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Abstract We propose D3PART (Dynamic 3D Plas-

tic And Redistribuable Technology), a model to han-

dle redistribution for 3D user interfaces. Redistribution

consists in changing the components distribution of an

interactive system across different dimensions such as,

platform, display and user. Our work is based on previ-

ous models for the creation of 3D plastic user interfaces,

interactive systems that can handle the context of use

modifications while preserving usability. In our previ-

ous work, we proposed a task model, a device model

and an application component model for the creation

of plastic user interfaces that handle the 3D specifici-

ties. With D3PART, we extend these models in order

to include redistribution capabilities. The final solution

lets developers create applications where 3D content

and tasks can be automatically redistributed across the
different dimensions at runtime. The proposed redis-

tribution process is based on a client-server architec-

ture with a meta-user interface to control the redistri-
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bution configuration. In order to illustrate D3PART, we

describe three different scenarios of redistribution be-

tween a tablet and a CAVE for a 3D application for fur-

niture planning. Indeed, with an implementation of our

model, we show how redistribution can be used at run-

time to combine these platforms, to switch seamlessly

from one platform to another, and lastly, how redistri-

bution can be used to create a collaborative context of

use.

Keywords Plasticity, Redistribution, 3D User

Interfaces, Virtual Reality

1 Introduction

Today, users have access to a wide variety of platforms,

such as mobile devices, desktop computers and immer-

sive systems. Therefore, users are more frequently con-

fronted with situations where they have to move from

one platform to another [12]. Moreover, combining dif-

ferent platforms can be considered as very interesting

for end users, as it gives them new interaction prospects

[18]. These possibilities directly refer to ”distributed

user interfaces” (DUI) and redistribution. A DUI is a

user interface whose components are distributed across

different dimensions, such as platforms, displays and

users [13] [27]. For instance, these components can be

widgets, interactors, or content. The redistribution ca-

pability of an interactive system refers to its property

to change its components distribution, statically or dy-

namically [7]. It can include migration and replication

mechanisms. Redistribution is one means of adaptation

addressed by the plasticity concept that comes from

2D user interfaces. Plasticity is defined as the capac-

ity of an interactive system to withstand variations of
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both the system physical characteristics and the envi-

ronment, while preserving its usability [33]. Whatever

the context of use: code interoperability or usability,

continuity has to be guaranteed to be considered as

plastic. The second means of adaptation addressed with

plasticity is recasting, which consists of locally modify-

ing the application components in order to fit a given

context of use. For instance, it can be interaction tech-

niques adaptations, or content presentation modifica-

tions. Indeed, considering recasting is needed to handle

redistribution, as the input and output capacities may

vary from a platform to another. Some solutions exist

for the creation of reconfigurable 3D applications [14]

or 3D adaptive ones [23], and some recent approaches

tend to bring plasticity to 3D with a focus on recast-

ing [16] [21]. A complete survey of plasticity for 3D user

interfaces (3DUI)’s is given in [20].

Redistribution and plasticity have already been well

explored for 2D user interfaces, but less for 3D. How-

ever, in the last few years interest for 3DUI’s has grown.

These kinds of interactive systems address Virtual Re-

ality (VR) and Augmented Reality (AR) applications.

This new trend can be explained by the improvement in

graphics performance of devices, such as PC’s or smart-

phones and also thanks to the generalization of VR and

AR devices. The wide variety of existing interaction de-

vices and the daily emergence of new ones increases the

need for 3D plastic user interfaces with redistribution

capabilities. In order to ease the implementation of such

applications, our approach proposes to consider plastic-

ity and redistribution for 3DUI’s.

