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Capacity Sensitivity in Additive Non-Gaussian
Noise Channels

Malcolm Egan, Samir M. Perlaza and Vyacheslav Kungurtsev

Abstract—In this paper, a new framework based on the notion
of capacity sensitivity is introduced to study the capacity of contin-
uous memoryless point-to-point channels. The capacity sensitivity
reflects how the capacity changes with small perturbations in any
of the parameters describing the channel, even when the capacity
is not available in closed-form. This includes perturbations of
the cost constraints on the input distribution as well as on the
channel distribution. The framework is based on continuity of
the capacity, which is shown for a class of perturbations in
the cost constraint and the channel distribution. The continuity
then forms the foundation for obtaining bounds on the capacity
sensitivity. As an illustration, the capacity sensitivity bound is
applied to obtain scaling laws when the support of additive α-
stable noise is truncated.

I. INTRODUCTION

In a wide class of communication systems, the channel
capacity characterizes the cutoff rate beyond which the proba-
bility of error cannot be made arbitrarily close to zero. For the
class of discrete memoryless channels the capacity is now well
understood [1]. However, generalizing to continuous channels
has proven non-trivial, with the important exception of the
linear additive white Gaussian noise (AWGN) channel subject
to a power constraint [1, Theorem 18].

Due to the difficulty in deriving closed-form expressions
for the capacity and the optimal input distribution of con-
tinuous channels, the focus has shifted to determining struc-
tural properties of the optimal input distribution, as well as
bounds and numerical methods to compute the capacity. By
adopting this approach, a range of continuous channels have
been considered including: non-linear or non-deterministic
input-output relationships; general input constraints; and non-
Gaussian noise. Early work in this direction was initiated by
Smith [2] and more recently, Fahs and Abou-Faycal [3] have
proven conditions for the discreteness and compactness of the
optimal input distribution, which applies to a wide range of
continuous channels. This provides a means to numerically
compute the capacity, without resorting to the Blahut-Arimoto
algorithm [4, 5].
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Lyon), 6 Avenue des Arts, F-69621, Villeurbanne, France ({malcom.egan,
samir.perlaza}@inria.fr). S. Perlaza is also with the Department of Elec-
trical Engineering at Princeton University, Princeton, NJ 08544 USA. Vy-
acheslav Kungurtsev is with the Faculty of Electrical Engineering, Czech
Technical University in Prague, 12135 Prague 2, Czech Republic (vyach-
eslav.kungurtsev@fel.cvut.cz).

ME was supported in part by the ANR ARBurst Project. SMP was
supported in part by the European Commission under Marie Skłodowska-
Curie Individual Fellowship No. 659316. KV was supported in part by the
Czech Science Foundation project 17-26999S

Despite the progress in characterizing the optimal input dis-
tribution, there has been limited success in obtaining general
closed-form characterizations of the capacity. Aside from the
theoretical interest in such characterizations, it is also problem-
atic for system design in the presence of non-Gaussian noise
or input constraints beyond the power control—a problem
for systems that experience impulsive noise [6, 7] or encode
information in the timing of the signal [8].

An alternative approach to characterize the capacity of con-
tinuous channels is to focus on the sensitivity of the capacity,
or how the capacity changes when any of the parameters
describing the channel are varied. Along these lines, the effect
of the input alphabet support has been studied in [9, 10].
In particular, it was shown that the gap between the capac-
ity of the unit-variance discrete-input Gaussian memoryless
channel converges exponentially fast to the capacity of the
unit-variance continuous-input memoryless AWGN channel.
In other work [11], the decrease of the capacity due to weak
non-Gaussian contamination was studied in the context of the
Gaussian noise channel. The key to these approaches is the
continuity of the capacity with respect to parameters such as
the input alphabet support or the value of the cost constraint.

In this paper, we introduce a general framework to study
the capacity sensitivity by exploiting the theory of stability
and sensitivity of optimization problems [12]. As a first step,
we identify a large class of memoryless channels where the
capacity is continuous with respect to parameters in the cost
constraint or the channel distribution. This class includes
channels with familiar cost constraints such as power and
amplitude and Gaussian noise, as well as channels with many
other constraints (including channels with multiple constraints)
and non-Gaussian noise.

