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Abstract—Elasticity is the key feature of cloud computing to
scale computing resources according to application workloads
timely. In the literature as well as in industrial products, much
attention was given to the elasticity of virtual machines, but
much less to the elasticity of containers. However, containers are
the new trend for packaging and deploying microservices-based
applications. Moreover, most of approaches focus on horizontal
elasticity, fewer works address vertical elasticity.

In this paper, we propose ELASTICDOCKER, the first system
powering vertical elasticity of Docker containers autonomously.
Based on the well-known IBM’s autonomic computing MAPE-K
principles, ELASTICDOCKER scales up and down both CPU and
memory assigned to each container according to the application
workload. As vertical elasticity is limited to the host machine
capacity, ELASTICDOCKER does container live migration when
there is no enough resources on the hosting machine. Our
experiments show that ELASTICDOCKER helps to reduce ex-
penses for container customers, make better resource utilization
for container providers, and improve Quality of Experience
for application end-users. In addition, based on the observed
migration performance metrics, the experiments reveal a high
efficient live migration technique. As compared to horizontal
elasticity, ELASTICDOCKER outperforms Kubernetes elasticity
by 37.63%.

Keywords—Cloud computing; Vertical elasticity; Container;
Docker; Live migration

I. INTRODUCTION

Elasticity is one of the key characteristics of cloud com-
puting, which leads to its widespread adoption. Elasticity is
defined as the ability to adaptively and timely scale computing
resources in order to meet varying workload demands [1],
[2]. There are two types of elasticity: horizontal and verti-
cal [1], [3]. Horizontal elasticity consists in adding or remov-
ing instances of computing resources associated to an appli-
cation. Horizontal elasticity is also known as replication of
resources. Vertical elasticity consists in increasing or decreas-
ing characteristics of computing resources, such as CPU time,
cores, memory, and network bandwidth. Vertical elasticity is
also known as resizing of resources. Both elasticities are driven
by the variation of workload demands, such as the request
response time or the number of end-users. In the scientific
literature but also in industry practices, most of proposed
approaches focus on horizontal elasticity but few addresses
vertical elasticity.

Virtualization techniques are the keystone of elasticity in
cloud computing and consist to virtualize the actual physical
resources – e.g., CPU, storage, network – as virtual resources
such as virtual machines (VMs), virtual storages, virtual

networks. Numerous works proposed various cloud elasticity
handling mechanisms for VMs [3], [4], [5], [6]. However,
with the advent of Docker [7], containers are becoming
the new trend for packaging and deploying microservices-
based applications [8]. Since Docker provides more flexibility,
scalability, and resource efficiency than VMs [9], [10], [11], it
becomes popular to bundle applications and their libraries in
lightweight Linux containers and offers them to the public via
the cloud. Then, Docker containers have gained a widespread
deployment in cloud infrastructures such as in AMAZON
EC2 CONTAINER SERVICE, GOOGLE CONTAINER ENGINE,
DOCKER DATACENTER, RACKSPACE. But compared to VMs,
there are only few works that deal with elasticity of Docker
containers: [12], [13], [14] focus on automatic horizontal
elasticity, [15] address manual vertical elasticity, [16] sup-
ports migration. To the best of our knowledge, there is no
related work that handles vertical elasticity of containers
autonomously.

The main contribution of this paper is to present ELAS-
TICDOCKER: the first system powering vertical elasticity of
Docker containers autonomously. Based on the well-known
IBM’s autonomic computing MAPE-K principles [17], ELAS-
TICDOCKER scales up and down both CPU and memory
assigned to each container when the application workload
grows up and down, respectively. This approach modifies
resource limits directly in the Linux control groups (cgroups)
associated to Docker containers. Vertical elasticity is limited
to host machine capacity as it cannot provision more resources
when all the host machine resources are already allocated to
containers. Therefore, in this work, we use live migration to
handle this limit. Live migration is the process of moving a
container in its executing state from source to target host.
Container migration takes place when resizing is no longer
possible on the host machine. ELASTICDOCKER uses Check-
point/Restore In Userspace (CRIU) [18] to implement the
concept of container live migration. The approach then evalu-
ated by running experiments using Graylog1 and RUBiS [19]
applications. These experiments show that ELASTICDOCKER
helps to improve performance and Quality of Experience
(QoE) for application end-users, reduce expenses for container
customers, and make better resource utilization for container
providers. Our experiments also show that ELASTICDOCKER
outperforms Kubernetes autoScaling [20] by 37.63%. We have

1https://www.graylog.org
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also evaluated the efficiency of containers live migration for
different Docker images, and the observed migration, checkup
and restore times are small and negligible.

