
I

2
+D

′
+ iηS)ϕ = −

(
tinc + iηuinc|Γ

)
, on Γ, (9)

which is the most stable integral equation and thus it is considered as the reference one in this
paper. Hähner and Hsiao [48] have shown that for α = αHH := (2µ2)/(λ+3µ), the CFIE (8) (called
Hähner-Hsiao CFIE in the sequel) is of the second-kind for any positive real-valued parameter η.

2.3. Fast Multipole accelerated Boundary Element Method for 3D elastodynamics
The main ingredients of the Boundary Element Method are a transposition of the concepts

developed for the Finite Element Method. First, the numerical solution of boundary integral
equation (8) is based on a discretization of the surface Γ into NE boundary elements (three-noded
triangles in this work). Each component of the total traction field is interpolated with continuous
piecewise-linear shape functions. The NI interpolation points are chosen as the vertices of the
mesh. To discretize the boundary integral equation (8) we consider the collocation approach. It
consists in enforcing the equation at a finite number of collocation points x. The NI traction
interpolation nodes also serve as collocation points. This discretization process transforms (8)
into a square complex-valued linear system of size N = 3NI of the form

[K]{ϕ} = {f}, (10)

where the N -vector {ϕ} collects the sought degrees of freedom (DOFs), namely the nodal traction
components, while the N × N matrix of influence coefficients [K] and the N -vector {f} arise
from (8). Setting up the matrix [K] classically requires the computation of all element integrals
for each collocation point, thus needing a computational time of order O(N2). To lower this
O(N2) complexity, which is unacceptable for large BEM models, fast BEM solutions techniques
such as the Fast Multipole Method (FMM) must be employed.

The goal of the FMM is to speed up the matrix-vector product computation required for each
iteration of the iterative solver applied to the BEM-discretized equations. Moreover, the governing
BEM matrix is never explicitly formed, which leads to a storage requirement well below the O(N2)
memory required for holding it. Substantial savings in both CPU time and memory requirements
are thus achieved. In general terms, the FMM exploits a reformulation of the fundamental solutions
in terms of products of functions of x and of y, so that (unlike in the traditional BEM) integrations
with respect to y can be reused when the collocation point x is changed. On decomposing the
position vector r = y − x into r = (y − y0) + r0 − (x− x0), where x0 and y0 are two poles and
r0 = y0 − x0 (Fig. 1) and invoking a plane wave decomposition, the Helmholtz Green’s function
is written as [41]:

G(κ, |r|) = lim
L→+∞

ˆ
ŝ∈S

eiκŝ.(y−y0)GL(ŝ; r0;κ)e−iκŝ.(x−x0)dŝ, (11)

where S is the unit sphere of R3 and the transfer function GL(ŝ; r0; k) is defined in terms of the
Legendre polynomials Pp and the spherical Hankel functions of the first kind h(1)

p by:

GL(ŝ; r0;κ) =
iκ

16π2

∑
0≤p≤L

(2p+ 1)iph(1)
p (κ|r0|)Pp

(
cos(ŝ, r0)

)
. (12)

The elastodynamic fundamental solution (3) is easily seen to admit representations of the form (11)
with GL replaced with suitably-defined (tensor) transfer functions UpL and UsL (see [25] for more
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r r0

Figure 1: Decomposition of the position vector for the Fast Multipole Method: notations.

details on the expressions and derivation of these transfer functions):

Φ(x,y) = lim
L→+∞

ˆ
ŝ∈S

eiκpŝ.(y−y0)UpL(ŝ; r0)e−iκpŝ.(x−x0)dŝ

+ lim
L→+∞

ˆ
ŝ∈S

eiκsŝ.(y−y0)UsL(ŝ; r0)e−iκsŝ.(x−x0)dŝ. (13)

It can be shown that expression (13) can be used only for well-separated sets of collocation and
integration points clustered around poles x0 and y0.

In the single-level FMM, a 3D cubic grid of linear spacing d embedding the whole boundary
Γ is then introduced to drive the computation (see Fig. 2). The FMM basically consists in using
decomposition (13), with the poles x0 and y0 being chosen as the cell centers, whenever x and y
belong to non-adjacent cubic cells (i.e. cells that do not share a corner, Fig. 3). The treatment
of the fast multipole ("FM") contributions exploits the plane wave decomposition (13) of the
fundamental solution, truncated at a finite L and in a manner suggested by its multiplicative
form. For instance, the efficient evaluation of the matrix-vector product Sϕ needed in (8) is
decomposed into three steps:

1. Evaluation of the multipole moments for each cell Cy

Rp(ŝ; Cy) =

ˆ
Γ

eiκpŝ.(y−y0)ϕ(y)ds(y) and Rs(ŝ; Cy) =

ˆ
Γ

eiκsŝ.(y−y0)ϕ(y)ds(y).