An important implication of the continuity of the capacity is
that if two channels are “close”, in a sense that will be clarified
later, one channel can be used to approximate the capacity of
the other. To this end, we derive new bounds to quantify the
capacity sensitivity in two key classes of perturbations: the
constraint cost; and the noise distribution when it is absolutely
continuous with respect to the Lebesgue measure. We illustrate
our framework by deriving a scaling law for the capacity
sensitivity in truncated α-stable noise.

The remainder of this paper is organized as follows. Sec-
tion II consists of a formulation of the capacity sensitivity
problem. Sections III and IV specialize the capacity sensi-
tivity to perturbations of the input constraint and the noise
distribution, respectively. Section V applies our main results
to characterize the capacity sensitivity in truncated Gaussian



and α-stable. Section VI discusses challenges of the general
capacity sensitivity problem and outlines future directions.

II. THE CAPACITY SENSITIVITY PROBLEM

We are concerned with real-valued point-to-point memory-
less channels. Consider the linear additive noise channel with
output Y of the form

Y = X +N, (1)

where the input X has an alphabet X ⊆ R and the noise N
has a distribution function on R, denoted by FN . In the case
the noise has a probability density function on R, it is denoted
by pN . Note that since the channel is linear and additive, when
the noise has a probability density function the channel law
can be written as

pY |X(y|x) = pN (y − x). (2)

As a consequence of the noisy channel coding theorem,
when the capacity of (1) exists it is obtained by optimizing
the mutual information subject to any constraints on the input
X . Let B(R) be the Borel σ-algebra on R and let P denote
the collection of Borel probability measures on (R,B(R))
equipped with the topology of weak convergence, which is
metrized by the Lévy-Prokhorov metric [13]. The capacity of
(1) is then the solution to the optimization problem

sup
µ∈P

I(X;Y )

subject to µ ∈ Λ,
(3)

where Λ is a compact subset of probability measures on
(R,B(R)). Key examples of the set Λ are the p-th order
constraints (p > 0), defined by

Λp = {µ : Eµ[|X|p] ≤ b}, (4)

where b > 0. Here, the second-order power constraint
Eµ[X2] ≤ b, arising in power-limited wired and wireless
communications [1] corresponds to p = 2; and the first-
order constraint E[|X|] ≤ b, arising in timing channels [8]
corresponds to p = 1.

In the case in which N ∼ N (0, σ2), it is well-known that
subject to a power constraint b, the capacity is given by [1,
Theorem 18]

C =
1

2
log

(
1 +

b

σ2

)
. (5)

However, this result is an anomaly: in general, it is not possible
to obtain a simple closed-form representation of the capacity
of (1) subject to arbitrary constraints. In fact, even the capacity
of the AWGN channel is not well understood with constraint
sets Λp for p 6= 2.

Our focus in this paper is to characterize the capacity
sensitivity. In the most general formulation, we can view the
capacity as a map from the input alphabet X , the output
alphabet Y , the noise distribution FN , and the constraint set
Λ to R+. That is, (X ,Y, FN ,Λ) 7→ C. We define the capacity
sensitivity as follows.

Definition 1. Let K = (X ,Y, FN ,Λ) and K̂ = (X̂ , Ŷ, F̂N , Λ̂)
be two tuples of channel parameters. The capacity sensitivity
due to a perturbation from channel K to the channel K̂ is
defined as

CK→K̂
∆
= |C(K)− C(K̂)|. (6)

The capacity sensitivity problem is a special case of an-
alyzing the sensitivity of nonlinear optimization problems,
where we identify the capacity as the value function. Clearly,
the problem of computing the capacity sensitivity is trivial
when the capacity is available in closed-form (such as the
case of Gaussian noise with a power constraint). However, the
problem is significantly more challenging in the usual situation
in which the only explicit characterization of the capacity is (3)
under general channel perturbations. As such, we will focus
on two special classes of channel perturbations: the constraint
set Λ and the noise distribution FN .

