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Abstract

In this paper, we apply the so-called generalized empirical interpolation method (GEIM) to
address the problem of sensor placement in nuclear reactors. This task is challenging due
to the accumulation of a number of difficulties like the complexity of the underlying physics
and the constraints in the admissible sensor locations and their number. As a result, the
placement, still today, strongly relies on the know-how and experience of engineers from
different areas of expertise. The present methodology contributes to making this process
become more systematic and, in turn, simplify and accelerate the procedure.
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1. Introduction

Energy production based on nuclear reactions are probably among the most demanding
source of energy with respect to safety standards. Tight criteria have to be satisfied both at
design and operation levels. What is essentially required in all cases is the accurate knowledge
of significant quantities like temperature, neutron flux, power, irradiation or fluence. The
quantities can be global outputs like the maximum or average temperature or the total
generated power but the knowledge of more detailed information like temperature, flux
and/or power maps in the whole reactor may also be required. Regardless of the exact
quantity of interest, the knowledge of these quantities is accessed either through the study
of parametrized models and/or through measurement data collected from the reactor itself.
Once a suitable model has been found, it is sometimes confronted to data coming from real
experiments. The data can, in turn, be useful to correct the model. Once a model and/or
sensor measurements are given, the goal is usually to reconstruct as precisely as possible the
quantity of interest in order to retrieve more safety, power efficiency or any other significant
criterion.
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• At design stages, the procedure consists, in very general lines, in looking for the pa-
rameters of the model which lead to the safest configuration of the core for a given
energy production.

• At the operation level, the information is primarily obtained via sensor measurements.
Their placement has to be carefully optimized in order to retrieve as much information
as possible while the reactor is running. In any of these optimization contexts, the ex-
perience of the engineers plays a crucial role in order to find acceptable configurations.
What is more, due to the complexity of the physics, it is even sometimes necessary
to combine the expertise of engineers from different fields and the optimization pro-
cess could require several iterations between experts before satisfying all the desired
criteria.

In this context, this paper is a contribution to making these tasks become more sys-
tematic. For this, we present a novel methodology from the fields of data assimilation and
reduced basis to the field of reactor simulations. The main idea is to approximate the quan-
tity of interest (say, the neutron flux) with a linear combination of a few well chosen terms.
It is well known that the neutron flux can be accurately represented as the solution of a
(parameter dependent) transport/diffusion equation. The above “well chosen terms” are
then particular solutions to the model problem (obtained by appropriate selection of the
parameters), this is the reduced basis part. The “data assimilation” part is obtained by
the Generalized Empirical Interpolation Method (GEIM, see [1, 2]) where the above linear
combination is defined in such a way that the measures on the data coincide with the data
coming out from the core.

The construction combines the knowledge of a physical model that describes the under-
lying physics with data measured in the reactor itself. A feature of this methodology which
might be of interest to the community in terms of accuracy and rapidity is that the infor-
mation from the model and the measurements is incorporated simultaneously and not in a
sequential manner as the classical procedures in nuclear engineering usually require.

We would like to emphasize that GEIM belongs to a broader class of recovery methods
which gathers other approaches like the PBDW methodology of [3] where the use of data
allows, not only to reconstruct the quantities of interest, but also to correct the possible
bias in the mathematical model. Here we shall not use this feature and assume that the
mathematical model is perfect. The whole class is subject of current active research in
the community of applied mathematics (see, e.g., [4, 5, 6, 7]) since it carries potential to
address in a unified methodology different types of inverse or uncertainty quantification
problems arising in a large variety of physical systems. Among the possible applications of
the method to the field of reactor physics stand (i) the search for optimal sensor locations to
measure certain quantities of interest during the operation of the core, (ii) the acceleration
in the search for optimally safe and/or efficient core configurations since GEIM is a real time
reconstruction of the quantities of interest. Much more ambitious is the possibility to take
into account the accuracy of the sensors. Indeed one could be interested in using few, very
accurate, sensors and more, less accurate ones. The natural questions are then to place them
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in an optimal way. Another related question is : given a certain budget, what is the best
location/quality/number of sensors to recover the best approximation. We shall consider
these questions in a latter contribution.