2. Application of the truncated tensor transfer functions

Lp(ŝ; Cx) =
∑

Cy /∈A(Cx)

UpL(ŝ; r0)Rp(ŝ; Cy) and Ls(ŝ; Cx) =
∑

Cy /∈A(Cx)

UsL(ŝ; r0)Rs(ŝ; Cy).

3. Numerical evaluation of the integration over the unit sphere with a quadrature rule

(Sϕ)FM (x) ≈
∑
q

wq

[
e−iκpŝq.(x−x0)Lp(ŝq; Cx) + e−iκsŝq.(x−x0)Ls(ŝq; Cx)

]
.

Conversely, when x and y belong to adjacent cells, traditional BEM evaluation methods based
on (3) are used instead.

To improve further the computational efficiency of the FM-BEM, standard (i.e. non-FMM)
calculations must be confined to the smallest possible spatial regions while retaining the advantage
of clustering the computation of influence terms into non-adjacent large groups whenever possible.
This is achieved by recursively subdividing cubic cells into eight smaller cubic cells. New pairs
of non-adjacent smaller cells, to which plane wave expansions are applicable, are thus obtained
from the subdivision of pairs of adjacent cells. The cell-subdivision approach is systematized by
means of an octree structure of cells. At each level `, the linear cell size is denoted d`. The
level ` = 0, composed of only one cubic cell containing the whole surface ∂Ω, is the tree root.
The subdivision process is further repeated until the finest level ` = ¯̀, implicitly defined by a
preset subdivision-stopping criterion (d¯̀≥ dmin), is reached. Level-¯̀ cells are usually termed leaf
cells. This is the essence of the multi-level FMM, whose theoretical complexity is O(N logN) per
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∂Ω

Figure 2: 3D cubic grid embedding the boundary.

Cell Cx

Adjacent cells Cy ∈ A(Cx)
Far cells

Cy /∈ A(Cx)

Ω

boundary of the domain

d

Figure 3: Definition of the adjacent cells.

GMRES iteration both for CPU time and memory (see [25] for further details on the method and
its implementation for single-domain elastodynamic problems).

The FM-BEM has been shown to be very efficient to solve elastodynamic problems (see [23]
for a review on recent advances). But the main limitation is now the number of iterations required
to achieve convergence in GMRES. Since the complete matrix is not explicitly assembled to re-
duce memory requirements, standard algebraic preconditioners based on the matrix of the near
contributions are moderately robust [28]. For these reasons, we consider in the following well-
conditioned integral equations based on an approximation of the adjoint Dirichlet-to-Neumann
(DtN) map. Such analytical preconditioners have been presented theoretically and numerically in
acoustics in [6, 39]. First theoretical investigations in elastodynamics [40] lead to various possible
well-conditioned integral equations. We discuss in this work the optimal numerical strategy.

3. Approximation of the adjoint DtN operator for well-conditioned boundary integral
equations

It is well known that the standard CFIE is not suited for an iterative solution. Even though
the Hähner-Hsiao CFIE is more adapted (because of second kind), CFIE (8) does not provide
sufficiently good spectral properties at high frequencies (see Section 5). To expect an eigenvalue
clustering and hence a fast convergence of GMRES, we need to derive well-conditioned boundary
integral equations. The approach we consider is to use an approximation of the adjoint DtN map.
The exact exterior Modified Dirichlet-to-Neumann (MDtN) map is defined by

Λex
α : u|Γ ∈H

1
2 (Γ) 7→ Λex

αu|Γ := tα ∈H−
1
2 (Γ) .
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Obviously, the case α = 0 corresponds to the exact DtN map

Λex : u|Γ ∈H
1
2 (Γ) 7→ Λexu|Γ := t|Γ ∈H−

1
2 (Γ) ,

and we have Λex = Λex
α + αM. We find, by taking the exterior Dirichlet trace of the Somigliana

integral representation formula of the scattered field, that the exact MDtN operator satisfies on Γ
[40]

I

2
+Dα − SΛex

α = I.

In order to avoid the use of non-physical quantities, we consider the L2-adjoint form of the above-
written boundary integral equation operator

I

2
+D

′

α −Λex′

α S = I, (14)

that is related to the CFIE (8). The adjoint MDtN map Λex′

α : H
1
2 (Γ)→H−

1
2 (Γ) satisfies

Λex′
= Λex′

α + αM. (15)

Assume that ω is not an eigenfrequency of the Navier equation (1a) in Ω− with either the Dirichlet
or the Neumann homogeneous boundary condition, the adjoint MDtN map is expressed in terms
of boundary integral operators on Γ by

Λex′

α = −(
1

2
I−D′α)S−1 = (

1

2
I +D′α)−1Nα. (16)

In the ideal configuration (14), the solution ϕ = −
(
tincα −Λex′

α u
inc
|Γ
)
is obtained directly. However,

it is too expensive to consider the exact operator (16) for a numerical purpose. Instead, an
approximation Λ′α of Λex′