The remainder of this paper is organized as follows. Sec-
tion II describes the motivation for vertical elasticity of Docker
containers. Section III provides the technical background on
Docker. Section IV presents our ELASTICDOCKER approach
to scale up/down and migrate Docker containers. Section V
describes the experimental setup to evaluate ELASTICDOCKER
and discusses obtained results. After that, we discuss this
approach and its limits in Section VI. We present related
works in Section VII. Section VIII concludes the paper and
hightlights research perspectives.

II. MOTIVATION

A. Resource over-provisioning and de-provisioning

The load of cloud applications varies along with time.
Diverse applications have different requirements. Therefore as
shown in Fig. 1, maintaining sufficient resources to meet work-
load burst and peak requirements can be costly. Conversely,
maintaining minimum or medium computing resources can
not meet workload’s peak requirements, and cause bad perfor-
mance and Service Level Objective (SLO) violations. Auto-
nomic cloud elasticity permits to adaptively and timely scale
up/down resources according to the actual workload.

Fig. 1. Resource over-/under-provisioning

B. Vertical elasticity

Elasticity is defined as the ability to adapt resources on the
fly to handle load variation. There are two types of elasticity:
horizontal elasticity and vertical elasticity. Horizontal elasticity
requires more support from the application, so that it can be
decomposed into instances. Recently, most attention has been
given to horizontal elasticity management. Vertical elasticity
is limited due to the fact it can not scale outside the resources
provided by a single physical machine and then introduces a
single point of failures. However, vertical elasticity is better
when there are enough available resources. Vertical elasticity
has the following characteristics:
• Vertical elasticity is fine-grained scaling while it permits to

add/remove real units of resources.
• Vertical elasticity is applicable to any application, it also

eliminates the overhead caused by booting instances in hori-
zontal elasticity while horizontal elasticity is only applicable
to applications that can be replicated or decomposed.

• Vertical elasticity does not need running additional machines
such as load balancers or replicated instances.

• Vertical elasticity guarantees that the sessions of the appli-
cation are not interrupted when scaling.

• Some applications such as MATLAB, AutoCAD do not
support horizontal elasticity. They are not replicable by
design. These applications are composed of components and
their interconnections. These components can not be elastic,
which means that it is impossible to create several instances
of the same component.

• Since horizontal elasticity consists in replicating the ap-
plication on different machines, some applications such as
vSphere and DataCore require additional licenses for each
replica. These licenses could be very expensive, while only
one license is required in vertical elasticity.

Vertical elasticity maintains better performance, less SLO
violations, and higher throughput. Vertical elasticity increases
the performance because the elasticity controller just increases
the capacity of the same instance. In horizontal scaling, the
elasticity controller can add/remove instances, which impacts
the application performance. This fact is verified by using the
queuing theory [6], and the proof was demonstrated in [6].
Horizontal elasticity could result to have many small instances
and modeled as M/M/1, while vertical elasticity controls one
instance by varying its capacity and modeled as M/M/c in the
queuing theory, where c is the number of CPUs. After solving
the corresponding equations for each model, [6] founded that
the response and waiting time in vertical elasticity is much less
than that of horizontal elasticity for the same workload input.
Due to the limit of space, we do not duplicate the equations
and examples to show this fact. However in Section V-B5, we
show experimentally that ELASTICDOCKER vertical elasticity
outperforms Kubernetes horizontal elasticity by 37,63%.

C. Containers vs VMs

Docker containers are a new lightweight virtualization tech-
nology. We outline this technology in details in Section III.
Docker requires an autonomic elastic system in order to avoid
the problems of over-provisioning and under-provisioning. We
present here motivations towards Docker vertical elasticity.
• Containers consume low resource because they share re-

sources with the hosting operating system, which makes
them more efficient. Therefore, we can deploy more con-
tainers than VMs on a physical machine [9].