At any rate, we emphasize that the method cannot completely replace the experience of
experts of the field. It should be seen as a tool to assist them in doing these tasks more
efficiently and specially in a more systematic way.

Since the number of potential applications is relatively broad, in this paper we restrict
ourselves to idea (i). For this, we start in section 2 by an explanation of GEIM. In section 3,
we implement GEIM to a nuclear reactor physical model. Then, in section 4, we present a
numerical example illustrating the search for appropriate sensor locations to reconstruct flux
and power maps in a nuclear reactor. In this respect, the present paper is a follow up of the
numerical results announced in [8]. The presentation of GEIM in section 2 is deliberately
oriented towards explaining how to implement it in the context of neutronics. This is done
by taking the neutron flux and the power as examples of quantities of interest. We hope that
readers with other fields of interest will be able to extrapolate the idea to their own problems.
Also, the interested reader can refer to [2, 7] for the theoretical foundations and a more
general presentation. We finish the article by briefly explaining generalizations of GEIM,
current theoretical challenges and new perspectives regarding nuclear physics applications
(see section 5).

2. The Generalized Empirical Interpolation Method

2.1. Preliminaries

By way of preliminaries, we introduce the mathematical notations used throughout this
paper. Let X be a Banach space defined over a domain physical R ⊂ Rd (d ≥ 1) and let
‖ · ‖ be the associated norm. In our case R will be the reactor domain and X will be either
L2(R), H1(R) or L∞(R) or product of these spaces, e.g. H1(R)2 × L∞(R).

2.2. Idea of the Generalized Empirical Interpolation Method

In order to understand a physical phenomena/state of interest, we can access either
through an implicit way based on the knowledge of a physical model or through an explicit
way based on the knowledge from measurement data collected from the physical system
itself.

i) Knowledge from physical model implicitly. In general, the physical model can be
described as implicit form

F(f, µ) = 0, (2.1)

e.g., a partial differential equation (PDE), where f is a representation of the state,
which depends on p ≥ 1 essential parameters gathered in a vector µ ∈ Rp. To account
for different possible working conditions for the particular physical phenomena, we
assume that these p parameters vary in some range D ⊂ Rp, by solving this implicit
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form numerically for each µ, we get a set of all possible states (e.g., neutron flux or
power) given by

Mf := {f(·, µ) : µ ∈ D}, (2.2)

which is called the manifold of states. Reduced basis method theory [7, 9? ? ] points
out that, exploiting the knowledge of the setMf of all quantities of interest when the
parameters vary, for a particular µ the corresponding state f(·, µ) in Mf may be well
approximated by function in a small dimensional (generally unknown) space 1.

ii) Knowledge from measurement data explicitly. The physical state of interest can also
be represented explicitly as f(x, µ) at point x for a particular parameter state µ by
point-wise sensors that are installed in R, or less explicitly represented on average,
e.g., a local average over f centered at x ∈ R. Let us assume that we have a dictionary
of linear functionals σ ∈ Σ, assumed to be continuous in some sense, e.g. in L2(R).
With no loss of generality, the representation of different sensors can be denoted as

σ(f, x), (2.3)

the measurement of f at a position x ∈ R by a certain sensor.

Besides, there is possibility to represent the physical state of interest based on the knowl-
edge from physical model combining with measurement. In very practical terms, GEIM can
be seen as a method to approximate all the possible states (given by Mf ) by a well chosen
element of a suitable n-dimensional subspace Xn ⊂ X with small dimension (reduced model).
The approximation is done via interpolation from measured data. GEIM allows to construct
both the n-dimensional subspace Xn and the specification (position) of the data acquisition,
in a recursive way. Like most model reduction methods, GEIM exploits the knowledge of
the set Mf of all quantities of interest when the parameters vary and the fact that Mf

may be well approximated by a small dimensional (generally unknown) space. This could
be approached based on the following two hypothesis (and facts): i) unisolvence property
for sensors, say, if f ∈ X is such that σ(f) = 0,∀σ ∈ Σ, then f = 0; ii) Mf with small
Kolmogorov n-width. Based on GEIM, we first