α , given in terms of surface differential operators, is introduced to construct
a preconditioned CFIE : Find ϕ = −

(
t|Γ + tinc|Γ ) solution to

(
I

2
+D

′

α −Λ′αS)ϕ = −
(
tincα −Λ′αu

inc
|Γ
)
, on Γ. (17)

Coming back to the standard case α = 0, solving equation (17) is equivalent to solving

(
I

2
+D

′ −Λ′S)ϕ = −
(
tinc|Γ −Λ′uinc|Γ

)
, on Γ, (18)

where the approximate adjoint DtN map is given by the formula Λ′ = Λ′α + αM. Indeed, we
consider the definition (6) of the double-layer boundary integral operator to write

I

2
+D

′

α −Λ′αS =
I

2
+D′ − αMS − (Λ′ − αM)S

=
I

2
+D′ −Λ′S

and we also obtain

tincα −Λ′αu
inc
|Γ = tinc|Γ − αMuinc|Γ − (Λ′ − αM)uinc|Γ = tinc|Γ −Λ′uinc|Γ .

The spectral properties of (18) depend on the choice of the approximate adjoint DtN map Λ′.
We want to compare several approximations of different orders. In [40], new approximations of
the DtN map have been obtained in the spirit of OSRC methods that can be considered when
dealing with the adjoint operator. The idea is to consider only the principal part of the exact

9



adjoint operator Λex′

α and the judicious decomposition (16). The approximation is defined by Λ′α =
( I

2
+ P (D

′

α)
)−1

P (Nα),

Λ′ = Λ′α + αM,
(19)

where the operators P (D
′

α) and P (Nα) are respectively the principal parts of the boundary integral
operatorsD

′

α and Nα. We point out that the operator Λ′ is not obtained from the principal symbol
of Λex′

, but using the formula (15). Thus it depends on α that has to be choosen to reduce the
computational cost to obtain

(
I
2 + P (D

′

α)
)−1.

We provide explicit expressions of the principal parts P (D
′

α) and P (Nα) using tools proposed
in [40]. The operator P (D

′

α) is decomposed into two terms: P (D
′

α) = I1 + I2 with

I1 =
i

2

(
n
(
∆Γ + κ2

pI
)− 1

2 divΓ It −∇Γ

(
∆Γ + κ2

sI
)− 1

2 n · In
)

I2 =
i(2µ− α)

2ρω2

(
− n

(
∆Γ + κ2

sI
) 1

2 divΓ It + n∆Γ

(
∆Γ + κ2

pI
)− 1

2 divΓ It

+∇Γ

(
∆Γ + κ2

pI
) 1

2
(
n · In

)
−∇Γ

(
∆Γ + κ2

sI
)− 1

2 ∆Γ

(
n · In

))
(20)

where In = n⊗ n and It = I− In.
The operator P (Nα) is decomposed into three terms P (Nα) = J1 + J2 + J3 by setting

J1 =
i

2

(
(λ+ 2µ)κ2

p n
(
∆Γ + κ2

pI
)− 1

2n · In + µ
(
∆Γ + κ2

sI
)− 1

2

(
κ2
sIt − curlΓ curlΓ

))

J2 = −i(α− 2µ)
(
∇Γ

(
∆Γ + κ2

sI
)− 1

2 divΓ It + n∆Γ

(
∆Γ + κ2

pI
)− 1

2 n · In
)

J3 =
i((α− 2µ)2

2ρω2

(
− n

(
∆Γ + κ2

sI
) 1

2 ∆Γ

(
n · In

)
+ n∆Γ

(
∆Γ + κ2

pI
)− 1

2 ∆Γ

(
n · In

)
−∇Γ

(
∆Γ + κ2

pI
) 1

2 divΓ It + ∇Γ

(
∆Γ + κ2

sI
)− 1

2 ∆Γ divΓ It

)
.

(21)

Square-root operators of the form (∆Γ + κ2
γI)1/2 with γ = s, p, and their inverse appear in the

preconditioner Λ′. The square-root z1/2 of a complex number z stands for the classical complex
square-root with branch-cut along the negative real axis. An artificial singularity of square-root
operators occurs in the transition zone from the propagating modes to the evanescent ones. The
presence of the singularity does not allow a satisfactory representation of the grazing modes. To
model the behavior in the transition zone, we use a regularization [7] by adding a small local
damping parameter εγ > 0 to the wavenumber κγ . We set κγ,ε := κγ + iεγ and we consider
square-root operators (∆Γ +κ2

γ,εI)
1/2 and their inverse in the preconditioner Λ′. The addition of a

local damping is important to obtain the well-posed character of the corresponding preconditioned
CFIEs. For existence and uniqueness results, we refer to [40].

From (19), we derive several adjoint DtN approximations.