III. CONSTRAINT PERTURBATIONS

In this section, we consider the capacity of channels subject
to constraints of the form

Λ(b) = {µ : Eµ[fi(|X|)] ≤ bi, i = 1, 2, . . . ,m}, (7)

where µ is an input probability measure, fi : R → R, i =
1, 2, . . . ,m are positive, non-decreasing functions with fi(| · |)
lower semicontinuous, and bi ∈ R+, i = 1, 2, . . . ,m.
Moreover, we assume that Eµ[fi(|X|)] is weakly continuous
for each i = 1, 2, . . . ,m. Note that this class of constraints
includes the constraint sets Λp as special cases when X is
also restricted to have compact support.

In the case of constraints of the form in (7), define the
capacity function as

C(b) = sup
µ∈Λ(b)

I(X;Y ), (8)

where b = [b1, . . . , bm]T . We seek to characterize the capacity
sensitivity for perturbations of b. More precisely, let b̃ ∈ Rm.
Then, the capacity sensitivity for perturbations of b is given
by

Cb→b̃ = |C(b)− C(b̃)|. (9)

A. Continuity of C(b)

The first step to characterizing the capacity sensitivity
Cb→b̃ is to establish continuity of C(b). Consider the fol-
lowing conditions.
(C1) Λ(b) in (7) is non-empty and compact.
(C2) I(X;Y ) is weakly continuous on Λ(b).

Theorem 1. Suppose that conditions (C1) and (C2) hold.
Then, C(b) in (8) is continuous at b.

Proof. See Appendix A in [14].

Observe that Theorem 1 relies on the weak continuity of
the mutual information. The mutual information is weakly
continuous for the case of discrete probability measures [15]
but not in general for the continuous case. Despite this, a



range of continuous channels have been shown to satisfy
weak continuity; including the Gaussian channel with a power
constraint [9]. In particular, this implies that the capacity C(b)
of the Gaussian channel with a power constraint is continuous,
which is clearly consistent with (5). General conditions for the
weak continuity of the mutual information have recently been
provided in [16, Theorem 5].

B. Characterization of Cb→b̃

We now bound the capacity sensitivity Cb→b̃. Under the
conditions in Theorem 1, C(b) in (8) is continuous. It then
follows that if the directional derivative exists, we can apply
the multivariate form of Taylor’s theorem to quantify the effect
of perturbing b to b̃. More precisely, Taylor’s theorem yields

C(b̃) = C(b) +DdC(b) + o(‖b̃− b‖), (10)

where the direction d is given by d = b̃ − b and DdC(b)
is the derivative of the capacity C in (8) in the direction d
evaluated at the point b.

Observe that (10) provides a means of obtaining first-
order estimates of the capacity at a point b̃ given that the
capacity is known at b. Aside from providing a general
characterization of the capacity sensitivity, our approach can
also be used to simplify numerical approximations of the
capacity. In particular, suppose that it is challenging to obtain
a large number of capacity points corresponding to different
choices of b, then (10) forms a basis for the computation of
piecewise linear approximations.

The problem that remains is to ensure the existence of
DdC(b). To this end, recall that the capacity problem in (8)
is convex and consider the dual of the problem in (8), given
by

inf
λ≥0

sup
µ∈P

I(X;Y )−
m∑
i=1

λi
(
Eµ[fi(|X|)]− bi

)
, (11)

with Lagrangian

L(µ,λ;b) = I(X;Y )−
m∑
i=1

λi
(
Eµ[fi(|X|)]− bi

)
. (12)

Consider the following condition.
(C3) There exists a unique optimal input probability measure

µ∗ for the problem (8).
We then have the following characterization of the direc-

tional derivative.

Lemma 1. Let L(b) be the set of Lagrange multipliers λ that
optimize (11). Suppose that conditions (C1)-(C3) hold. Then,
the directional derivative DdC(b) exists and is given by

DdC(b) = inf
λ∈L(b)

DdL(µ∗,λ;b)

= inf
λ∈L(b)

m∑
i=1

λidi. (13)

where d = [d1, . . . , dm] and λ = [λ1, . . . , λm].