Our contribution is D3PART (Dynamic 3D Plastic

And Redistribuable Technology), a new model for de-
velopers to help them in the creation of 3DUI’s that

can be dynamically redistributed across different di-

mensions: platform, user and display. The model in-

cludes a redistribution process that consists of distribut-

ing the high level tasks and the virtual environment of

a 3D application across these different dimensions. The

solution is based on our previous models [21] for the cre-

ation of 3D applications, independently from concrete

interaction devices and 3D frameworks. D3PART also

includes an adaptation process on top of these models

to support dynamic recasting. It ensures that a redis-

tributed application will fit any local context of use. At

runtime, we use a client-server architecture to automat-

ically detect new platforms and also to synchronize the

different instances of a redistributed application. The

redistribution process is user-initiated. Indeed, an in-

tegrated user interface is provided to the end user to

enable the selection of the new distribution of the sys-

tem. To illustrate our solution, we present three differ-

ent scenarios of redistribution between a tablet and an

immersive multi-display system, for a furniture plan-

ning application. This prototype is developed with a

toolkit that implements the D3PART model. In these

examples, we show how the virtual environment and

the tasks can be distributed across the two platforms

in order to combine them, to switch seamlessly from one

platform to the other, and also to create a collaborative

context of use.

This paper is an extended version of [22]. Here, we

further develop the related work part, give more de-

tails about the model implementation and we give ad-

ditional examples of possible uses of D3PART. This pa-

per is structured as follows: first we review the details

of the redistribution concept and we present some re-

lated work. Next, we describe the models used for the

creation of plastic 3DUI’s and how these models have

been extended with D3PART to support redistribution.

Then, we present the three examples of redistribution

between a tablet and an immersive multi-display sys-

tem for the furniture planning application, developed

with our solution. Finally, we give some direction for

future work and concluding remarks.

2 Related Work

A DUI is a user interface whose components are dis-

tributed across different dimensions [13]. For 3DUI’s we

consider three dimensions of distribution, from those

described in [13] and [27]:

– Display. The application content is displayed on

one or multiple devices. Common examples in 3D

for this kind of distribution are multiple display sys-

tems.

– Platforms. The application runs on a single com-

puting platform, or is distributed across multiple

platforms. These platforms may be heterogeneous

(operating system, computing power, plugged de-

vices). For 3D applications, this category encom-

passes cluster approaches that combine connected

homogeneous computers to run a VR application

with high performance. It can also include interac-

tive systems where the interactors of a same appli-

cation are distributed across different platforms.

– Users. The application is shared by multiple users.

This dimension is directly linked to the other two

as different participants can use different displays

and platforms. In 3D, this dimension directly refers

to Collaborative Virtual Environments (CVE). The

field of CVE includes concepts for sharing virtual

worlds between different platforms and users.

Redistribution consists of changing the distribution

of an interactive system on these different dimensions.
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According to Demeure et al. [12], redistribution can

be system-initiated (the system automatically performs

the redistribution), user-initiated (the user initiates and

parametrizes the redistribution), or mixed-initiated (the

user and the system collaborate to perform the redis-

tribution). Redistribution includes migration and repli-

cation mechanisms. The concept of migratory applica-

tions was firstly defined by Bharat and Cardelli [4] as

applications that can migrate from one host to another,

maintaining the state of their user interface intact. In

the case of replication, an application is partly or fully

copied from one host to another and a synchronization

mechanism ensures the consistency between the differ-

ent application instances. According to Calvary et al.

[8], redistribution can be performed on the fly (at run-

time) or between sessions and the redistribution gran-

ularity may vary from application down to the pixel

level:

– At application level, on the platform or user di-

mension, the application is fully replicated or fully

migrated onto a distant platform. The application

may be adapted to its new context of use, which

can include platform capabilities and user prefer-

ences. Full replication implies state synchronization

to maintain consistency between the different in-

stances of the application. On the contrary, for a

full migration, each platform runs its own indepen-

dent version and no synchronization is performed.

For instance, Bandelloni and Paterno [3] present a

2D bank application which can fully migrate from a

PDA to a PC while keeping the application runtime

state during the process.

– At workspace level, workspaces can be redistribu-

ted on the platform, display and user dimensions. A

workspace is an interaction space that groups to-

gether interactors that support the execution of a

set of logically connected tasks. In graphical user in-

terfaces, a workspace can be considered as a window.