• Containers result in equal or better performance than
VMs [11].

• Containers have small image size, therefore, time of gen-
erating, distributing and downloading images is short, in
addition they require less storage space [9].

ELASTICDOCKER proposes an approach that manages au-
tonomous vertical provisioning and deprovisioning of Docker
containers on the host machine and migrates them if there is
no enough resources.

III. BACKGROUND

This section gives a brief introduction about Docker tech-
nologies in order to facilitate the understanding of our work.



It also elaborates Docker image filesystem and CRIU, the
concept behind ELASTICDOCKER container live migration.

A. Docker technology

Docker is a lightweight virtualization technology that allows
to package an application with all of its dependencies into
one standardized unit for software deployment. Docker uses
a client-server architecture. It consists of three main compo-
nents, Docker client, Docker host and Docker registry. Docker
host represents the hosting machine on which Docker daemon
and containers run. Docker daemon is an essential part of
Docker architecture, it is responsible for building, running,
and distributing the containers. The interactions with Docker
daemon are done through Docker client. Docker client is
the user interface to Docker. Docker registry is the service
responsible for storing and distributing images.

B. Resource management of Docker

Docker containers use namespaces to isolate resources,
and cgroups to manage and monitor resources. Runc is a
lightweight tool that runs the containers (container runtime).
Runc uses libcontainer and LXC drivers which are Linux
container libraries that enable and abstract interactions with
Linux kernel facilities such as cgroups and namespaces to
create, control and manage containers.

1) Control groups (cgroups): Docker container relies on
cgroups to group processes running in the container. Cgroups
allow to manage the resources of a container such as CPU,
memory, and network. Cgroups not only track and manage
groups of processes but also expose metrics about CPU,
memory and I/O block usage. Cgroups or subsystems are ex-
posed through pseudo-filesystems. The filesystem can be found
under /sys/fs/cgroups in recent Linux distributions. Under this
directory, we can access multiple subsystems in which we can
control and monitor memory, CPU cores, CPU time, I/O, etc.
In these files, Docker resources can be configured to have hard
or soft limits. When soft limit is configured, the container
can use all resources on the host machine. However, there
are other parameters that can be controlled here such as CPU
shares that determine a relative proportional weight that the
container can access the CPU. Hard limits are set to give the
container a specified amount of resources, ELASTICDOCKER
changes these limits dynamically according to the container
workload.

By default, Docker sets no limits, then a Docker container
can use all the available resources on the host machine. It can
use all the CPU cores as well as memory. The CPU access
is scheduled either by using Completely Fair Scheduler (CFS)
or by using Real-Time Scheduler (RTS) [21]. In CFS, CPU
time is divided proportionately between Docker containers.
On the other hand, RTS provides a way to specify hard
limits on Docker containers or what is referred to as ceiling
enforcement. Our elastic approach is integrated with RTS
in order to make it elastic. Limits on Docker containers
are set, our ELASTICDOCKER scales up or down resources
according to demand. Once there is no limit set, it is hard

to predict how much CPU time a Docker container will
be allowed to utilize. In addition, as indicated, by default
Docker can use all resources on the host machine, there is
no control how much resources will be used by that container
(customer) as many containers (customers) can coexist on the
same hosting machine. A customer may not afford to pay for
such uncontrolled amount of resource. Moreover, it will be
complicated for the provider to manage the customer billing
system, e.g., providers usually bill the customer by instance
(VM) or according to the number of CPUs, not by a partial
usage of many CPUs.

C. Docker image filesystem

Docker builds and stores images, these images are then
used to create containers. Docker image consists of a list
of read-only layers that represent filesystem differences. The
layers are stacked on top of each other to form the base of
a container’s root filesystem. When container is created, a
new writable layer called container layer is added on top of
the underlying layers or stack. Docker supports many storage
drivers such as aufs, btrfs, overlay, etc. In our case, AUFS is
used. AUFS is a unification filesystem, which means it takes
many multiple directories (image layers), stacks them on top
of each other, provides a single unified view through a single
mount point. Docker hosts the filesystem as a directory under
/var/lib/docker/.