Proof. See Appendix C in [14].

A bound for the capacity sensitivity with respect to b in (7)
then follows immediately by applying the triangle inequality
to (10) and using Lemma 1.

Theorem 2. Suppose the conditions (C1)-(C3) hold. Then, the
capacity sensitivity Cb→b̃ is upper bounded by

|C(b)− C(b̃)| ≤ ‖λ∗‖ ‖b̃− b‖+ |o(‖b̃− b‖)|, (14)

where λ∗ is the Lagrange multiplier that optimizes (13).

IV. NOISE DISTRIBUTION PERTURBATIONS

In this section, we turn to the capacity sensitivity to pertur-
bations in the noise distribution FN . Throughout this section,
we assume that FN corresponds to an absolutely continuous
probability measure with respect to the Lebesgue measure.
Therefore there exists a noise probability density function pN
and the capacity sensitivity to perturbations of pN is denoted
by Cp0N→p1N , given by

Cp0N→p1N = |C(p0
N )− C(p1

N )|. (15)

Consider a sequence {piN}∞i=1 with ‖piN−p0
N‖TV → 0. We

first establish conditions on the sequence {piN}∞i=1 such that
limi→∞ C(piN ) = C(p0

N ). Using this result, we then derive
an upper bound on Cp0N→p1N in terms of ‖p0

N − p1
N‖TV .

Note that the mutual information functional is completely
determined by the input probability measure µ and the noise
probability density function pN . As such, we adopt the nota-
tion I(X;Y ) = I(µ, pN ) to make the dependence explicit.

A. Convergence of C(piN )

Consider a convergent sequence of probability density func-
tions {pi}∞i=1 in an appropriate sense (i.e., pointwise, in
total variation, in Kullback-Leibler divergence, or weakly)
with pi → p. It is not true in general that the differential
entropy converges [16, 17]; i.e., limi→∞ h(pi) 6= h(p). As a
consequence, in order to ensure convergence of the mutual
information and the capacity in (3) it is necessary to place
restrictions on the sequence of probability density functions
{pi}∞i=1 .

In order to prove convergence of C(piN ), it is therefore also
necessary to place restrictions on the sequence of noise prob-
ability density functions {piN}∞i=1. The following convergence
theorem is obtained by using the fact that the constraint set Λ
is independent of the choice of pN and applying a variation
of Berge’s maximum theorem [18].

Theorem 3. Let {piN}∞i=1 be a pointwise convergent sequence
with limit p0

N . Let Λ be a compact set of probability measures
not dependent on pN , and {µi}∞i=1 be a weakly convergent
sequence of probability measures in Λ with limit µ0. Suppose
the following conditions hold:
(C4) The mutual information I(µ, pN ) is weakly continuous

on Λ.
(C5) For the convergent sequence {piN}∞i=1 and all weakly

convergent sequences {µi}∞i=1 in Λ,

lim
i→∞

I(µi, p
i
N ) = I(µ0, p

0
N ). (16)



(C6) There exists an optimal input probability measure µ∗i for
each noise probability density piN .

Then, limi→∞ C(piN ) = C(p0
N ).

Proof. See Appendix D in [14].

B. Characterization of Cp0N→p1N
Theorem 3 provides conditions on the sequence of proba-

bility density functions {piN}∞i=1 to ensure that the capacity
C(piN ) converges; however, it does not provide an explicit
characterization of the capacity sensitivity Cp0N→p1N . We ad-
dress the capacity sensitivity in the following theorem.