• select a set of functions {f(·, µ1), · · · , f(·, µn)} from the manifold Mf and the associ-
ated basis functions (q1, . . . , qn) that span a n-dimensional space Xn = span{q1, . . . , qn}
or equivalently Xn = span{f(·, µ1), · · · , f(·, µn)} ,

• and a set of locations x1, . . . , xn ∈ R of the sensors,

with a greedy algorithm. Then, any function f(·, µ) ∈ Mf can be approximated with a
function Jn[f ](µ) ∈ Xn defined as

Jn[f ](µ) :=
n∑
j=1

cj(µ)qj. (2.4)

1From a mathematical point of view this means that M has a small Kolmogorov n-width ( we refer to
[9] for reasons why Mf may be with small Kolmogorov n-width).
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The cj(µ) are coefficients which depend on the parameters µ. They are computed using
measurement information by imposing the interpolating conditions

σ (f(·, µ), xk) = σ (Jn[f ](µ), xk) , k ∈ {1, . . . , n}, (2.5)

where we see that, the coefficients (c1, . . . , cn) are the solution of a n × n linear system of
equations. Most of the times, the reconstruction gives enough accuracy for a small dimension
n of Xn. We refer to [2, 7] for the mathematical analysis of the approach.

Note that when solving the manifold Mf , we assume that the mathematical model is
perfect, other approaches like the PBDW methodology of [3] where the use of data allows,
not only to reconstruct the quantities of interest, but also to correct the possible bias in the
mathematical model.

2.3. GEIM greedy algorithm

Based on the sensors’ unisolvence property hypothesis and Mf of small Kolmogorov
n-width hypothesis, we start by finding the parameter µ1 in Mf such that

‖f(·, µ1)‖ = max
µ∈D
‖f(·, µ)‖. (2.6)

The state f(·, µ1) defines X
(f)
1 = span{f(·, µ1)}. The first sensor location x1 is the one such

that
|σ (f(·, µ1), x1) | = max

x∈R
|σ (f(·, µ1), x) |. (2.7)

To facilitate the practical computation of the generalized interpolant, we do a change of basis
in X1. Instead of working with f(·, µ1) as basis function, we use

q1 =
f(·, µ1)

σ(f(·, µ1), x1)
.

For any µ ∈ D, the generalized interpolant of f(·, µ) is

J1[f ](µ) = c1(µ)q1 (2.8)

and c1(µ) is found with the interpolating conditions (2.5) for n = 1. We then proceed by
induction. Assume that, for a given M ≥ 1, we have selected a set of states {f(·, µj)}Mj=1

and the associated basis functions {q1, q2, . . . , qM} that span XM . Assume also that we have
chosen positions x1, . . . , xM to locate the first M sensors. The generalized interpolant is
assumed to be well defined by (2.4) for n = M , i.e.,

JM [f ](µ) :=
M∑
j=1

cj(µ)qj.

The coefficients cj(µ), j ∈ {1, . . . ,M}, are given by the interpolation problem (2.5) for
n = M , i.e., 

Find {cj(µ)}Mj=1 such that:
M∑
j=1

cj(µ)Bk,j = σ (f(·, µ), xk) , ∀k ∈ {1, . . . ,M}.
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where Bk,j are the coefficients of the M ×M matrix B :=
(
σ(qj, xk)

)
1≤k,j≤M . We now define

f(·, µM+1) such that

‖(φi − JM [f ])(µM+1)‖ = max
µ∈D

‖(f − JM [f ])(µ)‖ (2.9)

and xM+1 such that

|σ
(
(f − JM [f ]) (µM+1), xM+1

)
| = max

x∈R
|σ
(
(f − JM [f ]) (µM+1), x

)
| (2.10)

The next basis function is then

qM+1 =
(f − JM [f ])(µM+1)

σ
(
(f − JM [f ])(µM+1), xM+1

)
We finally set XM+1 = span{f(·, µj)}M+1

j=1 = span{qj}M+1
j=1 and the generalized interpolant

of dimension M + 1 of f(·, µ) is defined in XM+1 following formula (2.4) with n = M + 1.
It satisfies the interpolating conditions (2.5) for the sensors located at the M + 1 positions
given by the algorithm.

