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Abstract

In this paper, we apply the so-called generalized empirical interpolation method (GEIM) to
address the problem of sensor placement in nuclear reactors. This task is challenging due
to the accumulation of a number of difficulties like the complexity of the underlying physics
and the constraints in the admissible sensor locations and their number. As a result, the
placement, still today, strongly relies on the know-how and experience of engineers from
different areas of expertise. The present methodology contributes to making this process
become more systematic and, in turn, simplify and accelerate the procedure.
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1. Introduction

Nowadays, the production of nuclear energy is done under very high safety standards
where tight criteria must be satisfied both at design and operation levels. What is essen-
tially required is the accurate knowledge of significant quantities like temperature, neutron
flux, power, irradiation or fluence. The quantities can be global outputs like the maximum
or average temperature or the total generated power but the knowledge of more detailed
information like temperature, flux and/or power maps in the whole reactor may also be
required. The knowledge of any of these quantities is accessed either through the study of
parametrized models and/or through measurement data collected from the reactor itself. In
very general lines, the usual way to work with models and data at design and operation
levels is the following:

• At design stages, the goal is essentially to first find the most realistic model for the
physics’ core and then optimize the parameters of the model to find the safest core
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configurations. At this stage, if measured data from previous experiments are at reach,
they are only used to find the model.

• At the operation level, the information is primarily obtained via sensor measurements.
Their placement has to be carefully optimized in order to retrieve as much information
as possible while the reactor is running.

In all these modelling and optimization steps, the experience of engineers plays a crucial
role in order to find acceptable configurations. Even more, due to the complexity of the
physics, it is sometimes necessary to combine the expertise of engineers from different fields
and the modelling/optimization process might require several iterations between experts
before satisfying all the desired criteria. In this context, this paper is a contribution to
making these tasks become more systematic. For this, we apply a novel methodology from the
fields of data assimilation and model order reduction to the field of reactor simulations. For
a given quantity of interest, the method provides a quick approximation of it by combining
the measurement data and the knowledge of a parametrized model. The key idea is to do
the reconstruction on a well chosen finite dimensional space of reduced dimension. The basis
functions of this space are solutions to the model problem for appropriately chosen parameter
values. This idea, which is the root of reduced order modeling techniques such as reduced
basis, constitutes the reduced modelling part of our approach. An overview of reduced bases
can be found in the reference books [1, 2] and a summary on some relevant applications to
nuclear engineering is given later on in the paper. With respect to these works, the new
main ingredient that we bring is the combination of this idea with data assimilation. This is
done via the Empirical Interpolation Method (EIM, [3]) which we will use in its generalized
version (GEIM, see [4, 5]). In this approach, the approximation in the space of reduced
dimension is defined in such a way that the measures on the approximant coincide with
the measured data. Two features of this methodology which might be of interest to the
community of nuclear engineering are the following:

• The information from the model and the measurements is incorporated simultaneously
and not in a sequential manner like in the classical procedures in nuclear engineering.

• Since the approximation is done on a space of small dimension (dimension 20 or 30 is
usually enough in many cases), its computation is very quick. This could be helpful to
accelerate some steps at design and operation stages.

We would like to emphasize that GEIM belongs to a broader class of recovery methods
which gathers other approaches like the PBDW methodology of [6] where the use of data
allows not only to reconstruct the quantities of interest, but also to correct the possible
bias in the mathematical model. Here we shall not use this feature and assume that the
mathematical model is perfect, that is, there exists an (unknown) value of the parameter
such that the model represents very accurately the true running situation. The whole class
is subject of current active research in the community of applied mathematics (see, e.g.,
[7, 8, 9, 10]) since it carries potential to address in a unified methodology different types of
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inverse or uncertainty quantification problems arising in a large variety of physical systems.
Among the possible applications of the method to the field of reactor physics stand

(i) the search for optimal sensor locations to measure certain quantities of interest during
the operation of the core,

(ii) the acceleration in the search for optimally safe and/or efficient core configurations
since GEIM gives a quick reconstruction of the quantities of interest.

Much more ambitious is the possibility to take into account the accuracy of the sensors in the
placement selection. Indeed one could be interested in using few, very accurate, sensors and
more, less accurate ones. The natural questions are then to place them in an optimal way.
Another related question is: given a certain budget, what is the best location/quality/number
of sensors to recover the best approximation. This question is difficult to answer in general
but a recent investigation on this topic can be found in [11]. At any rate, we emphasize that
the method cannot completely replace the experience of experts of the field. It should be
seen as a tool to assist them in doing these tasks more efficiently and especially in a more
systematic way.

Since the number of potential applications is relatively broad, in this paper we restrict
ourselves to idea (i). Our main contribution is to give numerical evidence that GEIM can
help to place sensors in order to best reconstruct physical quantities such as the neutronic
flux or the power in the whole core. We present results on three different examples of nuclear
cores which are relevant in the field of neutronics. One of them involves the real geometry of a
Pressurized Water Reactor operated by the French electricity company Électricité de France
(EDF). To explain our computations, we start by presenting in section 2 the methodology
and greedy algorithm of GEIM in general terms. We next explain in section 3 how we have
applied the method to our case of interest where we work with a parametric diffusion equa-
tion as a model for the neutronics in a nuclear reactor. The presentation of GEIM in these
two sections is deliberately oriented towards physicists and engineers which are not necessar-
ily experts in the field of model order reduction. The neutron flux and the power have been
taken as examples of quantities of interest but we hope that readers from other fields will be
able to extrapolate the idea to their own problems. A more mathematical presentation of
the algorithm can be found in [5, 10] and the reader familiar with the methodology can skip
section 2. We differ the presentation of the state of the art on model order reduction tech-
niques applied to nuclear reactor simulations until the end of section 3 to let the unfamiliar
reader learn the main ideas of GEIM and model order reduction first. Section 4 gives our
numerical results on three different examples of increasing difficulty and degree of reality.
They are respectively in 1, 2 and 3 spatial dimensions. The results for the examples in 1 and
2 dimensions are an extension of the numerical results announced in [12] and we put here
special emphasis on the sensor placement rather than on stability considerations. We finish
the article by briefly explaining generalizations of GEIM, current theoretical challenges and
new perspectives regarding nuclear physics applications (see Section 5).
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2. The Generalized Empirical Interpolation Method

2.1. Preliminaries

By way of preliminaries, we introduce the mathematical notations used throughout this
paper. Let X be a Banach space defined over a physical domain R ⊂ Rd (d ≥ 1) and let
‖ · ‖ be the associated norm. In our case R will be the reactor domain and X will be either
L2(R), L∞(R) or a product of these spaces.