For instance, the painter metaphor [30] includes two

workspaces: the palette of tools on a mobile device

and the drawing area on an electronic white board.

Similarly, Sjolund et al. [31] propose an DUI where

a media player is displayed on a desktop monitor

and is controlled by a remote controller displayed

on a smartphone.

– At domain concept level, physical interactors can

be redistributed on the different dimensions. In 3D,

it corresponds to the interaction techniques and wid-

gets. Several examples of this kind of distribution

can be found in the field of 3DUI’s. For instance,

BUILD IT [29] is a tool dedicated to the design of

factories. It is composed of two projective displays.

A horizontal one allows the users to have a 2D view

of the factory and provides them 2D interaction for

object manipulation. A vertical display provides a

perspective view of the result. In the same way, for

data visualization, Slice WIM [9] combines an inter-

active multi-touch table and a stereoscopic display

in order to provide simultaneous views of the data:

overview and detailed. To continue, in [26], physical

interactors for navigation, pointing and application

control are distributed on a tablet in order to in-

teract with content in an immersive system. In all

cases, the system distribution is hard-coded. It is

not performed automatically as it has only been de-

signed to work with these two platforms.

– At pixel level, view continuity is ensured across

different displays thanks to a distribution on the

display and the platform dimensions. In 3D, this

kind of redistribution is performed for multiple dis-

play systems. In this case, an application can be

distributed on a cluster of PC’s and rendered on

multiple displays with view continuity. For instance

a CAVE system [11] consists of a room whose walls,

celling and floor surround a viewer with projected

images. The user feels immersed in the virtual en-

vironment thanks to a viewer-centered perspective

and thanks to view continuity between these dis-

plays.

In order to handle redistribution on the different

dimensions and at the different levels of granularity, so-

lutions designed for 2D user interfaces can be found.

First, ”Smartphone views” [31], proposes a synchro-

nization mechanism in order to control an application

on a desktop computer with a remote controller dis-

tributed on a smartphone. Then, VIGO [19] is an archi-

tecture that supports ubiquitous instrumental interac-

tion among multiple devices and computers. Melchior

et al. [27] propose a peer-to-peer architecture for the

creation of DUI’s. It includes mechanisms for widgets

migrations and for the adaptation of the widgets rep-

resentations and interactions according to the context

of use. Two model-based approaches for the creation of

DUI’s are proposed by Masso et al. [25] and by Melchior

et al. [28]. With these two solutions application compo-

nents such as widgets can be distributed on multiple

platforms, displays and users. The redistribution can

be static or dynamic and is performed at the concrete

UI level which is independent of any rendering engine or

any programming language. As detailed in [28], a new

distribution of a system can be chosen with a command

line interface, or with an integrated user-interface: the

meta-user interface. To continue, ZOIL [35] is a soft-

ware framework for the development of post-WIMP

(”Windows Icons Menus Pointer”) distributed user in-

terfaces. It proposes a client server architecture with
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Dynamic Redistribution 

Platform 
Dimension 

User 
Dimension 

Display 
Dimension 

Application 
Level 

Workspace 
Level 

Domain 
Concept  

Level 

Pixel  
Level 

Distribution 
Controller 

3DUI 
enabled 

Smartphone Views 
[31] 

Yes No Yes No Developer No 

VIGO [31] Yes Yes Yes No Developer No 

ZOIL [35] Yes Yes Yes No Developer 
 

Yes 

Peer-to-peer DUIs 
[27] 

Yes Yes Yes Yes Yes Yes No Not specified No 

Model-based 
approach [25] [28] 

Yes Yes Yes Yes Yes Yes No User or 
Developer 

No 

PolyChrome 
Framework [4] 

Yes Yes Yes Yes Yes Yes Yes User No 

Distributed 
Rendering of 
HTML5 Canvas [34] 
 

Yes No Yes No Developer Yes 

VR Juggler [7] 
MiddleVR 

Yes No Yes No Developer Yes 

CVE architectures 
[17] 

No Yes No Yes No No No User Yes 

Fig. 1: A classification of the tools for the creation of DUI’s.