Low-order adjoint DtN approximation. We retain in (19) the informations associated to the first
eigenmode of the scalar and vector Laplacian Beltrami operators only. We obtain the following
adjoint DtN approximation (independent of α)

Λ′ := Λ′LO = i((λ+ 2µ)κpIn + µκsIt). (22)

More precisely, the operator (22) is contained in the term J1 (21) where we have replaced the
surface differential operators by their first eigenvalue equal to zero. This approximation of the

10



adjoint DtN operator corresponds to the radiation conditions given in [56, Theorem 2.9 page 127]
which are equivalent to Kupradze ones (1c). Such an approximation was previously used in the
framework of nonreflecting boundary conditions when the artificial boundary is a sphere [45]. The
associated preconditioned integral equation is

(
I

2
+D′ −Λ′LOS)ϕ = −

(
tinc|Γ −Λ′LOu

inc
|Γ
)
, on Γ, (23)

is called LO-preconditioned CFIE (LO P-CFIE) in the remaining of the paper. This preconditioner
is easy to implement and this is its main advantage. By construction, this approximation provides
a good clustering of the first eigenvalues (associated with propagating modes) only. We will show
that we need high-order approximations to also cluster grazing and evanescent modes, and then
to obtain a more efficient preconditioner (see Section 5 for numerical evidences).

High-order adjoint DtN approximations. The approximation (19) depends on the parameter α and
thus provides an infinity of high-order approximate adjoint DtN maps. Among all the possible
values of α, we choose α = αHH for which the operator Dα and its adjoint are compact. This
choice leads to good spectral properties of the corresponding preconditioned integral equations
(see Section 5). Previous investigations in acoustics would suggest that the use of the operator
P (Nα), i.e

Λ′ = 2P (Nα) + αM, (24)

is sufficient to take into account all the modes. We will show that the operator P (Nα) enables the
clustering of eigenvalues associated with the propagating and evanescent modes only, while the
operator (I/2 + P (D′α)) deals with the grazing modes.

To sum up, we numerically analyze three different preconditioned CFIEs:

• the Low-Order preconditioned CFIE (LO P-CFIE): integral equation (23) and the analytical
preconditioner Λ′LO (22).

• the High-Order preconditioned CFIE with one term (HO(1) P-CFIE): integral equation (18)
and the analytical preconditioner Λ′ (24) without the contribution of P (D

′

α), α = αHH .

• the High-Order preconditioned CFIE with two terms (HO(2) P-CFIE): integral equation (18)
and the analytical preconditioner Λ′ (19) with the contribution of P (D

′

α), α = αHH .

4. Discretization and implementation of the well-conditioned BIEs

4.1. Regularization and localization of the approximate adjoint DtN map
The efficiency of the preconditioner relies on approximations of the adjoint DtN map expressed

in terms of square-root operators and their inverses. Thus, it is essential to carefully compute them
numerically.

Regularization. The first step consists in regularizing the square-root operator in the zone of
grazing modes. Previous works in acoustics and electromagnetism have exhibited optimal damping
parameters in the context of the OSRC method. A recent numerical study for elastodynamic
problems [22] shows that the following parameters improve the accuracy:

εγ = 0.39κ1/3
γ (H2)1/3 with γ = s, p, (25)

where H is the mean curvature of the boundary Γ. According to the definition of elastic waves,
the values εp and εs are respectively the optimal choices for the Helmholtz [7] and Maxwell [43]
exterior problems. We consider these two parameters in the sequel of the paper (unless indicated
otherwise).
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Padé approximants. Another crucial point is to propose a robust local representation of the square-
root operators involved in (20) and (21). To this end, we use complex rational Padé approximants
with a rotating branch-cut technique of angle θ1 [61]: for z ∈ C, one has

(1 + z)1/2 ≈ eiθ1/2RL1(e−iθ1(1 + z)− 1) = C0 +

L1∑
`=1

A`z

1 +B`z
= F0 −

L1∑
`=1

A`
B`(1 +B`z)

,

where RL1
is the standard real-valued Padé approximation of order L1

(1 + z)1/2 ≈ RL1(z) = 1 +

L1∑
`=1

a`z

1 + b`z
,

with the coefficients

a` =
2

2L+ 1
sin2(

`π

2L1 + 1
), b` = cos2(

`π

2L1 + 1
), 1 ≤ ` ≤ L1.

The complex constants are given by

A` =
e−iθ1/2a`

(1 + b`(e−iθ1 − 1))2
, B` =

−e−iθ1b`
1 + b`(e−iθ1 − 1)

, 1 ≤ ` ≤ L1,

C0 = eiθp/2RL1
(e−iθ1 − 1), F0 = C0 +

L1∑
`=1

A`
B`
.

The efficiency of these Padé complex approximants for the local representation of (1 + z)1/2 has
been proved numerically in many previous works (e.g. [60, 7, 43]). By choosing a branch cut in
the negative half-space, all the modes are modeled correctly and in particular the evanescent ones
(corresponding to the region {z < −1| Im(z) = 0}).