It has been proven in [7] that for any n ≥ 1, the set {q1, . . . , qn} is linearly independent
and that this interpolation procedure is well-posed in X . This follows from the fact that the
matrix B is lower triangular with diagonal entries equal to 1.

Let us now make several remarks.

i) First of all, note that D is a set containing parameters in a continuous range so, in
practice, it is not possible to compute maximum values over D as required in formulas
(2.6) and (2.9). The same applies for the computation of the maximum over x ∈ R
in (2.7) and (2.10). This is the reason why it is necessary to consider discrete grids
D(training), R(training) of D and R. They have to be fine enough so that the maximum
over D(training) (resp. R(training)) is representative of the maximum over D (resp. R).

ii) Finally, in practice, problem (2.1) is solved with a numerical scheme that we denote
by solve and which yields an approximation f̄(·, µ) of f(·, µ),

f̄(·, µ) = solve (F (f, µ) = 0) .

For a given µ ∈ D(training), note that f(·, µ) is the exact solution of the PDE (2.1).
So f(·, µ) is not known exactly but only via an approximation f̄(·, µ) coming from
solve (F (f, µ) = 0). f̄(·, µ) is the quantity that is considered in the practical im-
plementation of the algorithm. For any µ̄ ∈ D(training), f̄(·, µ) is called a snapshot
and

MD(training) := {f̄(·, µ) : µ ∈ D(training)}
is called the set of snapshots. It is intended to be representative enough of the set
Mf defined in (2.2). We refer to lemma 1 in [7] for a theoretical discussion on this
issue. Another relevant reference is [10] where the authors propose an approach to
refine D(training) by adapting the local approximation spaces to the local anisotropic
behavior in the parameter space, thus to be representative enough of the set Mf .
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The discretizations (D(training), R(training), f̄) yield an implementable version of the greedy
algorithm which is usually called “weak greedy algorithm”. We refer to [7] for a discussion
on this point and just give a sketch its practical implementation in algorithm 1. It suffices
to remove all the bars in algorithm 1 to fall back to the pure greedy algorithm.

Algorithm 1 Weak Greedy Algorithm

1: µ1 = arg maxµ∈D(training) ‖f̄(·, µ)‖
2: x1 = arg maxx∈R(training) |σ(f̄(·, µ1), x)|
3: q1 = f̄(·, µ1)/σ(f̄(·, µ1), x1)
4: for n = 2:M do
5: µn = arg maxµ∈D(training) ‖(f̄ − Jn−1[f̄ ])(µ)‖
6: xn = arg maxx∈R(training) |σ

(
(f̄ − Jn−1[f̄ ])(µn), x

)
|

7: qn = (f̄ − Jn−1[f̄ ])(µn)/σ
(
(f̄ − Jn−1[f̄ ])(µn), xn

)

3. Application to a nuclear reactor core

3.1. Physical model and remarks on how to apply GEIM

In this work, the physical model to describe the flux is the so called transport/diffusion
equation. Thus, for a given µ ∈ D, the transport/diffusion equation reads

A (φ(µ), µ) = 0 (3.1)

and models how the flux behaves for conditions µ. Since we focus on the neutron flux (and
power), the exact solution of (3.1) gives φ(µ). For the physical problem that we consider in
this paper, the model is the two group neutron diffusion equation. So the flux φ has two
energy groups φ = (φ1, φ2). Index 1 denotes the high energy group and 2 the thermal energy
one. The set of parameters is

µ = {D1, D2,Σa,1,Σa,2,Σs,1→2, νΣf,1, νΣf,2, χ1, χ2}, (3.2)

where

• Di is the diffusion coefficient of group i with i ∈ {1, 2}.

• Σa,i is the macroscopic absorption cross section of group i.

• Σs,1→2 is the macroscopic scattering cross section from group 1 to 2.

• Σf,i is the macroscopic fission cross section of group i.