D. Checkpoint/Restore In Userspace (CRIU)

CRIU is a Linux functionality that allows to check-
point/restore processes. It has the ability to save the state of a
running application so that it can latter resume its execution
from the time of the checkpoint. Our migration approach for
Docker containers with CRIU can be divided in two steps,
checkpoint and restore, in addition to copy process if the
dumped files do not reside on a shared file system between
the source and target host [22].

IV. ELASTIC DOCKER APPROACH

A. System design

We designed ELASTICDOCKER to automatically scale
up/down Docker containers to adjust resources to the vary-
ing workload. ELASTICDOCKER provisions and deprovisions
Docker resources vertically on the host machine. As shown in
Fig. 2, ELASTICDOCKER consists of monitoring system and
elasticity controllers. Elasticity controllers can adjust memory,
vCPU cores, and CPU fraction according to the workload de-
mand. These components are presented in the below sections.
ELASTICDOCKER adheres to use the well-known autonomic
MAPE-K loop [17]. MAPE-K is an autonomic computing
architecture introduced by IBM, it consists of four phases:
Monitor, Analyze, Plan, Execute, and Knowledge. In our
system, firstly, different Docker metrics are continuously mon-
itored. In the second analysis phase, thresholds are calculated
based on the monitored metrics, then the decision and plan to
scale up/down is taken accordingly. Finally, we implement the
decisions to adjust Docker resources according to the need.



Fig. 2. ELASTICDOCKER architecture

B. Monitoring system

Our monitoring system collects most resource utilization
and limits of Docker containers by interrogating directly with
Docker cgroup subsystems while it uses Docker RESTful API
to check CPU usage. The system continuously monitors the
memory subsystem in cgroup to check the memory current size
assigned to each Docker container as well the current memory
utilization. Similarly, we check the CPU parameters such as
the number of vCores and time. In Section IV-C, we highlight
how to control the CPU time, thus allowing us to control
CPU percentage assigned to each Docker container. In the
experimentation, we have noticed that the CPU and memory
utilization values are sometimes fluctuating rapidly, which
could be due to the nature of workload. Therefore, to avoid
this oscillation, we measure CPU and memory utilization each
4 seconds on an interval of 16 seconds (as shown in Table I),
then we take the average value as the current utilization of
CPU and memory.

C. Elasticity controller

The elastic controller adjusts memory, CPU time, vCPU
cores according to workloads. ELASTICDOCKER modifies
directly the cgroups filesystem of Docker containers to im-
plement scaling up/down decisions. The memory is monitored
and then based on its usage and thresholds, ELASTICDOCKER
increases or decreases its size. The upper threshold is set to
90%, and the lower threshold is set to 70%. The values shown
in Table I are chosen following [6], [23] which are based
on real-world best practices, in addition we tried different
values, and selecting the best values that lead to less response
time. Once the memory utilization is greater than the upper
threshold, ELASTICDOCKER adds 256MB to its size. In the
deprovisioning state, the memory size is decreased by 128MB.
We decrease memory size by small amount in the scaling down
process because the applications are sensitive to the memory
resource, and this could lead to interrupt the functionality
of the application. In addition, after each scaling decision,
ELASTICDOCKER waits a specific period of time (breath

duration). Breath duration is a period of time left to give
the system a chance to reach a stable state after each scaling
decision. As shown in Table I, we set two breath durations,
breath-up and breath-down. Breath-up is time to wait after
each scaling up decision. We chose these small values because
the application adapts quickly to the container change, we
have noticed that the application functions normally after these
time periods. Breath-up is smaller than breath-down to allow
the system to scale-up rapidly to cope with burst workload.
Breath-down is larger than breath-up duration in order to avoid
uncertain scaling down which could cause degradation in the
performance of the system.