Theorem 4. Let {piN}∞i=1 be a convergent sequence in total
variation distance of noise probability density functions with
limit p0

N . Suppose that the conditions (C4)-(C6) in Theorem 3
hold. Further, suppose that the following condition holds:
(C7) Let 0 ≤ θ ≤ 1 and for all piN define

qiN (θ) = (1− θ)p0
N + θpiN . (17)

For each i, suppose there exists Mi <∞ and Ni <∞
such that∣∣∣∣ lim

θ→0+

I(µ∗0, q
i
N )− I(µ∗0, p

0
N )

θ‖p0
N − piN‖TV

∣∣∣∣ = Mi,∣∣∣∣ lim
θ→0+

I(µ∗1, p
0
N )− I(µ∗1, q

i
N )

θ‖p0
N − piN‖TV

∣∣∣∣ = Ni, (18)

M = supiMi <∞ and N = supiNi <∞.
Then for any i ≥ 1,

Cp0N→qiN (θ) ≤ max{M,N}θ‖p0
N − piN‖TV + o(θ). (19)

Proof. See Appendix E in [14].

Observe that Theorem 4 is bounded in terms of the total
variation distance ‖p0

N − piN‖TV . In particular, the theorem
implies that Cp0N→piN = O(‖p0

N − piN‖TV ). In contrast with
other metrics on spaces of probability density functions, the
total variation distance can often be computed or bounded.
In the following section, we apply Theorem 4 to investigate
the effect of truncating symmetric α-stable noise probability
density functions via the capacity sensitivity Cp0N→piN .

V. CAPACITY SENSITIVITY IN α-STABLE NOISE

In this section, we characterize the capacity sensitivity
Cp0N→p1N in the case of truncated α-stable noise using the
results in the previous section. The class of α-stable noise
includes Gaussian noise (α = 2) and Cauchy noise (α = 1) as
special cases. More generally, α-stable noise (0 < α < 2) is
often used as a model for impulsive noise and arises in wireless
[6] and molecular [19] communication systems. We focus on
the subclass of symmetric α-stable noise with 0 < α < 2,
which has a characteristic function

Φ(t) = e−σ
α|t|α , (20)

where σ > 0 is the scale parameter.

To proceed, let p0
N be a symmetric α-stable probability

density function and pTN be a truncation of level T > 0 of
p0
N defined by

pTN (x) =

{
p0N (x)
κT

, |x| ≤ T
0, otherwise

(21)

where the normalization constant is given by

κT =

∫
|y|≤T

p0
N (y)dy. (22)

We assume that the constraint set Λ = {µ : Eµ[|X|r] ≤ c}
with 0 < r < α.

Our goal is to show that the conditions (C4)-(C7) in The-
orem 3 and Theorem 4 hold, which implies that the capacity
converges as ‖p0

N−p1
N‖TV → 0 and the sensitivity is bounded

by (19).
Verification of (C4): Observe that the sequence {pnN}∞n=1

converges pointwise and in total variation distance by the
definition in (21). Moreover, the constraint set Λ = {µ :
Eµ[|X|r] ≤ c} for 0 < r < α is compact in the topology
of weak convergence. For a fixed pnN , by [16, Theorem 2] it
follows that I(µ, pnN ) is weakly continuous on Λ.

Verification of (C5): We need to show that for the sequence
{pnN} and all weakly convergent sequences {µn}, we have
limn→∞ I(µn, p

n
N ) = I(µ0, p

0
N ). By [16, Theorem 1], since

{pnN} converges pointwise to p0
N and has finite fractional

moments it follows that the differential entropy

−
∫ ∞
−∞

pnN (x) log pnN (x)dx
n→∞→ −

∫ ∞
−∞

p0
N (x) log p0

N (x)dx.

(23)

Let Yn = Xn + Nn, where Xn is a random variable corre-
sponding to the input probability measure µn and Nn is the
noise random variable with probability density function pnN .
We now show that the differential entropy h(Yn) → h(Y0).
Since pnN is absolutely continuous for each n, it follows that

pYn(y) =

∫ ∞
−∞

pnN (y − x)dµn(x). (24)

The characteristic function of Yn, denoted by Φ(Yn), is then
given by

ΦYn(t) = ΦXn(t)ΦNn(t), (25)

where ΦXn and ΦNn are the characteristic functions of Xn and
Nn, respectively. As µn converges weakly and pnN converges
pointwise, we then have

lim
n→∞

ΦYn(t) = lim
n→∞

ΦXn(t)ΦNn(t)

= ΦX0
(t)ΦN0

(t) = ΦY0
(t). (26)

This implies that Yn converges weakly and hence pYn(y)
converges pointwise. Again applying [16, Theorem 1], it
follows that h(Yn) → h(Y0). This completes the proof that
limn→∞ I(µn, p

n
N ) = I(µ0, p

0
N ).

Verification of (C6): By [16, Theorem 2], there exists a
unique optimal input probability measure µ∗n.