The aim is now to construct such a stable rational approximation for the function (1 + z)−1/2.
A classical approach consists in using continued fractions [35]. Using the fixed point and residue
theorems, we obtain the following rational approximation

(1 + z)−1/2 ≈ RinvL2
(z) =

L2−1∑
`=0

c`
d` + z

, (26)

with

c` =
1 + tan2( π

2L2
( 1

2 + `))

L2
, d` = 1 + tan2

( π

2L2

(1

2
+ `
))
, 0 ≤ ` ≤ L2 − 1.

These real-valued coefficients correspond to a Padé approximation of the function (1+z)−1/2 with
branch cut along the negative real axis {z < −1| Im(z) = 0}. A way to modify the principal
determination proposed in [61] of the function is to apply a rotation of the branch cut with an
angle θ2. We write

(1 + z)−1/2 = eiθ2/2(eiθ2(1 + z))−1/2 = eiθ2/2(1 + [eiθ2(1 + z)− 1])−1/2.

Using (26), we get a new approximation for the inverse square-root

(1 + z)−1/2 ≈ eiθ2/2RinvL2
(eiθ2(1 + z)− 1) =

L2−1∑
`=0

R`
S` + z

, (27)

where R` = eiθ2/2c` and S` = 1− eiθ2 + d`e
iθ2 , 0 ≤ ` ≤ L2 − 1.
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4.2. Discretization and optimization
To discretize the surface Γ, we consider a triangulation with NE surface triangles and NI

vertices. The polyedric interpolated surface is denoted by Γh. The discretization of the high-order
adjoint DtN approximations (19) and (24) uses classical P1 boundary finite elements. We set
Vh = P1(Γh) and Vh = V 3

h with dimVh = N := 3NI . The application of the preconditioner (19),
namely

Λ′ =
( I

2
+ P (D

′

α)
)−1

P (Nα) + αM,

is decomposed into the following three steps:

Step 1: Knowing u ∈H 1
2 (Γ), compute the intermediate variable v ∈H 1

2 (Γ) such that

v = P (Nα)u. (28)

Step 2: Solve the boundary differential equation: find q ∈H− 1
2 (Γ) solution of( I

2
+ P (D

′

α)
)
q = v. (29)

Step 3: Compute the variable z ∈H− 1
2 (Γ)

z = q + αMu. (30)

In the case of the preconditioner (24), Step 2 is simply reduced to the computation of q = 2v.
The variational formulation of the three steps is derived following the methodology of [22]. Nev-
ertheless, we illustrate the derivation of the discrete weak formulation of the preconditioner with
the contribution I1 of the operator P (D

′

α) (20). As previously mentioned, the local representation
of the inverse square-root operators is done with the Padé approximation (27). The damping
parameters εγ (25) are introduced to regularize square-root operators in the creeping zone. The
corresponding discrete wavenumbers are expressed by κγ,εh = κs+ iεh with εh = 0.39κ

1/3
γ (H2

h)1/3.
The quantity Hh is a piecewise constant interpolation of the mean curvature H over Γh on each
triangle of the triangulation. The numerical evaluation of Hh comes from the relation

Hh(x) =
1

2
divΓh

nh(x) =
1

2

3∑
k=1

NI∑
j=1

(nh(aj) · ek)(ek · ∇Γh
ϕj(x)), x ∈ Γh,

where aj , 1 ≤ j ≤ NI , are the vertices of the mesh and the functions ϕj , 1 ≤ j ≤ NI , the P1 basis
functions on Γh. The application of the contribution I1 (20) to uh ∈ Vh is performed through the
following steps:

(a) Solve the L2 uncoupled equations: find c`h ∈ Vh such that

S`(c
`
h, c
′
h)− (κ−1

p,εh
∇Γh

c`h, κ
−1
p,εh

∇Γh
c′h) = (divΓh

Ituh, c
′
h), c′h ∈ Vh, ` = 0, . . . , L2 − 1.

(b) Using step (a), compute the intermediate variable yh ∈ Vh solution to

(κp,εhyh, y
′
h) =

L2−1∑
`=0

R`(c
`
h, y
′
h), y′h ∈ Vh.

(c) Independently from steps (a) − (b), solve the L2 uncoupled equations: find w`h ∈ Vh such
that

S`(w
`
h, w

′
h)− (κ−1

s,εh
∇Γh

w`h, κ
−1
s,εh

∇Γh
w′h) = (nh · uh, w′h), w′h ∈ Vh, ` = 0, . . . , L2 − 1.
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(d) Using step (c), compute the intermediate variable wh ∈ Vh solution to

(κs,εhwh, w
′
h) =

L2−1∑
`=0

R`(w
`
h, w

′
h), w′h ∈ Vh.