TABLE I
ELASTICDOCKER PARAMETERS

Parameter or metric value

monitored metrics CPU utilization, CPU time, vCPUs, Memory
utilization, Memory limit

measurement period/interval 4 seconds/16 seconds
breath-up/breath-down 10 seconds/ 20 seconds
upper threshold 90%
lower threshold 70%
CPU increase/decrease ratios ±10% of CPU time or ±1 vCPUs
mem. increase/decrease ratios +256MB/-128MB

ELASTICDOCKER also controls CPU time (percentage)
and number of vCPUs assigned to each Docker container.
As we have seen in Section III, we can control CPU time
by changing CFS parameters, namely cpu.cfs period us and
cpu.cfs quota us, we refer to them simply as period and
quota. For example if period is set to 100000 and quota
set to 10000, Docker can use 10% of CPU percentage (i.e,
0.01 second of each 0.1 second), if a Docker container has
two vCPUs and period = 100000 and quota = 200000,
this means the Docker container can completely use the two
vCPUs. ELASTICDOCKER increases quota or CPU percent-
age in function of CPU usage and dynamic thresholds. For
example, if a container has 10% of CPU time, the threshold
will be 9.5, 20% of CPU time, threshold will be 19% and
so on. Once a container has used all the CPU time, new
core will be added. Upper threshold to add a vCPU core is
90%. Lower threshold is set to 70%, if CPU usage is less
than lower threshold, vcores will be removed. However let’s
suppose that a Docker container has three vCPUs cores and
quota/period = 250000/100000 and CPU usage is less than
70%, the scaling down decision is taken according to the
following condition: cpu usage < 70% and no vCPUs > 1
and quota < period ∗ (no vCPUs − 1), where no vCPUs
is the number of vCPUs allocated to the container. Similar
to memory, breath durations are set for CPU resizing. It is
worth noting that ELASTICDOCKER takes in consideration
the available resources on the host machine, and the allocated
resources of other Docker containers on the host upon each
scaling up/down decision.

D. Container live migration

Many containers generally reside on the same host machine.
Therefore, when one Docker container continues to ask for
more resources, if there is no more resources on the host,



live migration will take place for that Docker container. The
container will be migrated to another host machine. The
process of live migration consists of four main steps as shown
in Fig. 3. Firstly, the filesystem differences of the container
image layers in /aufs/diff/ will be transferred. There are many
directories in /aufs/diff/ representing image layers, so we tar
and send these layers to the destination host. Secondly, The
container process will be pre-dumped. The container is still
running after the pre-dump. The objective of the pre-dump is to
minimize the migration downtime. The pre-dumped images are
compressed using LZ4 compression in a TAR file and sent to
the destination. We perform several pre-dump iterations, each
pre-dump generates a set of pre-dump images, which contain
memory changes after previous pre-dump. This reduces the
amount of data dumped on the dump stage. Thirdly, we
proceed to dump the container state, the dump process will be
rapid because it only takes the memory that has changed after
the last pre-dump. On the destination host, we will restore the
container to the same memory state on the source host thank
to CRIU.

Fig. 3. Migration procedure based on CRIU

V. EXPERIMENTS AND EVALUATION

A. Experimental setup

We evaluated our approach with respect to the performance
and end-user QoE, customer cost, resource utilization, migra-
tion efficiency and then we compare ELASTICDOCKER versus
Kubernetes autoscaling. We performed all our experiments
on Scalair2 infrastructure inside VMs. Scalair is a private
cloud provider company. The VM on which containers run has
7vCPUs with 5GB RAM and Centos 7.2 OS. We use Graylog,
a powerful log management and analysis platform. We chose
this application because it consumes a lot of resources. Since
Graylog centralizes and aggregates all log files from different
sources, it can suddenly get overloaded, and that requires
a lot of attention from the providers to adjust resources
according to the need particularly at peak’s times. Graylog
is widely implemented in the industry and it is based on four
main components Graylog Server, Elasticsearch, MongoDB
and Web Interface. Graylog Server is a worker that receives
and processes messages, and communicates with all other
components. Its performance is CPU dependent. Elasticsearch

2http://www.scalair.fr

is a search server to store all of the logs/messages. It depends
on the RAM, disk and also CPU. MongoDB stores read-
only configuration and metadata and does not experience
much load. Web Interface is the user interface. We run three
containers, the first one is for the Graylog server version
2.0.0 and Web interface 2.0.0 while the second and third
are for Elasticsearch version 2.3.3 and MongoDB version
3.2.6 respectively. We use Docker version 1.9.1 and Docker
Compose version 1.7.1. Docker Compose is used to define and
run the different components of Graylog in the containers. We
also installed Ubuntu 14.04 and Httperf3 version 0.9.0-2build1
on the second VM. It has 2vCPUs with 4GB RAM. We also
set scripts to send log messages and overload Graylog server
on this VM. The two VMs are on different VLANs. httperf
generates requests to query the Graylog server.