2.2. Rationale of the Generalized Empirical Interpolation Method

In order to reconstruct the state f ∈ X of a physical quantity, we assume that we have
access to two types of information:

i) Information coming from measurements collected directly from the physical system.
In the following, we model sensors with linear functionals σ ∈ X ′ parametrized by the
position x ∈ X and the quantity σ(f, x) denotes the measurement value given from
a sensor located in x ∈ R. The linear functionals can be chosen as Dirac masses, in
which case the measurements are pointwise evaluations of f at some points x ∈ R,

σ(f, x) = δx(f) = f(x).

A perhaps more realistic option is to work with local averages centered around some
point x. If D(x) is a neighborhood of x and g is a radial function, one can work with

σ(f, x) =

∫
D(x)

f(t)g(x− t) dt.

In our numerical experiments, we work either with Dirac masses or local averages
depending on the test case.

ii) An information coming from a physical model, which generally comes in the form of a
parametric partial differential equation (PDE). We assume that f is the solution to

A(f, µ) = 0, (2.1)

where A is a differential operator defined in X and µ ∈ Rp is a vector of p ≥ 1
parameters. In our case, we assume that for any µ, there exists a unique solution
f(·, µ) ∈ X to problem (2.1). However, the particular parameter µ that best describes
the system under consideration is in general not well known. Instead, one usually
knows that the parameters may lie in some range D ⊂ Rp so that the information from
the parametrized model is that our function f of interest belongs to the set

Mf := {f(·, µ) : µ ∈ D}, (2.2)

which is called the manifold of states. For certain classes of PDEs and for a given target
accuracy ε > 0, it is possible to approximate the elements of Mf with n-dimensional
linear spaces Xn such that

dist(Mf , Vn) := max
u∈Mf

min
v∈Vn
‖u− v‖ ≤ ε,
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and where the dimension n = n(ε) increases moderately with the accuracy ε (see [13]).
In other words, one can find spaces Xn of reduced dimension which approximateMf at
high accuracy. The underlying reason for having this property is that the Kolmogorov
n-width of the manifold

dn(M,X ) := inf
Xn⊂X

dimXn≤n

dist(Mf , Vn)

has a fast decay in n. This quantity measures the minimal approximation error of
M with linear subspaces of dimension less than or equal to n. Therefore, if it decays
quickly in n, there is room to find spaces of reduced dimension with good approximation
properties. This desirable behavior of (dn(M,X ))n≥1 is satisfied for certain PDEs like
elliptic ones thanks to the regularity of f(·, µ) in µ (see [14, 15, 16]). One technique
to build these spaces are reduced basis methods, which use a greedy algorithm to
select functions f(·, µi) for appropriately chosen parameters µi and then define Xn :=
span{f(·, µi) : i = 1, . . . , n}.

GEIM combines measured data and a reduced space as follows. We first run a greedy
algorithm which selects

• a set of functions {f(·, µ1), · · · , f(·, µn)} from the manifold Mf . These functions will
span our reduced basis Xn := span{f(·, µi) : i = 1, . . . , n}. For convenience, we will
sometimes work with another basis of Xn spanned by functions qi ∈ Xn which are built
from linear combinations of the f(·, µi). Their exact form is given in section 2.3.

• a set of locations x1, . . . , xn ∈ R for the sensors. The locations are searched among
all admissible positions x ∈ Radmissible. Mathematically, this is expressed by saying
that we search for sensors σ(·, x) among a dictionary Σ := {σ(·, x) x ∈ Radmissible}
of potential candidates. One technical condition which is required is the following
unisolvence property : if f ∈ X is such that σ(f) = 0, ∀σ ∈ Σ, then f = 0.

Once Xn and the sensor locations are selected, we approximate any function f(·, µ) ∈Mf

with

Jn[f ](µ) :=
n∑
j=1

cj(µ)qj ∈ Xn (2.3)

The cj(µ) are coefficients which depend on the parameters µ. They are computed using
measurement information by imposing the interpolating conditions

σ (f(·, µ), xk) = σ (Jn[f ](µ), xk) , k ∈ {1, . . . , n}, (2.4)

where we see that the coefficients (c1, . . . , cn) are the solution of a n × n linear system of
equations. The reconstruction gives enough accuracy for a small dimension n of Xn. We
refer to [5, 10] for the mathematical analysis of the approach.

The next section explains how the greedy algorithm is exactly defined. Before moving to
it, we would like to emphasize that, in this approach, the mathematical model is assumed
to be perfect in the sense indicated above. Other approaches like the PBDW methodology
of [6] allow to correct the possible model bias.
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2.3. GEIM greedy algorithm

We start by finding a parameter µ1 in D such that

‖f(·, µ1)‖ = max
µ∈D
‖f(·, µ)‖. (2.5)

Note that several parameters µ might maximize the function µ→ ‖f(·, µ)‖. In this case, µ1

is picked among the set of maximizers. The state f(·, µ1) defines X1 = span{f(·, µ1)}. The
first sensor location x1 is one of possibly multiple maximizers such that

|σ (f(·, µ1), x1) | = max
x∈R
|σ (f(·, µ1), x) |. (2.6)

To facilitate the practical computation of the generalized interpolant, we do a change of basis
in X1. Instead of working with f(·, µ1) as basis function, we use

q1 =
f(·, µ1)

σ(f(·, µ1), x1)
.