• ν is the average number of neutrons emitted per fission.

• χi is the fission spectrum of group i.
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For a given µ, the PDE model reads{
−∇ (D1∇φ1) + (Σa,1 + Σs,1→2)φ1 = 1

keff
(χ1νΣf,1φ1 + χ1νΣf,2φ2)

−∇ (D2∇φ2) + Σa,2φ2 − Σs,1→2φ1 = 1
keff

(χ2νΣf,1φ1 + χ2νΣf,2φ2) , ∀x ∈ R,
(3.3)

and the power
P = νΣf,1φ1 + νΣf,2φ2, (3.4)

where keff is the so-called multiplication factor. We omit here the technical details on the
meaning of keff and refer to general references like [11] or [12, Chapter XXI]. Also, for simplic-
ity in the exposition, we assume in the following that φ1(µ), φ2(µ), P are continuous functions
in R (weaker types of regularity could be considered, see [7]). In the numerical computations
of section 4, the numerical scheme solve involves the well-known power method to compute
keff and the spacial approximation uses P1 finite elements of a grid of size h (this value will be
specified later in section 4). The parameters will be constant or piecewise constant in space
but we omit writing explicitly the spacial dependence in order not to overload notation.

If the parameters of our diffusion model range in, say,

D1 ∈ [D1,min, D1,max], D2 ∈ [D2,min, D2,max], . . . , χ2 ∈ [χ2,min, χ2,max],

then
D := [D1,min, D1,max]× · · · × [χ2,min, χ2,max] (3.5)

and the set of all possible states of the flux and power is given by

Mφ1,φ2,P := {(φ1, φ2, P )(µ) : µ ∈ D}, (3.6)

which is the manifold of solutions of our problem. Since it is composed of vectorial quantities
(φ1, φ2, P )(µ), running GEIM in this case is not as straightforward as in the previous section.
The reason is that there are plenty of different choices to choose the interpolation points:
should one select the xj with respect to φ1, φ2, P or a combination of them? If we choose to
work with, say, φ2, how to reconstruct φ1 and P? A first option is to circumvent this issue
by viewing the problem differently and defining three independent manifolds

Mφ1
:= {φ1(µ) : µ ∈ D}

Mφ2
:= {φ2(µ) : µ ∈ D}

MP := {P (µ) : µ ∈ D}
(3.7)

for which we run three separate GEIM algorithms. To go this way, we need to have access to
sensor measurements of both φ1 and φ2 and power P . This is in practice not the case since
in general it is only possible to measure the thermal flux φ2. For this reason, it is preferable
to consider the manifold (3.6) and devise a reconstruction strategy where only thermal flux
measurements are taken. We will follow the approach of [2] where the authors reconstruct
the velocity and pressure of a fluid by using pressure measurements only. We describe how
to adapt the strategy to the current neutronics problem in the next section where we also
take into account that there are usually restrictions on the locations to place the sensors in
the reactor R. A typical situation is that they can only be placed in the subdomain of R
corresponding to the core Rcore but there are no sensors in the reflector Rrefl.

8



3.2. A GEIM algorithm for the neutronics problem

In the following C denotes a subdomain of the reactor R and we assume that R =
Rcore ∪Rrefl and Rcore ∩Rrefl = ∅. To work with the manifold (3.6), we modify algorithm 1
to approximate the flux and power of Mφ1,φ2,P when:

• we only use thermal flux measurements (related to φ2)

• the sensors can only be placed in a partial region C of the reactor, e.g., C = Rcore or C =
R.

The approach requires that:

• the Kolmogorov n-width of Mφ1,φ2,P decays fast

• the thermal flux sensors’ satisfy the unisolvence property

• the mapping φ2(µ) : D →Mφ1,P is one to one (we comment on this hypothesis at the
end of the section)

We start by defining µ1 as the quantity maximizing

max

(
max
µ∈D
‖φ1(µ)‖, max

µ∈D
‖φ2(µ)‖, max

µ∈D
‖P (µ)‖

)
. (3.8)

This yields X1
1 = span{φ1(µ1)}, X2

1 = span{φ2(µ1)} and XP
1 = span{P (µ1)}. The first

sensor location x1 is now the one such that

|σ(φ2, x1)| = max
x∈C
|σ(φ2, x)|. (3.9)

For any µ ∈ D, we can then define J1[φ2](µ) as in the previous algorithm (see 3.10), i.e.