B. Evaluation and results

1) Performance and end-users QoE: First, we investigate
the impact of our proposed approach on the performance
and end-user QoE and compare the results between Docker
and ELASTICDOCKER. Therefore, we run our experiments to
evaluate the performance of the Graylog application in two
cases: i) with Docker only, and ii) with ELASTICDOCKER
system. We generate different workloads using httperf to query
and search information from Graylog via its REST API.
Fig. 4 shows the results of comparison experiments of average
response time (RT) between Docker and ELASTICDOCKER.
As shown in Fig. 4, we have different request rates 10 req./sec.,
50 req/sec., etc. The more the number of requests are, the
more the RT increases. When the number of requests are
between 10 and 50 requests per second, there is no significant
difference in average RT between the two cases. However,
when the number of requests increases and requires more
resources, ELASTICDOCKER reacts to provision resources
accordingly, therefore the RT decreases and the performance
increases. The blue and red bars in Fig. 4 indicate Docker and
ElasticDocker performances, respectively. ELASTICDOCKER
increases performance by 74,56%.

Fig. 4. Graylog response time with Docker vs ElasticDocker

2) Customers’ expenses reduction: In this part of experi-
ment, we study the impact of ELASTICDOCKER on the cost.
To put stress on Graylog and ELASTICDOCKER containers,

3https://en.wikipedia.org/wiki/Httperf

http://www.scalair.fr
https://en.wikipedia.org/wiki/Httperf


we generated workloads with a random rates that arrive to
more than 1000 req./sec. by scripts on the second VM. The
workloads are syslog and Graylog Extended Log Format
(GELF) logs. The logs generated sent to be processed by
Graylog server and stored in the Elasticsearch container. At the
beginning, each Graylog, Elasticsearch and MongoDB Docker
has 1vCPU and 1130MB, 384MB and 128MB respectively.
Fig. 5 shows the vCPU and memory size for each Docker
over time. Graylog and Elasticsearch containers consume CPU
and memory while MongoDB has only 1vCPU and 128MB
of RAM because it just stores metadata. To facilitate the
understanding of this experiment, let us consider the following
simplified pricing model used by cloud providers:

cost =

n∑
n=1

cpu(tn, tn−1) ∗ (tn, tn−1) ∗ p+

mem(tn, tn−1) ∗ (tn, tn−1) ∗ p′
(1)

where cpu(tn, tn−1) is the number of vCPUs in a time
period between (tn, tn−1), p is the price for each vCPU in
time period (tn, tn−1), mem(tn, tn−1) is the memory size
in a time period (tn, tn−1), p′ price for the memory. To
ease the understanding of the customer costs, let us consider
the vCPU consumption of Graylog containers, referring to
Fig. 5 and Table II, the cost according to Equation(1) is
cost = 1∗ (t1, t0)∗p+2(t2, t1)∗p+3(t3, t2)∗p+4(t4, t3)∗
p+3(t5, t4) ∗ p+2(t6, t5) ∗ p+1(t7, t6) ∗ p+2(t7, t8) ∗ p+
1(tx, t8) ∗ p = 28, 63p

Without ELASTICDOCKER, the customer will reserve fixed
resources all the time, in our case, it could be 4vCPUs for
graylog server and then the cost will be 4 ∗ (t8, t0) ∗ p =
66, 04p, (from Fig. 5, the time periods (tn, tn−1) are translated
against a fixed interval). From these results, ELASTICDOCKER
reduces cost by 56.65%. It is shown that ELASTICDOCKER
significantly decreases the charge for the customers.

Fig. 5. CPU and memory consumption of Graylog, Elasticsearch and
MongoDB containers

TABLE II
VCPUS VS. TIME FOR DOCKER1

Time t0 t1 t2 t3 t4 t5 t6 t7 t8
number of vCPUs 1 2 3 4 3 2 1 2 1

3) Optimal utilization for resources: We evaluated the
resource utilization in a single host. Fig. 6 shows that ELAS-
TICDOCKER can maintain a better utilization of resources.
Without ELASTICDOCKER, the resources reserved while they
are idle. For example in our experiment, to avoid services
interruption in Graylog container, 4vCPU must be reserved,
however the need for these vcores is for small period only,
after that they are idle and would not be possible to run three
containers on the same host. ELASTICDOCKER reserves and
frees resources according to the charge.