(e) Finally compute bh ∈ Vh such that for all b′h ∈ Vh(
b′h, b

′
h

)
=
i

2

(
(yh,nh · b′h)−

(
∇Γh

wh, b
′
h

))
.

These steps appear in Step 2 when the part I1 of the operator P (D
′

α) is applied. The discretization
of the term I2 (20) in operator P (D

′

α) (in Step 2) and of the operator P (Nα) (21) (in Step 1)
is realized in the same straightforward way. We do not detail it.

Now that the discretization is introduced, the algorithm is the following. We solve the pre-
conditioned dense non-symmetric linear system with GMRES [69] (with no restart since it is not
mandatory and to have a precise idea of the impact of the preconditioning technique on the con-
vergence). At each iteration of the solver, the solution of the preconditioned CFIE (18) requires
the computation of the vector Y ∈ CN

Y =

(
[I]

2
+ [D

′
]− [Λ′][S]

)
X,

for any vector X ∈ CN given by GMRES. To speed up the solution, a FM-BEM is employed to
evaluate the dense matrix-vector products involving [D

′
] and [S] (see Section 2.3). In addition,

since the preconditioners (19) and (24) involves only sparse matrices, the sparse direct solver
SUPERLU [59, 42] is used. The Padé approximation requires to solve the sparse linear systems.
Since they are uncoupled, we parallelize the solution with OpenMP. To solve each independent
system we use SUPERLU that has the property to be thread-safe. For the preconditioner (19),
we point out that Step 2 also requires the inversion of

(
I/2 + P (D

′

α)
)
. In practice, due to the

use of Padé approximations, the matrix associated with this operator is never explicitly assembled
and the sparse system is solved with an inner GMRES solver.

5. Numerical efficiency of analytical preconditioners

To study the efficiency of the different proposed preconditioned CFIEs, we consider several
more or less complex geometries: a unit sphere, an ellipsoid, a cube and a sphere with cavity (see
Figure 4). These scatterers are illuminated by incident plane waves of the form

uinc(x) =
1

µ
eiκsx·d(d× p)× d+

1

λ+ 2µ
eiκpx·d(d · p)d , where d ∈ S2 and p ∈ R3. (31)

When p = ±d, the incident plane wave oscillates along the direction of propagation (pressure wave
or P-wave). When the polarization p is orthogonal to the propagation vector d, the incident plane
wave oscillates in a direction orthogonal to the direction of propagation (shear wave or S-wave).

In all our simulations, the mechanical parameters are normalized and defined such that the
wavenumbers satisfy κs = 1.5κp (i.e. ρ = 1, µ = 1 and λ = 0.1). The density of points per
S-wavelength λs = 2π/κs is fixed to about nλs

= 10, i.e. the usual criterion for high-frequency
applications. The local representation of the square-root operators and their inverse, that appear
in the HO P-CFIEs, is realized in the way described in Section 4.1. The parameters of Padé
approximants are fixed to (L1, θ1) = (L2, θ2) = (35, π/3) (unless indicated otherwise) in Sections
5.2 and 5.3.

5.1. Diffraction of incident plane waves by a unit sphere: numerical spectral analysis
First, we consider the diffraction of incident plane waves by a unit sphere. A spectral de-

composition, in terms of the vector spherical harmonics, of the elementary integral operators
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Figure 4: Illustration of the four geometries considered: a unit sphere, an ellipsoid, a cube and a sphere with cavity.

can be obtained [40]. This permits to perform a detailed spectral analysis of the standard and
preconditioners CFIEs with respect to both physical and discretization parameters.

In Figure 5, we report the distribution of the analytical eigenvalues of the standard CFIE (8)
with η = 1, κs = 16π and nλs = 10. We observe a cluster of small eigenvalues close to zero. These
eigenvalues correspond to grazing modes. In Figures 6a-b, we report the modulus of the smallest
eigenvalue and the condition number with respect to the frequency. The modulus of the smallest
eigenvalue decreases when the wavenumber κs increases. Hence, the condition number of the
CFIE deteriorates when the frequency increases. In Figure 6c, we report the condition number
with respect to the mesh density. We observe that it does not depend on the discretization
parameter because the eigenvalues associated with evanescent modes (high-order spatial modes)
are clustered.
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Figure 5: Distribution of the eigenvalues of the standard CFIE (η = 1, κs = 16π and nλs = 10).
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Figure 6: Study of the condition number of the standard CFIE (coupling parameter η = 1). (a): Modulus of the
smallest eigenvalue with respect to ω (nλs = 10). (b): Condition number with respect to ω (nλs = 10). (c):
Condition number with respect to mesh density nλs (κs = 6π).