J1[φ2](µ) := c
(2)
1 (µ)q

(2)
1 . (3.10)

Expressing J1[φ2](µ) with the snapshot φ2(µ1), we equivalently have

J1[φ2](µ) := d1(µ)φ2(µ1). (3.11)

Since we no longer have at hand either σ(φ1, x1) nor σ(P, x1), we cannot reconstruct φ1 and
P as before. One option is to use the coefficient d1(µ) to approximate φ1 and P with

J̃1[φ1](µ) = d1(µ)φ1(µ1) (3.12)

and
J̃1[P ](µ) = d1(µ)P (µ1). (3.13)

Then we define

J1[φ1, φ2, P ](µ) = d1(µ)

 φ1(µ1)
φ2(µ1)
P (µ1)

 (3.14)
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as the interpolant of (φ1(µ), φ2(µ), P (µ)).
For subsequent dimensions, we proceed by induction. We assume that, for a given M > 1,

we have selected {µ1, . . . , µM} and we have the set of locations {x1, . . . , xM} for the sensors
of φ2. We also assume that the generalized interpolant for φ2,

JM [φ2](µ) :=
M∑
j=1

dj(µ)φ2(µj),

is well defined. The approximation of (φ1(µ), φ2(µ), P (µ)) reads

JM [φ1, φ2, P ](µ) =
M∑
j=1

dj

 φ1(µj)
φ2(µj)
P (µj)

 . (3.15)

We then define µM+1 as the parameter which maximizes

max


maxµ∈D

‖(φ1−JM [φ1,φ2,P ]φ1
)(µ)‖

‖φ1(µ)‖

maxµ∈D
‖(φ2−JM [φ1,φ2,P ]φ2

)(µ)‖
‖φ2(µ)‖

maxµ∈D
‖(P−JM [φ1,φ2,P ]P )(µ)‖

‖P (µ)‖

 , (3.16)

where we use relative errors in order to deal with possible differences in the magnitude orders
of φ1, φ2 and P . Finally, the next sensor location xM+1 satisfies

|σ ((φ2 − JM [φ2])(µM+1), xM+1) | = max
x∈C
|σ ((φ2 − JM [φ2])(µ), x) | (3.17)

and the inductive step is completed.
Contrary to Jn[φ2](µ), note that JM [φ1, φ2, P ]φ1 and JM [φ1, φ2, P ]P are not interpolants

of φ1 and P since they do not satisfy any interpolation condition of the type (2.5). The
tilde in the notation is there to stress on this fact. However, as we will see in section 4,
the approach yields a good accuracy in the numerical simulations that we have considered.
We again emphasize that the same approach was used in [2] in a Stokes problem with a
good accuracy in the reconstruction. The reference might be of interest to the community
studying thermal-hydraulics in reactor cores.

Before giving some numerical results, a remark on the hypothesis that the mapping
φ2(µ) : D →Mφ1,P is one to one is in order. It is quite obvious that for f = φ1, φ2 and P
the mapping f(·, µ) : D → Mf is one to one and this allows to reconstruct the fluxes and
power based on measurements of each of these. Similarly, the mapping (φ1, φ2, P )(µ) : D →
Mφ1,φ2,P is one to one. However, there is an obstruction to reconstruct (φ1, φ2, P )(µ) from
measurements only acquired from thermal flux φ2(µ) without assuming that φ2(µ) : D →
Mφ1,P is one to one. Indeed, if it were not one to one, for a given µ there could be several
states for φ1 (resp. P ) in Mφ1 (resp. MP ) and the quality of approximation with only φ2

measurements is no longer ensured.
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4. Numerical examples: search for sensor locations for flux and power recon-
struction

In this section, we apply the methodology described in section in section 3.2 to two simple
examples in which φ1, φ2 and P are reconstructed with the only knowledge of thermal flux
measurements. We consider two cases:

• Case I: the sensors can be placed at any point, in section 3.2, the partial region C = R.