For any µ ∈ D, the generalized interpolant of f(·, µ) is

J1[f ](µ) = c1(µ)q1 (2.7)

and c1(µ) is found with the interpolating conditions (2.4) for n = 1. We then proceed by
induction. Assume that, for a given M ≥ 1, we have selected a set of states {f(·, µj)}Mj=1

and the associated basis functions {q1, q2, . . . , qM} that span XM . Assume also that we have
chosen positions x1, . . . , xM to locate the first M sensors. The generalized interpolant is
assumed to be well defined by (2.3) for n = M , i.e.,

JM [f ](µ) :=
M∑
j=1

cj(µ)qj.

The coefficients cj(µ), j ∈ {1, . . . ,M}, are given by the interpolation problem (2.4) for
n = M , i.e., 

Find {cj(µ)}Mj=1 such that:
M∑
j=1

cj(µ)Bk,j = σ (f(·, µ), xk) , ∀k ∈ {1, . . . ,M}.

where Bk,j are the coefficients of the M ×M matrix B :=
(
σ(qj, xk)

)
1≤k,j≤M . We now define

f(·, µM+1) such that

‖(f − JM [f ])(µM+1)‖ = max
µ∈D

‖(f − JM [f ])(µ)‖, (2.8)

and xM+1 such that

|σ
(
(f − JM [f ]) (µM+1), xM+1

)
| = max

x∈R
|σ
(
(f − JM [f ]) (µM+1), x

)
|. (2.9)
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Like in the case M = 1, we might have several maximizers and, in this case, we just pick
µM+1 and xM+1 as one of them. The next basis function is then

qM+1 =
(f − JM [f ])(µM+1)

σ
(
(f − JM [f ])(µM+1), xM+1

)
We finally set XM+1 = span{f(·, µj)}M+1

j=1 = span{qj}M+1
j=1 and the generalized interpolant of

f(·, µ) at dimension M + 1 is defined by formula (2.3) with n = M + 1. It satisfies the
interpolating conditions (2.4) for the sensors located at the M + 1 positions given by the
algorithm.

It has been proven in [10] that for any n ≥ 1, the set {q1, . . . , qn} is linearly independent
and that this interpolation procedure is well-posed in X . This follows from the fact that the
matrix B is lower triangular with diagonal entries equal to 1.

Let us now make several remarks.

i) The particular case where X = L∞(R) and the dictionary Σ is composed of Dirac
masses is called EIM (and not Generalized EIM). This variant is the first one presented
in the literature (see [3]).

ii) D is a set containing parameters in a continuous range so, in practice, it is not possible
to compute maximum values over D as required in formulas (2.5) and (2.8). The same
applies for the computation of the maximum over x ∈ R in (2.6) and (2.9). This is the
reason why it is necessary to work with discrete subsets D(training), R(training) of D and
R. They have to be fine enough so that the maximum over D(training) (resp. R(training))
is representative of the maximum over D (resp. R).

iii) In practice, problem (2.1) is solved with a numerical scheme that we denote by solve
and which yields an approximation f̄(·, µ) of f(·, µ),

f̄(·, µ) = solve (F (f, µ) = 0) .

For a given µ ∈ D(training), note that f(·, µ) is the exact solution to the PDE (2.1).
So f(·, µ) is not known exactly but only via an approximation f̄(·, µ) coming from
solve (F (f, µ) = 0). f̄(·, µ) is the quantity that is considered in the practical im-
plementation of the algorithm. For any µ̄ ∈ D(training), f̄(·, µ) is called a snapshot
and

MD(training) := {f̄(·, µ) : µ ∈ D(training)}

is called the set of snapshots. It is intended to be representative enough of the setMf

defined in (2.2).

The discretizations (D(training), R(training), f̄) yield an implementable version of the greedy
algorithm. If they are fine enough, the algorithm provides, up to a factor, a convergence rate
which is the same as the greedy algorithm with (D, R, f), see [10]. However, quantifying
how fine these discretizations should be is a difficult task. Even more difficult is finding a
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systematic way of building the discretizations. One result in this direction is lemma 1 of [10],
which quantifies how much one needs to refine D(training) and R(training) at each step M of the
algorithm. However, the result is difficult to use for practical purposes. Another relevant
reference is [17] where the authors propose an approach to refine D(training) by adapting the
local approximation spaces to the local anisotropic behavior in the parameter space, thus
expected to be representative enough of the set Mf .

3. Application of GEIM to reconstruct the flux and power of a nuclear reactor
core

3.1. Physical model and remarks on how to apply GEIM

In this work, the neutron flux φ is modeled with the two-group neutron diffusion equation
with null flux boundary conditions. So φ has two energy groups φ = (φ1, φ2). Index 1 denotes
the high energy group and 2 the thermal energy one. The flux is the solution to the following
eigenvalue problem (see [18])

Find (λ, φ) ∈ C× (L∞(R)× L∞(R)) such that for all x ∈ R,{
−∇ (D1∇φ1) + (Σa,1 + Σs,1→2)φ1 = λ (χ1νΣf,1φ1 + χ1νΣf,2φ2)

−∇ (D2∇φ2) +D1φ2 − Σs,1→2φ1 = λ (χ2νΣf,1φ1 + χ2νΣf,2φ2) ,
(3.1)

with
φi|∂R = 0 for i = 1, 2.

The coefficients involved are the following:

• Di is the diffusion coefficient of group i with i ∈ {1, 2}.

• Σa,i is the macroscopic absorption cross section of group i.

• Σs,1→2 is the macroscopic scattering cross section from group 1 to 2.

• Σf,i is the macroscopic fission cross section of group i.

• ν is the average number of neutrons emitted per fission.

• χi is the fission spectrum of group i.