a transparent persistent mechanism for the synchro-

nization between the different platforms. Media con-

tent such as 3D models can be integrated in ZOIL but

the framework does not include solutions for 3D inter-

actions yet. Likewise, the PolyChrome framework [2]

supports the creation of distributed web-based appli-

cations for data visualization. The framework handles

synchronous and asynchronous collaboration on multi-

ple devices. To continue in the context of web-based

application, Yokoyama et al. [34] propose a solution for

the creation of DUI’s on the display dimension with a

parallel rendering of HTML5 canvas elements. It could

be used to display 3D scenes on mutliple displays, as

WebGL is supported by HTML5.

In the field of 3DUI’s, solutions to create DUI’s also

exist but they mainly focus on specific cases and do not

let the end-user change the system distribution at run-

time. One specific case handled in 3D and previously

cited is the case of clusters of computers that manage

multi-display systems such as CAVE’s [11], Holostages,

or Workbenches. In these cases, the system distribution

is performed on the platform and display dimensions.

The VR Juggler [5] framework and MiddleVR1 propose

such solutions. The second specific case handled in 3D

is the field of CVE which needs a distribution at the

platform and user levels. It implies a state synchroniza-

tion between the different users platforms in order to

1 http://www.middlevr.com/middlevr-sdk/

maintain a consistent application. Some architectures

for CVE are reported in [15].

Regarding the different properties of redistributable

user interfaces, these different solutions can be classified

according to multiple criteria. First, these solutions can

be classified according to the distribution dimensions

they can target: platform, user and display. Then, we

can also separate the solutions between those that sup-

port dynamic redistribution and those that do not. As a
sub-criteria, we can classify them according to the levels

of redistribution they support: application, workspace,

domain concept and pixel level. Then, solutions can be

classified according to who choses the distribution of

the system. Last, we can differentiate between the so-

lutions that support the creation of distributed 3DUI’s

and those that do not. A classification of the main solu-

tions cited in this Section according to these criteria is

provided in Figure 1. As detailed in this classification,

related work is devoid of a solution for the creation of

3DUI’s with redistribution capabilities at different lev-

els. Our goal with D3PART is to fill this gap.

In this paper, we propose a solution that can han-

dle redistribution on the platform, display and user di-

mensions that consider the 3D specificities. In our case,

the redistribution is user-initiated and controlled with

an integrated user interface. We focus on redistribution

for 3DUI’s at the application, workspace, and domain

concept levels. The pixel level on clusters of PC’s is not

covered. Indeed, we consider that handling redistribu-
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Device model 

Task model 

Application 
Component 

model 

Previous Models 
(Lacoche et. [21]) 

D3PART  Extension to Plasticity and Redistribution 

Adaptation process 
for 

dynamic recasting 

Taken into account 

Redistribution 
process 

Can create a new task 
distribution across multiple 

platforms  

Handle Virtual 
Environment 

replication and 
synchronization 

Fig. 3: The D3PART architecture is based on previous

models from [21]. Dynamic redistribution and recasting

are handled by our solution.

tion at the pixel level with high performance expecta-

tions is already a mature field of research, while the

other levels are less explored in 3D. The proposed so-

lution can be interfaced with modern 3D frameworks,

especially game engines in order to be easily integrated

into the 3D developers and designers work-flow. One of

the advantages of our approach is that any application

developed with our model automatically benefits from

redistribution capabilities.

3 Conceptual Modeling of 3DUI’s in D3PART

Most approaches to handle redistribution and plasticity

are dedicated to 2D user interfaces and do not address

new issues introduced by 3DUI’s. Indeed, 3DUI’s in-

clude a wider range of possible interaction devices and

interaction techniques for interacting with more com-

plex content. For instance, this content includes 3D

meshes with complex materials and behaviors. That

is why, in order to design 3D applications that handle

plasticity, recasting and redistribution, as shown in Fig-

ure 3 taken from [22], our solution D3PART extends our

previous plasticity models [21]. In this previous work we

presented three models for the implementation of plas-

tic 3DUI’s. These models are shown in Figure 2.