• Case II: the admissible sensor locations are restricted to the core Rcore, which corre-
sponds to setting C = Rcore in the algorithm of section 3.2.

With these two cases, we aim to show how the algorithm can be adapted to explore different
restrictions in the positioning of the sensors.

4.1. A classical 1D example

We consider the classical 1D test case presented in [13, Chapter 4]. The reactor domain
is R = [0, 30cm]. The core and the reflector are Rcore = [0, 25cm] and Rrefl = [25, 30cm]
respectively. We consider only the value of D1|Rrefl

in the reflector Rrefl as a parameter (so
p = 1 and µ = D1|Rrefl

). We assume that D1|Rrefl
∈ [0.5, 2.0]. The rest of the coefficients of

the diffusion model (3.3) (including D1|Rcore) are fixed to the values indicated on table 4.1.
In principle, one could also consider these coefficients as parameters but we have decided
to focus only on D1|Rrefl

because of its crucial role in the physical estate of the core: its
variation can be understood as a change in the boundary conditions in Rcore which, up to a
certain extent, allows to compensate the bias of the diffusion model with respect to reality.

Core Reflector
Energy group 1 2 1 2

χ 1.0 0.0 0.0 0.0
νΣf (cm−1) 0.0085 0.1851 0.0 0.0
Σa(cm−1) 0.0121 0.121 0.0004 0.020

Σ1→2
s (cm−1) 0.0241 – 0.0493 –
D(cm) 1.267 0.354 ∈ [0.5,2.0] 0.166

Table 4.1: Coefficient values.

In figure 1 we show some examples of the behavior of (φ1, φ2, P ) for different values of
the parameter D1|Rrefl

. For any D1|Rrefl
∈ [0.5, 2.0], we propose to reconstruct (φ1, φ2, P )

as outlined at the end of section 2, i.e., we approximate φ2 with its generalized interpolant
Jn[φ2] (see (3.10)). φ1 and P will be reconstructed with JM [φ1, φ2, P ]φ1 and JM [φ1, φ2, P ]P
as defined in (3.12) and (3.13). Note that in this simple case we clearly satisfy that φ2(µ) :
D →Mφ1,P is a one to one mapping (one can visually verify it in figure 1).
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For this, we run a weak greedy algorithm over a set of 300 snapshots of φ2 (solutions of
the PDE for a discrete grid D(training) ⊂ D of 300 parameters). The admissible domain for
the search of the interpolating points is either C = R (case I) or C = Rcore (case II).
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Figure 1: (φ1, φ2, P ) for different values of D1|Rrefl
. The values have been normalized to a reference quantity.

Let us now turn to the analysis of the results. Figure 2 shows the sensor locations given
by the greedy algorithm in cases I and II. We study the performance of the reconstruction
strategy by considering first of all the decay of the errors

e(training)
n (φ2) := max

µ∈D(training)
‖φ1(µ)− Jn[φ2](µ)‖L2(R) (4.1)

in the greedy algorithm. Here we present plots of case I and case II, need to recognize
that both case I and case II yield very similar results, we only analysis plots of case II for
the sake of concision. In figure 4a, the decay is compared to an indicator of the optimal
performance in L2(R) which is obtained by a singular value decomposition of the snapshots

φ2(µ), ∀µ ∈ D(training). Note that e
(training)
n (φ2) decays at a similar rate as the SVD which

suggests that GEIM behaves in a quasi-optimal way (see [7]). We now estimate the accuracy
to reconstruct (φ1, φ2, P )(D1|Rrefl

) for any D1|Rrefl
∈ [0.5, 2.0] which does not necessary belong

to the training set of snapshots. For this, we consider a test set of 300 parameters D(test)

different from D(training) and compute the errors
e

(test)
n (φ1) := maxµ∈D(test) ‖φ1(µ)− JM [φ1, φ2, P ]φ1(µ)‖L2(R)

e
(test)
n (φ2) := maxµ∈D(test) ‖φ1(µ)− JM [φ1, φ2, P ]φ2(µ)‖L2(R)

e
(test)
n (P ) := maxµ∈D(test) ‖P (µ)− JM [φ1, φ2, P ]P (µ)‖L2(R)