The generated power is
P := νΣf,1φ1 + νΣf,2φ2. (3.2)

We next make some comments on the coefficients and recall well-posedness results of the
eigenvalue problem (3.1). First of all, the first four coefficients (Di, Σa,i, Σs,1→2 and Σf,i)
might depend on the spatial variable. In the following, we assume that they are either
constant or piecewise constant so that our set of parameters is

µ = {D1, D2,Σa,1,Σa,2,Σs,1→2, ν,Σf,1,Σf,2, χ1, χ2}. (3.3)
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By abuse of notation, in (3.3) we have written Di to denote the set of values that this
coefficient might take in space and similarly for the other parameters.

Under some mild conditions on the parameters µ, the eigenvalue λmax with the largest
module is simple, real and strictly positive (see [19, Chapter XXI]). The associated eigen-
function φ is also real and positive at every point x ∈ R and it is what is classically called
the flux. In neutronics, it is customary to work with the inverse of λmax, which is called the
multiplication factor

keff := 1/λmax. (3.4)

Therefore keff is not a parameter in our setting because, for each value of the parameters µ,
keff is determined by the solution to the eigenvalue problem. In the computations of Section
4, the numerical scheme solve to compute the eigenvalue 1/keff is based on the well-known
power method (see, e.g., [18]). The spatial approximation uses P1 finite elements of a grid
of size h (this value will be specified later in Section 4).

If the parameters of our diffusion model range in, say,

D1 ∈ [D1,min, D1,max], D2 ∈ [D2,min, D2,max], . . . , χ2 ∈ [χ2,min, χ2,max],

then
D := [D1,min, D1,max]× · · · × [χ2,min, χ2,max] (3.5)

and the set of all possible states of the flux and power is given by

Mφ1,φ2,P := {(φ1, φ2, P )(µ) : µ ∈ D}, (3.6)

which is the manifold of solutions of our problem. It is composed of vectorial quantities
(φ1, φ2, P )(µ). Running GEIM in this case leads to various possibilities. First we could work
on a tensor product space X 3, with measurements on the triplet (φ1, φ2, P ), or on φ1, φ2, P
separately, letting the algorithm select which quantity is best to include at each step n of the
greedy algorithm. One could also view the problem differently and define three independent
manifolds 

Mφ1
:= {φ1(µ) : µ ∈ D}

Mφ2
:= {φ2(µ) : µ ∈ D}

MP := {P (µ) : µ ∈ D}
(3.7)

for which we run three separate GEIM algorithms. To go either one of these two above
ways we need to have access to sensor measurements. For this reason, it is preferable to
consider the manifold (3.6) and devise a reconstruction strategy where only thermal flux
measurements are taken. We will follow the approach of [5] where the authors reconstruct
the velocity and pressure of a fluid by using pressure measurements only. We describe how to
adapt the strategy to the current neutronics problem in the next section. We also take into
account that there are usually restrictions on the locations to place the sensors in the reactor
R. A typical situation is that they can only be placed in the subdomain of R corresponding
to the core Rcore but there are no sensors in the reflector Rrefl.
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3.2. A GEIM algorithm for the neutronics problem

In the following C denotes a subdomain of the reactor R and we assume that R =
Rcore ∪ Rrefl and Rcore ∩ Rrefl = ∅. To work with the manifold (3.6), we modify the greedy
algorithm of section 2.3 to approximate the flux and power of Mφ1,φ2,P when:

• we only use thermal flux measurements (related to φ2),

• the sensors can only be placed in a partial region C of the reactor, e.g., C = Rcore or C =
R.

The approach requires to assume that:

• the Kolmogorov n-width of Mφ1,φ2,P decays fast,

• the thermal flux sensors satisfy the unisolvence property,

• for any given µ ∈ D, the knowledge of φ2(µ) allows to uniquely reconstruct φ1(µ) such
that φ = (φ1, φ2)(µ) is the unique positive eigenfunction of the eigenvalue problem (3.2)
for the given parameter µ. This property is satisfied if we assume that the mapping
µ 7→ φ2(µ) is one to one. This is a strong hypothesis and, in the following, we assume
that we are in a regime D of parameters where this is true (we will be able to confirm
this in our numerical examples). We explain why this assumption is necessary at the
end of the section.

We start by defining µ1 as the quantity maximizing

max

(
max
µ∈D
‖φ1(µ)‖, max

µ∈D
‖φ2(µ)‖, max

µ∈D
‖P (µ)‖

)
. (3.8)

This yields X1
1 = span{φ1(µ1)}, X2

1 = span{φ2(µ1)} and XP
1 = span{P (µ1)}. The first

sensor location x1 is now the one such that

|σ(φ2, x1)| = max
x∈C
|σ(φ2, x)|. (3.9)

For any µ ∈ D, we can then define J1[φ2](µ) as in the previous algorithm, i.e.

J1[φ2](µ) := c
(2)
1 (µ)q

(2)
1 . (3.10)

Expressing J1[φ2](µ) with the snapshot φ2(µ1), we equivalently have

J1[φ2](µ) := d1(µ)φ2(µ1). (3.11)

Since we no longer have at hand either σ(φ1, x1) nor σ(P, x1), we cannot reconstruct φ1 and
P as before. One option is to use the very same coefficient d1(µ) to approximate φ1 and P
with

J̃1[φ1](µ) = d1(µ)φ1(µ1) (3.12)
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and
J̃1[P ](µ) = d1(µ)P (µ1). (3.13)

Then we define

J1[φ1, φ2, P ](µ) = d1(µ)

 φ1(µ1)
φ2(µ1)
P (µ1)

 (3.14)

as the interpolant of (φ1(µ), φ2(µ), P (µ)).
For subsequent dimensions, we proceed by induction. We assume that, for a given M > 1,

we have selected {µ1, . . . , µM} and we have the set of locations {x1, . . . , xM} for the sensors
of φ2. We also assume that the generalized interpolant for φ2,

JM [φ2](µ) :=
M∑
j=1

dj(µ)φ2(µj), (3.15)

is well defined. The approximation of (φ1(µ), φ2(µ), P (µ)) reads

JM [φ1, φ2, P ](µ) =
M∑
j=1

dj

 φ1(µj)
φ2(µj)
P (µj)