Fig. 6. Resource Utilization

4) Docker live migration efficiency: In this section we
migrate different Docker applications from one host to another.
We used Docker version 1.9.0-dev and CRIU version 2.2
on both hosts. We evaluate ELASTICDOCKER live migration
technique with respect to many parameters such as checkpoint,
restore time, etc. We migrate different applications as shown
in Table III. The simple workload generator tool (stress) is
used. We have checked the application state, for example, we
set a counter in the source container and we check the value
of the counter once the container is migrated. It shows that the
first value on the counter in the migrated container is the value
following the last value in the source container. In addition, the
container nginx with PHP-FPM pushes incremental counter to
a web page, after migration, the operation continues except a
suspension for few seconds. Table III shows different migra-
tion indicators. Pre-dump time is the time duration during the

TABLE III
MIGRATION PERFORMANCE INDICATORS

Application Image
size
(MB)

Pre-
dump
time
(s)

Dump
time
(s)

Restore
time
(s)

Migration
total
time (s)

Migration
down-
time
(s)

Nginx 181.5 0.02022 0.2077 3.505 4.28 0.547
Apache 193.3 0.0807 0.196 3.19 5.18 1.712

pre-dump process of the container. Dump time is the time
duration during the final dump of the container. Migration
and restore times are the periods during the whole process
of migration and time to restore the application respectively.
Downtime is the time of interruption when the container
process is frozen during the final dump process.



Table III shows the different migration indicators and their
values measured during migration of the application contain-
ers. The values are small especially the downtime which is
the most important in the live migration. Downtime causes
a negative impact particularly on stateful applications that are
too sensitive for TCP sessions. It is worth noting that there are
other factors that could impact the migration such as network
bandwidth.

5) Vertical elasticity vs horizontal elasticity: We compared
ELASTICDOCKER with Kubernetes, i.e., vertical elasticity
versus horizontal elasticity. Kubernetes is an open-source sys-
tem for automating deployment, scaling, and management of
containerized applications. To achieve the experiment, we use
RUBiS and Kubernetes version v1.2.0. RUBiS is a well-known
Web application benchmark that simulates an online auction
site. Our deployment of RUBiS on Kubernetes uses three
tiers: a loadbalancer (Kubernetes service performs this role),
a scalable pool of JBoss application servers, and a MySQL
database. Kubernetes platform is deployed on 4 nodes running
CentOS Linux 7.2. RUBiS is deployed in two containers,
in addition to a loadbalancer. Then, we set the Kubernetes
Horizontal Pod Autoscaling (HPA) to scale RUBiS containers
based on rules-based threshold. We use the same thresholds
used in ELASTICDOCKER. We generate three workloads (low,
medium and high) using Apache HTTP server benchmarking
tool (ab) and the total execution time is measured for each
workload. We then generate the same workloads to ELAS-
TICDOCKER (running RUBiS on the machine described in
Section V-A) and the total execution time is measured as
shown in Fig. 7.

Fig. 7. Comparison between Kubernetes’ elasticity capabilities and Elastic-
Docker

Based on the analysis of these results we concluded the
following findings: (i) the average total execution time for
the three workload in ELASTICDOCKER is 132.6 seconds,
while the average total execution time in Kubernetes is 212.62
seconds. (ii) ELASTICDOCKER outperforms Kubernetes hor-
izontal elasticity by 37.63%. (iii) This confirms the analysis
in Section II-B that vertical elasticity is more efficient than
horizontal elasticity. Due to the limit of space, we do not
include the resource usage, however, Kubernetes uses more
resources, even when the workloads are terminated, the scaled
containers takes more than 5 minutes to start to scale in. This
could be due to the slow monitoring component in Kubernetes

(Heapster).