(4.2)
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The decay of the errors (4.2) is plotted in figure 4b. The fact that e
(test)
n (φ2) decays very

similarly to e
(training)
n (φ2) confirms that the set of 300 training snapshots was representative

enough of the whole manifold. Also, the fast decay of e
(test)
n (φ1) and e

(test)
n (P ) shows that the

use of the operator J̃n to approximate φ1 and P is accurate enough2.
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(a) Case I (selection in R)
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(b) Case II (selection in Rcore)

Figure 2: Locations of the sensors chosen by the greedy algorithm.
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Figure 3: Case I, L2(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).

2In this work, the snapshots are generated by solving (3.3) with the power method in which the spacial
discretization involves P1 finite elements on a grid of size h = 0.01 cm. It follows that the accuracy of the
snapshots is of order O(h) in L2(R) and, since the greedy algorithm of GEIM is based upon these snapshots,
the best accuracy that one can retrieve in the reconstruction will also be O(h). Because of this accuracy
limits, we note that in Figure 3 - Figure 8, the information from dimension 6 to dimension 20 is of no meaning
.
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Figure 4: Case II, L2(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).

Instead of working with L2(R), it is also possible to work with other norms (provided
some spacial regularity in the manifold). A particularly relevant case in neutronics is L∞(R).
Figure 6 shows the results of the reconstruction procedure when working in this norm and
figure 8 shows the behavior when considering the H1(R) and working with the semi-norm
|u|H1(R) =

∫
R |∇u|

2 (energy norm).
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Figure 5: Case I, L∞(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).
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Figure 6: Case II, L∞(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).
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Figure 7: Case I, H1(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).
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Figure 8: Case II, H1(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).

4.2. A 2D example

We then consider the classical 2D IAEA Benchmark Problem [? ], the core geometry
which can be seen in figure 9. The problem conditions and the requested results are stated
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in page 437 of reference [? ]. It is identified with the code 11-A2, and its descriptive title
is Two-dimensional LWR Problem, also known as 2D IAEA Benchmark Problem. This
problem represents the mid-plane z = 190 cm of the 3D IAEA Benchmark Problem, that is
used by references [? ] and show in application within [? ].

Figure 9 shows the sensor locations given by the greedy algorithm in cases I and II. In
the same spirit as the example in 1D, figures 11, 13 and 15 present the errors in L2(R),
L∞(R) and H1(R) of the greedy algorithm phase and over the test set D(test). Similarly as
in 1D, the convergence of the algorithm decays exponentially and illustrates the potential of
the method to reconstruct flux and power with a few sensors.

(a) Case I (selection in R) (b) Case II (selection in Rcore)

Figure 9: Locations of the sensors chosen by the greedy algorithm.
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Figure 10: Case I, L2(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).
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Figure 11: Case II, L2(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).
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Figure 12: Case I, L∞(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).
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Figure 13: Case II, L∞(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).
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Figure 14: Case I, H1(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).
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Figure 15: Case II, H1(R) norm: Reconstruction of (φ1, φ2, P )(µ) with JM [φ1, φ2, P ](µ).

5. More general methods beyond GEIM and future works

As already brought up in the introduction, GEIM belongs to a broader class of meth-
ods which couple reduced models with measured data. In particular, the so-called PBDW
(Parametrized Backgroup Data Weak, [3]) is an extension in which it is possible to work
with a number m of sensors which is not necessarily equal to the reduced basis space Xn. In
fact, it is required that m ≥ n since PBDW involves a least squares method instead of an
interpolation in order to approximate the functions. The fact that m ≥ n is also the key to
be capable of taking the model bias into account (see [3, 5]). In future works, we will present
results with more focus on this aspect. We will also extend the results of [14, 15] on how to
adapt the methodology to take into account noise in the measurements. In parallel to these
developments, more theoretical works on the stability of the method are also ongoing.
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