 . (3.16)

We then define µM+1 as the parameter which maximizes

max


maxµ∈D

‖(φ1−JM [φ1,φ2,P ]φ1
)(µ)‖

‖φ1(µ)‖

maxµ∈D
‖(φ2−JM [φ1,φ2,P ]φ2

)(µ)‖
‖φ2(µ)‖

maxµ∈D
‖(P−JM [φ1,φ2,P ]P )(µ)‖

‖P (µ)‖

 , (3.17)

where we use relative errors in order to deal with possible differences in the magnitude orders
of φ1, φ2 and P . Finally, the next sensor location xM+1 satisfies

|σ ((φ2 − JM [φ2])(µM+1), xM+1) | = max
x∈C
|σ ((φ2 − JM [φ2])(µ), x) | (3.18)

and the inductive step is completed.
Contrary to Jn[φ2](µ), note that JM [φ1, φ2, P ]φ1 and JM [φ1, φ2, P ]P are not interpolants

of φ1 and P since they do not satisfy any interpolation condition of the type (2.4). The tilde
in the notation of equations (3.12) and (3.13) is there to stress on this fact. However, as we
will see in Section 4, the approach yields a good accuracy in the numerical simulations that
we have considered. We again emphasize that the same approach was used in [5] in a Stokes
problem with a good accuracy in the reconstruction. The reference might be of interest to
the community studying thermal-hydraulics in reactor cores.

Before giving some numerical results, a remark on the hypothesis about the bijectivity
of the mapping between µ 7→ φ2(µ) is in order. Classical results from spectral theory
ensure that, for µ ∈ D, the mapping µ 7→ (φ1, φ2)(µ) is one-to-one. However, they do not
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ensure bijectivity of the mapping µ 7→ φ2(µ). We assume that we are in a parameter regime
where this holds because we reconstruct (φ1, φ2, P )(µ) from measurements only acquired from
thermal flux φ2(µ). If µ 7→ (φ1, φ2)(µ) is bijective and µ 7→ φ2(µ) was not, then we would
have existence of µ1 6= µ2 in D such that φ2(µ1) = φ2(µ2) but φ1(µ1) 6= φ1(µ2). This would
imply that JM [φ2](µ1) = JM [φ2](µ2) and therefore JM [φ1, φ2, P ](µ1) = JM [φ1, φ2, P ](µ2).
As a result, we would have reconstructed φ1(µ1) and φ1(µ2) with the same function and the
quality of approximation would no longer be ensured.

3.3. State-of-the-art on the use of reduced order modelling for nuclear reactor simulations

We give here a brief state of the art on previous works on nuclear reactor simulations
that make use of reduced order modelling techniques. The method which seems to have
been more extensively employed is the so called Proper Orthogonal Decomposition (POD
[20, 21]). Examples of applications to neutronics are [22] and [23, 24, 25]. In addition to
these contributions, one can find in [26] an evaluation of the temperature reactivity feedbacks
in a lead-cooled fast reactor with a POD basis.

Less numerous are the contributions using the reduced basis method. The works [27, 28,
29] apply the method to nuclear reactor core spatial kinetics and dynamics. In particular, [30]
models the motion of control rods by applying reduced bases to parametrized multi-group
neutron diffusion equations both in the time-dependent and stationary formulations. In
addition to this, a new numerical algorithm based on reduced basis techniques is proposed in
[31] to improve the computational performances for the homogenization of a coupled elliptic-
parabolic system describing flows in heterogeneous porous media in nuclear waste storage.
As already brought up, our main contribution is to couple the reduced basis techniques
with measurement data for monitoring purposes and also for the positionning of sensors in
a systematic manner.

4. Numerical examples: search for sensor locations for flux and power recon-
struction

In Sections 4.1 and 4.2, we reconstruct φ1, φ2 and P with the only knowledge of thermal
flux measurements. The examples are in one and two dimensions and use the methodology
of Section 3.2. For the sensor selection and placement, we consider two cases:

• Case I: the sensors can be placed at any point, in Section 3.2, the partial region C = R.

• Case II: the admissible sensor locations are restricted to the core Rcore, which corre-
sponds to setting C = Rcore in the algorithm of Section 3.2.

With these two cases, we aim to show how the algorithm can be adapted to explore different
restrictions in the positioning of the sensors. In addition to these tests, we present in Section
4.3 a non trivial application to a Pressurized Water Reactor operated by EDF.
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4.1. An example in one dimension

We consider the classical 1D test case presented in [32, Chapter 4]. The reactor domain
is R = [0, 30cm]. The core and the reflector are Rcore = [0, 25 cm] and Rrefl = [25, 30 cm]
respectively. The parametrized model is the one given in (3.3) with periodic boundary
conditions. The discretization with P1 finite elements uses a mesh of size h = 0.01 cm.
We consider only the value of D1|Rrefl

in the reflector Rrefl as a parameter (so p = 1 and
µ = D1|Rrefl

). We assume that D1|Rrefl
∈ [0.5, 2.0]. The rest of the coefficients of the diffusion

model (3.1) (including D1|Rcore) are fixed to the values indicated in Table 4.1. In principle,
one could also consider these coefficients as parameters but we have decided to focus only
on D1|Rrefl

because of its crucial role in the physical state of the core: its variation can be
understood as a change in the boundary conditions in Rcore which, up to a certain extent,
allows to compensate the bias of the diffusion model with respect to reality.

Core Reflector
Energy group 1 2 1 2

χ 1.0 0.0 0.0 0.0
νΣf (cm−1) 0.0085 0.1851 0.0 0.0
Σa(cm−1) 0.0121 0.121 0.0004 0.020

Σs,1→2(cm−1) 0.0241 – 0.0493 –
D(cm) 1.267 0.354 ∈ [0.5,2.0] 0.166

Table 4.1: Coefficient values.