We compare in Figure 7 the distribution of the eigenvalues of the four CFIEs: the standard
CFIE, the LO P-CFIE and the two High-Order P-CFIEs. For this spectral analysis, we consider
the exact square-root operators in the approximation (19) of the adjoint DtN map. As expected,
the eigenvalues of the LO P-CFIE operator are well-clustered in the hyperbolic zone only. The
approximation (24) of the adjoint DtN map offers a better eigenvalue clustering than the low-
order approximation. We observe an area of accumulation of the eigenvalues associated with the
propagating and evanescent modes. However, these two approximations of the adjoint DtN map
do not allow to shift the eigenvalues related to grazing modes around (1, 0) as well as the others.
The best spectral configuration is obtained by considering the approximation (19) of the adjoint
DtN map. Indeed, Figure 8a confirms that taking into account the contribution relative to the
double-layer potential in the preconditioner avoids the dependence of the condition number with
respect to the frequency. An excellent eigenvalue clustering around the point (1, 0) is observed
with the HO(2) P-CFIE. This good property is confirmed in Figure 8b where the condition number
remains between 1.47 and 2.25 independently of the frequency and the mesh density.

5.2. Diffraction of incident plane waves by a unit sphere: convergence of the fast iterative solver
For all the tests, the tolerances of the inner and outer GMRES solvers are set to 10−4 and

10−3 respectively. We consider the scattering of incident plane P-waves with p = d = (0, 0, 1)T ,
or S-waves with d = (0, 0, 1)T and p = (1, 0, 0)T . We compare the convergence of GMRES for the
iterative solution of the different standard and P-CFIEs. The number of GMRES iterations with
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Figure 7: Distribution of the eigenvalues of the standard and different P-CFIEs (η = 1, κs = 16π and nλs = 10).
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Figure 8: Study of the condition number of the P-CFIEs. (a) Condition number with respect to ω (nλs = 10). (b)
Condition number with respect to the mesh density nλs (κs = 6π).

respect to the frequency ω are reported in Table 1 (resp. Table 2) for P-waves (resp. S-waves). In
the case of the HO P-CFIEs, inner iterations are indicated in parentheses.

#DOFs ω # iter # iter LO # iter HO(1) # iter HO(2)
CFIE P-CFIE P-CFIE P-CFIE

1 926 4 18 8 7 5 (11)
7 686 8.25 27 8 6 4 (11)
30 726 16.5 51 9 6 3 (13)
122 886 33 180 9 6 3 (13)
490 629 66.5 > 500 9 6 3 (14)

Table 1: Diffraction of P-waves by the unit sphere. Number of GMRES iterations for a fixed density of 10 points
per wavelength.

These results confirm that in the case of the scattering by a unit sphere, the number of iterations
of the standard CFIE drastically increases with the frequency. The LO P-CFIE is very efficient
but in the case of S-waves, the number of iterations tends to increase slightly. On the other hand,
the two HO P-CFIEs require a number of iterations independent of the frequency, as expected in
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#DOFs ω # iter # iter LO # iter HO(1) # iter HO(2)
CFIE P-CFIE P-CFIE P-CFIE

1 926 4 18 9 7 6 (10)
7 686 8.25 26 10 7 4 (11)
30 726 16.5 75 11 7 4 (14)
122 886 33 199 14 8 4 (15)
490 629 66.5 > 500 16 10 4 (16)

Table 2: Diffraction of S-waves by the unit sphere. Number of GMRES iterations for a fixed density of 10 points
per wavelength.

our context.

5.3. Convergence of the fast iterative solver for non spherical scatterers
To validate the good behavior of the HO P-CFIEs, we consider now non-spherical scatterers

for which no analytical spectral analysis is available. We report again the convergence of GMRES
for the diffraction of incident plane P-waves, for standard and P-CFIEs. The number of iterations
with respect to the frequency ω are given in Table 3 for an ellipsoid and in Table 4 for a cube (in
that case the mean curvature is set to

√
2). In the case of the HO P-CFIEs, inner iterations are

indicated in parentheses.

#DOFs ω # iter # iter LO # iter HO(1) # iter HO(2)
CFIE (η = 1) P-CFIE P-CFIE P-CFIE

3 594 25 48 8 8 7 (12)
7 644 30 122 10 8 7 (13)
41 310 60 >500 11 9 8 (13)
122 886 115 >500 13 12 10 (15)

Table 3: Diffraction of P-waves by an ellipsoid. Number of GMRES iterations for a fixed density of 10 points per
wavelength.

#DOFs ω # iter # iter LO # iter HO(1) # iter HO(2)
CFIE (η = 1) P-CFIE P-CFIE P-CFIE

1 446 2.5 14 10 9 9 (13)
6 630 5 40 12 10 9 (13)
26 505 11 120 13 10 9 (12)
105 990 22 >500 14 11 9 (13)

Table 4: Diffraction of P-waves by a cube. Number of GMRES iterations for a fixed density of 10 points per
wavelength.