VI. DISCUSSIONS

Our system uses reactive approach based on the threshold-
based rules to perform elastic actions. While threshold based
rules are the most popular auto-scaling technique, even in
commercial systems, setting-up suitable thresholds is very
tricky, and may lead to instability of the system. Therefore, in
the performance section of our experimentation, we have tried
different thresholds, i.e., 90, 85, 80, 70, 60 and different breath
or cooling durations. After that, we have chosen the best values
as shown in Table I, which yields to best performance (lower
response time). The ideal will be to use machine learning.
The improvement of QoE by ELASTICDOCKER is not without
cost. In fact, ELASTICDOCKER allocates more resources to
overcome the workload burst. The system proposed allows
to control CPU and memory. Docker allows to control the
numbers of operations per second (ops) or amount of data,
bits per second (bps) on specific devices connected to Docker
container. However, there is no direct method particularly in
AUFS filesystem to adjust quota or amount of disk available to
a specific container. So, it is difficult to resize the disk storage
at runtime. Although it is true that Docker provides the option
–storage-opt to resize storage, this option is applied to the
daemon level not to a single container. For the migration, we
simply migrate the container which requires more resources
when there is no sufficient resources to reply its demand.
The idea is to improve this mechanism in order to have more
intelligent system that decides which container to migrate: the
one which currently requires more resources, or the one which
has less activity, etc.

VII. RELATED WORK

Elasticity is a major research challenge in the field of cloud
computing. Several different approaches have been proposed
for the elasticity at VMs level such as [3], [5], [6]. However,
with the appearance of Docker containers and their widespread
popularity among cloud providers, some researches are ded-
icated to this field. Kukade et al. [12] proposed a design
for developing and deploying microservices applications into
Docker containers. The elasticity is achieved by constantly
monitoring memory load and number of requests by an exter-
nal master. Once certain thresholds are reached, the master
node invokes scaling agent. The scaling agent permits to
horizontally spin in or out the container instances. Haldy et
al. [13] worked on container live migration technique and
proposed a framework called MultiBox. MultiBox is a mean
for creating and migrating containers among different cloud
providers. It makes use of Linux cgroups to create containers
and migrate the source containers to those newly created ones.
Hoenisch et al. [16] proposed a control architecture that adjusts
VMs and containers provisioning. DoCloud [14] is a horizontal
elastic cloud platform based on Docker. It permits to add or
remove Docker containers to adapt Web application resource
requirements. In DoCloud, a hybrid elasticity controller is
proposed that uses proactive and reactive model to scale out



and proactive model to scale down. Monsalve et al. [24]
proposed an approach that controls CPU shares of a container,
this approach uses CFS scheduling mode. Nowadays, Docker
can use all the CPU shares if there is not concurrency by
other containers. Paraiso et al. [15] proposed a tool to ensure
the deployability and the management of Docker containers.
It allows synchronization between the designed containers and
those deployed. In addition, it allows to manually decrease and
increase the size of container resource. These works either
handle horizontal elasticity or manual vertical elasticity. [23]
proposed horizontal and vertical autoscaling technique based
on a discrete-time feedback controller for VMs and containers.
This approach is limited to Web applications. In addition,
the application requirements and metadata must be precisely
defined to enable the system to work. It also adds overhead by
inserting agents for each container and VM. Kubernetes and
Docker Swarm are orchestration tools that permit container
horizontal elasticity, they allow also to set limit on containers
during their initial creation. Our proposed approach supports
automatic vertical elasticity for Docker containers and live
migration if there is no enough resources.

VIII. CONCLUSION & PERSPECTIVES

ELASTICDOCKER is an elasticity controller to dynamically
grow or shrink Docker resources according to workloads. If
there is no more resources on the host machine, we migrate
the container to another host. This migration technique is
based on CRIU functionality in Linux systems. Through ex-
perimental evaluations we have shown that ELASTICDOCKER
significantly increases end-user QoE and performance, reduces
customer’s expenses and makes a better resource utilization. In
addition, the migration downtime is very small and the appli-
cation state is maintained. The experiments also demonstrate
that fine-grained adaptation capabilities of ELASTICDOCKER
greatly improve performance when compared to Kubernetes
autoscaling.

We envision extending this work in several ways: (i) co-
ordinating container elasticity and hosting VM elasticity, (ii)
enhancing ELASTICDOCKER with features to support predic-
tive approaches in order to anticipate workloads and rapidly
scale up resources, (iii) extending the proposed platform to
complement vertical elasticity with horizontal elasticity (what
we name ”diagonal” elasticity).
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