In Figure 1 we show some examples of the behavior of (φ1, φ2, P ) for different values of
the parameter D1|Rrefl

. We confirm visually that µ 7→ φ2(µ) is a bijective mapping.
For any D1|Rrefl

∈ [0.5, 2.0], we reconstruct (φ1, φ2, P ) as outlined in Section 3.2, that is,
we approximate φ2 with its generalized interpolant Jn[φ2] (see (3.15)) and φ1 and P with
the corresponding components of JM [φ1, φ2, P ] (see (3.16)). For this, we run the greedy
algorithm over a set of 300 snapshots of (φ1, φ2, P ) (solutions of the PDE for a discrete grid
D(training) ⊂ D of 300 parameters). We use pointwise evaluations as a model for the sensors.
The admissible domain for the search of the interpolating points is either C = R (case I) or
C = Rcore (case II).
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Figure 1: (φ1, φ2, P ) for different values of D1|Rrefl
. The values have been normalized to a reference quantity.

Let us now turn to the analysis of the results. We study the performance of the recon-
struction strategy by considering first of all the decay of the relative errors

e
(training)
n (φ1) := maxµ∈D(training) ‖φ1(µ)− JM [φ1, φ2, P ]φ1(µ)‖L2(R)/‖φ1(µ)‖L2(R)

e
(training)
n (φ2) := maxµ∈D(training) ‖φ1(µ)− JM [φ1, φ2, P ]φ2(µ)‖L2(R)/‖φ2(µ)‖L2(R)

e
(training)
n (P ) := maxµ∈D(training) ‖P (µ)− JM [φ1, φ2, P ]P (µ)‖L2(R)/‖P (µ)‖L2(R)

(4.1)

in the greedy algorithm. In Figures 2a and 2b we plot the decay for case I and II respectively
and observe that both yield very similar results. This is possibly due to the simplicity of
the example. The decay is compared to an indicator of the optimal performance in L2(R)
which is obtained by a singular value decomposition of the snapshots φ2(µ), ∀µ ∈ D(training).

We see that e
(training)
n (φ2) decays at a similar rate as the SVD which suggests that GEIM

behaves in a quasi-optimal way (see [10]). We now estimate the accuracy to reconstruct
(φ1, φ2, P )(D1|Rrefl

) for parameter values of D1|Rrefl
∈ [0.5, 2.0] which do not necessary belong

to the training set D(training). For this, we consider a test set of 300 parameters D(test) different
from D(training) and compute the relative errors

e
(test)
n (φ1) := maxµ∈D(test) ‖φ1(µ)− JM [φ1, φ2, P ]φ1(µ)‖L2(R)/‖φ1(µ)‖L2(R)

e
(test)
n (φ2) := maxµ∈D(test) ‖φ1(µ)− JM [φ1, φ2, P ]φ2(µ)‖L2(R)/‖φ2(µ)‖L2(R)

e
(test)
n (P ) := maxµ∈D(test) ‖P (µ)− JM [φ1, φ2, P ]P (µ)‖L2(R)/‖P (µ)‖L2(R).

(4.2)

Figure 3a shows the decay of these quantities for the first case where C = R. The behavior
is almost identical to the case with D(training), which suggests that the training set was large
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enough for this example (otherwise the decay of the errors on D(test) might not have followed
the same trend). In addition to this, the very fast decay rate of the reconstruction errors for
φ1 and P shows that, in this simple example, it is possible to reconstruct these quantities
with measurements of φ2 only. For certain safety studies, one might be interested in the
behavior of the algorithm in L∞(R). In this case, very similar results to the L2(R) norm
are observed as Figure 3b shows. Also, the exact same conclusions can be drawn from the
results on the second case where C = Rcore and the plots are not given for the sake of brevity.
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Figure 2: Relative errors e
(training)
n (φ1), e

(training)
n (φ2) and e

(training)
n (P ) (Cases I and II, L2(R) norm).
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Figure 3: Reconstruction errors e
(test)
n (φ1), e

(test)
n (φ2), e

(test)
n (P ) (Case I, L2(R) and L∞(R) norms).

As already brought up, the greedy algorithm finds sensor locations that can be used as a
systematic tool for sensor placement. The locations selected in this simple test are given in
Figures 4a and 4b for both cases I and II. We may note that the first locations (until more
or less ten) tend to cluster around the border. This could be seen as an indication that the
selection is of good quality.
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Figure 4: Sensor locations chosen by the greedy algorithm.

4.2. An example in two dimensions

We consider the classical 2D IAEA Benchmark Problem (see page 437 of [33] for its
official definition and [34, 35] for implementations with different neutronic codes). The
reactor geometry is shown in Figure 5. Only one quarter is given because the rest can be
inferred by symmetry along the x and y axis.

Figure 5: Geometry of 2D IAEA benchmark, upper octant: region assignments, lower octant: fuel assembly
identification (from reference [35]).

As in the previous example, the parametrized model is the one given in (3.3). The
computational domain R was not the whole reactor but only the lower octant of Figure 5.
Note that four regions are numbered: the first three correspond to the core domainRcore, and
the fourth being the reflector domain Rrefl. Newmann boundary conditions were enforced
in the x = 0 and y = x axis and the external border has zero boundary conditions. The
discretization with P1 finite elements uses a mesh of size h = 1 cm. Like in the previous
example, the only parameter is D1|Rrefl

for which we assume that it ranges in [1.0 cm, 3.0 cm]
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(the value in the original benchmark being 2.0 cm). The rest of the coefficients of the
diffusion model (3.1) (including D1|Rcore) are in accordance with the original benchmark
problem. Their values are given in Table 4.2.

Region D1 D2 Σ1→2 Σa1 Σa2 νΣf2 Material
1 1.5 0.4 0.02 0.01 0.080 0.135 Fuel 1
2 1.5 0.4 0.02 0.01 0.085 0.135 Fuel 2
3 1.5 0.4 0.02 0.01 0.130 0.135 Fuel 2 + Rod
4 [1.0, 3.0] 0.3 0.04 0 0.010 0 Reflector

Table 4.2: Parameter values: diffusion coefficients Di (in cm) and macroscopic cross sections (in cm−1).