As the conditions in Theorem 3 are satisfied, it follows
that limn→∞ C(pnN ) = C(p0

N ). In other words, the capacity
converges as the truncation level T →∞. One implication of
this result is that numerical approximations of the capacity
based on truncations of the support of symmetric α-stable
noise converge as T →∞.

In order to obtain an estimate of the capacity sensitivity
CpN0→pN,T , we seek to use Theorem 4. As conditions (C4)-
(C6) are satisfied, all that remains is to show that condition
(C7) also holds, which is verified in [14, Appendix F].

Having shown that conditions (C4)-(C7) hold, we now
evaluate the bound in Theorem 4 for the cases of truncated
symmetric α-stable noise. In general, the capacity of sym-
metric α-stable noise channels under constraints of the form
Eµ[|X|r] ≤ c are not known. To understand the effect of
the truncation on the capacity sensitivity, we investigate the
asymptotic scaling law |C(p0

N )−C(pnN )| = O(‖p0
N−pnN‖TV ),

which is a consequence of Theorem 4. Observe that∫
|x|≤n

|p0
N (x)− pnN (x)|dx

=

∣∣∣∣1− 1

κn

∣∣∣∣
(

1−
∫
|x|>n

p0
N (x)dx

)
= 1− κn. (27)

Similarly,∫
|x|>n

|p0
N (x)− pnN (x)|dx =

∫
|x|>n

p0
N (x)dx = 1− κn,

(28)

from which it follows that ‖p0
N − pnN‖TV = 1

2 (1 − κn) with
κn as defined in (22).

Now, the asymptotic probability density function tail rep-
resentation for the symmetric α-stable random variable N0

corresponding to p0
N , given by [20, Eq. (1.2.10)]

P(N0 > λ) = σαCαλ
−α, (29)

where Cα is a constant only depending on α. As such, 1−κn =
O(n−α). Applying this result to Theorem 4, then implies that
the capacity sensitivity for a truncation level T = n is given
by

|C(p0
N )− C(pnN )| = O(n−α). (30)

VI. CONCLUSIONS

With the important exception of Gaussian point-to-point
channels subject to an average power constraint, there has been
limited success in characterizing the capacity of continuous
channels. In this paper, we have approached this problem using
a framework based on the new notion of capacity sensitivity.
In particular, we provided general conditions to guarantee
continuity of the capacity with respect to parameters describ-
ing the channel. The continuity then formed the foundations
to obtain bounds on the capacity sensitivity. The sensitivity
bound was applied to obtain scaling laws for the capacity
when the support is truncated for Gaussian and α-stable noise
distributions.

From a more general perspective, the capacity sensitivity
framework provides a new means of understanding how chan-
nel parameters affect the capacity. Beyond the perturbations
we have considered, there are many other parameters of the
channel that are of interest. Some of the open questions
beyond the scope of this paper include what is the influence
of more general perturbations of the constraint set on the
capacity? More concretely, how is the capacity influenced
by changes from a power constraint to low order fractional
moment constraints? Another open question is whether or not
it is possible to obtain closed-form bounds on the capacity
sensitivity for truncated α-stable noise distributions?
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[10] Y. Wu and S. Verdú, “The impact of constellation cardinality on
Gaussian channel capacity,” in Proc. of the 48th Annu. Allerton Conf.
Commun., Control, Comput., Monticello, IL, Sept 2010.

[11] M. Pinsker, V. Prelov, and S. Verdú, “Sensitivity of channel capacity,”
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