For these two geometries, the number of iterations without any preconditioner drastically
increases with the frequency. Even for moderate problem sizes, the number of iterations is larger
than 500. The three preconditioned CFIEs are very efficient. The number of iterations are reduced
to around 10 iterations for a convergence fixed to 10−3 in GMRES. Similarly to what is noted on
a sphere, the high order P-CFIEs slightly reduce the number of iterations compared to the LO
P-CFIE.

Finally, we consider a more complex geometry: a sphere with cavity (see Fig. 4). This trapping
domain is known to be difficult due to the numerous internal reflections of waves in the cavity
and the propagation of creeping waves. In Table 5, we report the number of GMRES iterations
with respect to the frequency ω for two incidences of plane P-waves: p1 = d1 = (−1, 0, 0) and
p2 = d2 = (0, 0, 1).
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#DOFs ω # iter LO # iter HO(1) # iter HO(2)
P-CFIE P-CFIE P-CFIE

11 964 5 39 40 44 47 33 (54) 34 (55)
49 137 10 43 63 41 54 27 (42) 30 (42)
98 499 15 48 208 31 121 22 (28) 103 (28)
197 688 20 97 > 500 48 283 36 (29) 199 (29)

Table 5: Diffraction of incident plane P-waves by the sphere with cavity. In each column, the first numbers give
the number of GMRES iterations for p1 = d1 = (−1, 0, 0) and the second numbers correspond to the incidence
p2 = d2 = (0, 0, 1).

In the case of sound-soft acoustic scattering problems, estimates of the condition number of
the combined field integral equations have been obtained [10, 8] for different geometries of the
scatterer. These studies show that the dependence of the condition number on the wavenumber
is more pronounced for the case of trapping domains than for the case of a circle or a square. The
same conclusion must apply in elastodynamics. The proposed preconditioner is very efficient and
the GMRES iteration number for the solution of the HO(2) P-CFIE is quasi-independent on ω in
the case of the sphere, the ellipsoid and the cube. The iteration number is less equal than 10 in
each case. The HO(2) P-CFIE still offers an alternative to the usual CFIE when the scatterer is the
sphere with cavity. As expected, the iteration number is higher than for the other scatterers but
still efficiently decreased, particularly at high frequencies (36/199 against 97/ > 500 for ω = 20,
cf. Table 5). The iteration number is sensitive to the angle of incidence of the plane waves. The
incidence p2 = d2 = (0, 0, 1) normal to the cavity generates more trapping rays. Nevertheless,
in the two cases considered the HO P-CFIEs are more efficient than the simple LO P-CFIE. For
the second angle of incidence with ω = 20, the convergence is not achieved after 500 iterations
for the LO P-CFIE while it converges within 200 iterations with the HO(2) P-CFIE. It is worth
noting that the number of inner GMRES iterations for the HO(2) P-CFIE is independent from
the incidence of plane waves. To have a better understanding, we report in Figure 9 the number
of iterations for the incidence p2 = d2 = (0, 0, 1) for a large number of sample frequencies in the
range 0-20. For all frequencies, the number of iterations is lower for the HO P-CFIEs than for the
LO P-CFIE. Even if they all follow the same trend (i.e. existence of peaks at resonant frequencies
of the cavity), the introduction of an accurate adjoint DtN approximation is important to keep the
number of iterations reasonable at large frequencies. Close to a resonant frequency, the presence
of small eigenvalues, distributed away from the cluster of eigenvalues at (1, 0), slows down the
convergence of the iterative solver. Nevertheless, the efficiency of the HO P-CFIEs is here again
highlighted.
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Figure 9: Diffraction of incident plane P-waves by a sphere with cavity. Number of GMRES iterations with respect
to the frequency ω for the incidence p2 = d2 = (0, 0, 1).
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6. Conclusion

In this article, we considered the boundary integral equation method for the numerical solution
of 3D high-oscillatory Dirichlet elastic exterior problems. We developed a strategy based on the
use of an analytical preconditioner to accelerate the iterative solver (GMRES in our case), and
the use of the Fast Multipole Method to reduce the computational cost of each iteration. We
analyzed three analytic preconditioners corresponding to different approximations of the exact
adjoint DtN map based on its principal pseudo-differential symbol: one approximation in the
low frequency range (LO P-CFIE) and two others of higher orders (HO P-CFIEs). Numerical
experiments on various geometries have shown that the convergence is strongly improved by the
preconditioning with high-order approximations of the adjoint DtN map. The contribution of the
double layer potential cannot be neglected in the approximation of the adjoint DtN map, especially
for trapping domains.

Ongoing work concerns the derivation of such preconditioners for Neumann (or cavity) elas-
tic exterior problems. Contrary to the acoustic and electromagnetic cases, the definition of the
Neumann-to-Dirichlet preconditioner as the inverse of the DtN preconditioner is not sufficient to
construct well-conditioned BIEs for Neumann scattering problems. A more extensive analysis of
the DtN and Neumann-to-Dirichlet maps has to be realized in the transition region corresponding
to the grazing modes.
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