Using pointwise evaluations as a model for the sensors and working with a test set of
300 parameters for Dtest, we proceed in the same way as in the previous example to obtain
convergence errors for e

(test)
n (φ1), e

(test)
n (φ2) and e

(test)
n (P ). They are given in Figures 6 and

7 for both cases I and II and in norms L2(R) and L∞(R). As we can see, the errors decays
quickly in all cases, confirming the efficiency of the methodology in this two dimensional
case. However, in comparison with the previous 1D example, in order to reach the same
reconstruction accuracy the dimension of the reduced space and the number sensors is more
or less doubled. The fact that the geometry is more complex and two dimensional is probably
the most important factor to explain this observation. We finish this example by giving in
Figure 8 the corresponding sensor placement for both cases I and II. We observe that in both
cases the locations tend to cluster around the Dirichlet boundary.
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Figure 6: Case I, error convergence for the reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ) in 2D.
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Figure 7: Case II, error convergence for the reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ) in 2D.

(a) Case I. (b) Case II.

Figure 8: Sensor locations chosen by the greedy algorithm in the 2D example.

4.3. Application to a realistic geometry of a PWR operated by EDF

4.3.1. Problem setting

We consider a realistic 3D test case involving the core geometry of Pressured Water
Reactors of 900, 1300 and 1450 MWe operated by EDF. The geometry for the PWR 900
and 1300 MWe is the one used in reference [36]. For the PWR1450 MWe, we use the one
from [37] and an eighth of the core is presented in Figure 9a. Our goal is to find flux sensor
locations which are well adapted for the whole life cycle of each reactor. To each time of the
life cycle is associated a state of the flux, which is modelled by the solution to problem (3.1)
with specific values of the coefficients

µ = {D1, D2,Σa,1,Σa,2,Σs,1→2, ν,Σf,1,Σf,2, χ1, χ2}.

Here we work with boundary values defined by engineering rules which we do not explain
here for the sake of brevity. The entries of µ vary in space depending on the materials
contained in each fuel assembly. Their values also depend on three macroscopic parameters
which give the stage of the life cycle:
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• Pw: the power level of the reactor core. It ranges between 0.3 and 1.

• Bu: the average burnup of the fuel in the whole core. It is a measure of how much
energy is extracted from the fuel so it is an increasing function in time. It ranges
between 0 (for the beginning of the life cycle) and Bumax (the end of the life cycle)
and its exact evolution depends on the operating history of the reactor.

• D1|R: the diffusion coefficient of the reflector (labelled with an R in Figure 9a). The
coefficient follows a classical Lefebvre-Lebigot modelling of the reflector and ranges
between 1.0 and 1.6.

Therefore, in this case, µ depends on the vector of “general” parameters

g := (Pw,Bu,D1|R)

that range in
G := [0.3, 1]× [0, Bumax]× [1.0, 1.6].

So the manifold of solutions is

Mφ1,φ2,P := {(φ1, φ2, P )(µ(g)) : g ∈ G}. (4.3)

(a) Eighth of core (1-33: fuel assembly; R: re-
flector).

(b) Example of the 3D power distribution over
the core from COCAGNE calculation

Figure 9: The fuel assembly loading scheme and an example of 3D power distribution over the core in a
realistic 1450 MWe reactor at EDF.
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4.3.2. Selection of assemblies to place the sensors for φ2

We have explored two approaches involving GEIM to find sensor locations for φ2 in each
PWR. For technological reasons, their placement is driven by the search of the most conve-
nient assembly to take measurements so the output of our algorithm will be the assemblies
where we locate the sensors. Therefore, even if the flux and power are three dimensional,
our task can be seen as a 2D sensor placement problem and motivates to explore different
strategies which we next explain. In all cases, we have run the greedy algorithms with a
training set of 1000 snapshots. They are the solutions associated to a 5 × 5 × 40 uniform
grid G(training) of the parameter set G. Note that we make a finer sampling on D1|R because
we know that the solutions are more sensitive to this parameter. The snapshots have been
generated with COCAGNE [38], an R&D code developped at EDF R&D. We give in Figure
9b an example of the 3D power distribution in the core of the PWR 1450 MWe reactor.

The 3D2D method: We run the greedy algorithm of Section 3.2 with:

• the 1000 snapshots in 3D computed with COCAGNE,

• sensors that give local averages of φ2 over portions of the assemblies that are called
assembly nodes. Denoting by A the index set of the assemblies and, for each a ∈ A,
defining N(a) as the set of assembly nodes in assembly a, the measure on an assembly
node n ∈ N(a) is

σn(φ2) :=

∫
Vol(n)

φ2 dR
Vol(n)

As an example, we give the first 20 locations for the case of the PWR 1450 MWe in Figure
10.

Note that, with this approach, we may select more than one sensor per assembly. As a
result, we need to post-process the output of the greedy algorithm in order to decide what
are the most suitable assemblies. Our strategy goes as follows. We keep the reduced basis
X2
M computed with the greedy algorithm and compute

wa =
∑

n∈N(a)

wn, ∀a ∈ A,

where
wn := max

g∈G(training)
|σn (φ2(µ(g))− JM [φ2](µ(g))) |.

We finally arrange the values {wa}a∈A in decreasing order and choose the assemblies accord-
ing to this ordering. Figure 11 shows the first 50 assemblies where to place the sensors for
the three types of PWR’s.
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Figure 10: The first 20 sensors placements, a realistic 1450 MWe reactor.
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(b) PWR 1300
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Figure 11: 3D2D: The first 50 assemblies to place sensors for PWR 900/1300/1450 MWe reactor cores.

The 2D2D method: In this second approach, we integrate the snapshots over the vertical
axis and run the greedy algorithm in the resulting 2D fluxes and power distributions. The
measurements are averages over the assemblies. This approach gives directly a choice of the
assemblies to select without a post-processing phase. Figure 12 shows the first 50 assemblies
where to place the sensors for the three types of PWR’s.
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Figure 12: 2D2D: The first 50 assemblies to place sensors for PWR 900/1300/1450 MWe reactor cores.

4.3.3. Analysis of the results

We first analyze the 3D2D case. From Figure 11, we notice that the mecanisms of sensor
placement are pretty similar on the three types of PWR’s. Globally speaking, two main
areas are instrumented: one at the center of the core and another one at the limit between
the core and the reflector. As a result, around the center of the core is a “ring” that is rather
free of sensors in the three cases. If we focus on the order in which the first five assemblies
are selected, we observe that the first ones are located at the border for the PWR 900 and
1300 MWe and at the center for PWR 1450 MWe.

The selected locations seem physically coherent with the structure of the neutronic flux
in the core. The main information to be collected by sensors is the flux level inside the core.
To get such information, the best option is to measure close to the center. This gives a good
insight of the overall behavior of the core. Then the second global step is to characterize the
behavior at the border which informs about the balance effect between the production (at
the center) and the leakage (at the border). This explains the placement of the sensors at
the border. It can also be linked to the importance, for global neutronic equilibrium in the
core, of properly knowing the neutronic behavior at the transition between the reflector and
the core. Moreover, these effects are also consistent with the burnup decrease during the
whole life cycle of the reactor core, leading to changes in the power distribution and requiring
information on each type of neutronic field distribution from the beginning to the end of
the cycle. Thus the behavior of the method is in agreement with the neutronic physical
expectations.

If we compare globally the sensor placement with the 3D2D and the 2D2D methods,
both seem to be rather close. This confirms that working with the axially integrated flux
and power is enough to determine the optimal positioning of the instrumental network.

We next study the quality of the reconstruction. From an engineering point of view, the
most interesting parameter is the burnup Bu so we focus on its impact in the following.
The study is carried out on examples with 5 and 15 instruments. This may seem to be a
small number, but if we increase the number of sensors to be similar to real cores, the results
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become too close because the amount of information provided is enough. This saturation
effect of mandatory information for field reconstruction has already been demonstrated in
[39]. Thus, a setup with few sensors is chosen. In order to better evaluate the quality of
the optimized sensor locations, we also analyze 100 random instrumental setups. In these
random cases, the instrumental setup does not use any knowledge about the interest of each
measurement for the overall field quality. This complement is given for all kinds of cores
that we are taking into account in this study.

Figure 13 shows the mean reconstruction error over the whole core as a function of the
burnup with 5 sensors for the 2D2D and 3D2D methods. The average of the error over the
100 random configurations is also plotted. We notice that the optimized sensor locations
based on the greedy algorithm are clearly better than the averaged random ones. Moreover,
this effect is the same for all cores. It demonstrates that the greedy algorithm of GEIM is
also efficient in practice. We notice that the 3D2D results are a little worse than the 2D2D
ones for the three cores. This can be understood in terms of dimension according to the
instrumental network. As we look for a 2D network of instrumentation, it seems that the
very accurate information we obtain with the 3D case is not fully useful.
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Figure 13: Quality of the reconstruction as a function of the burnup for 5 instruments, for
PWR 900/1300/1450 MWe reactor cores.

We follow the same lines to analyze the case with 15 sensors. We give results on the field
reconstruction in Figure 14. From this figure, we can draw a similar conclusion as with the
5 sensors. The sensor placement proposed with GEIM is better than a random selection.
However, when comparing in detail the figures by pairs for the same core type, we notice
that the difference between the random placement and the optimal one for 15 instruments is
less obvious. Since more information is provided with 15 sensors than with 5, the differences
between the random and optimal is less clear. This is even clearer if we compare the 3D2D
and 2D2D cases, which are closer with 15 sensors than with only 5. The 2D2D method
is still more efficient than the 3D2D method as it fits better with the design of the final
instrumental network we aim to build.

Finally, whichever the strategies (3D2D method or 2D2D method) we choose to conden-
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sate information into 2D framework, the optimal networks are far better than the averaged
random ones. It confirms the efficiency of the method for neutronic instrumental network
analysis. Moreover, the 2D2D global method seems to be better suited than the 3D2D one.
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Figure 14: Quality of the reconstruction as a function of the burnup for 15 instruments, for
PWR 900/1300/1450 MWe reactor cores.

4.3.4. Computational cost

Table 4.3 gives some computational times to illustrate the cost of the greedy algorithm
(computed in an offline stage) and the reconstruction with the reduced basis (online stage).

Items Off-line On-line
A snapshot calculation 46
Prepare M(training), 1000 snapshots 46110
Select 50 basis functions and sensors with GEIM
greedy algorithm

20328

Field reconstruction with 5 basis functions 0.05
Field reconstruction with 15 basis functions 0.25

Table 4.3: Computational cost (in seconds) of GEIM with PWR 1450 MWe reactor core.

5. Conclusions and future works

The three examples presented in the paper show how GEIM can be applied to find
sensor locations in a reactor core in a systematic way. The example dealing with PWR
illustrates the quality of the selection: the locations given by the algorithm yield better
reconstruction results than the mean value of a random sampling. This proves that GEIM
has the ability to learn the essential mechanisms of the physical system in order to provide
good indications on sensor locations. In future works, we will include the deviation of the
model with respect to reality by working with PBDW [6]. In this approach, we work with a
number of measurements m ≥ n and approximate with a least squares projection over the
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reduced model Xn. The greedy algorithm recently analyzed in [11] could be implemented in
order to find optimal locations in this setting.

The current paper works with synthetic measurements and it would be desirable to con-
sider real data but there are still some obstructions to address in the methodology. Current
research efforts go into this direction. One of the most important problems to address is
that measurements are usually noisy. Some works in this topic whose results could be easily
applied to nuclear engineering problems are [40, 41, 42].
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[37] T. Clerc, A. Hébert, H. Leroyer, J.-P. Argaud, and A. Bouriquet, B.and Ponçot. An
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