First, in order to represent the device context of

use, we use the device model presented in [21] that can

describe the devices used for 3DUI’s. It defines a plat-

form as a hardware environment composed of input and

output devices and computing units. The goal of this

device model is to precisely describe most of the devices

that can be used for interaction purposes at runtime.

The model includes device capabilities, limitations and

representations in the real world. As shown in Figure 2,

each device is composed of input units, output units and

physical objects for its representation in the real world.

Input units can be trackers, vocal commands, camera

streams, etc. Output units can be visual displays, sound

outputs, force feedbacks, etc. Each device corresponds

to a class that inherits from the basic device class. In

this class, the developer has to complete some functions

to fulfill the input data, trigger the outputs and tell the

system when a new instance of the device is plugged or

unplugged. These steps can be done with a SDK dedi-

cated to a particular device. Another XML description

file is used to describe the device properties that cor-

responds to the device and its device units file. These

properties can also be reported in the device SDK by

the developer to perform its configuration.

Second, we use a task model briefly introduced in

this previous work. These tasks represent the behavior

of the application independently from any concrete ap-

plication component. They represent the features that

the developer wants to integrate into the application

with a high granularity. For 3DUI’s, according to Hand

[17], these tasks belong to three categories: selection

and manipulation, application control, and navigation.

They represent the features that the developer wants

to integrate into the application with a high granular-

ity. Therefore, a task is represented by a name that

describes its role in the final application. For instance,

it can be ”Selection”, ”Navigation”, etc. A task can de-

fine different functions (the task events) that constitute

the application logic, such as adding an object into the

scene, or loading a new scene configuration, etc. De-

pendencies between the tasks can also be described by

the developer. For instance, an application control task

with a menu needs a selection task, therefore the two

tasks are defined as dependent.

Therefore, as detailed in Figure 4, in D3PART an

application is defined with a set of high level tasks and

with a description of the virtual environment. In our

implementation, these needed tasks and the dependen-

cies must be provided by the application developer or

the designer in an XML configuration file. An example

of an XML configuration file is given in Listing 1 for the

application described in Section 5. Four high level tasks

are needed in this application, selection and manipula-

tion, navigation, application control (named furniture

control) and redistribution. The furniture control task

is defined as dependent on the selection and manipula-

tion task, which is expressed by the topTask=”0” in the

file. The redistribution task is parametrized with the

redistribution server IP. An application in D3PART is

also described by its virtual environment. This virtual

environment is composed of visual (3D content) and
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Fig. 2: The three models used in D3PART, a task model, a device model and an application component model.

1 <TaskConfig>
2 <NeedTask taskName=”SelectionManipulation”

taskId=”0”/>
3 <NeedTask taskName=”FurnitureControl” taskId=”1”

topTask=”0”/>
4 <NeedTask taskName=”Navigation” taskId=”2”/>
5 <NeedTask taskName=”Redistribution” taskId=”3”>
6 <ParamTask serverIp=”127.0.0.1”/>
7 </NeedTask>
8 </TaskConfig>

Listing 1: The XML task configuration file of the

furniture planning application.

sound assets. It can be edited separately, for instance

in a game engine editor, or loaded with an X3D file

depending on the implementation of the models used.

The tasks and the virtual environment are the static

representation of the application. This representation

is independent of the context of use encountered at

runtime. In D3PART, the concrete implementation de-

pends on application components that are deployed to

achieve each high level task. Indeed, as shown in Figure

2 each task exposes a list of compatible application com-

ponents that can be deployed to achieve it. These lists

are also edited in an XML configuration file. To develop

these components we also use the model presented in

[21], a model for developing concrete application com-

ponents independently from any 3D framework or 3D

devices. An application component can correspond to

an interaction technique,3D widget, a visual effect, etc.

The proposed model for the creation of these compo-

nents is a modification of PAC [10] and ARCH [1] mod-

els. This model is shown in Figure 2 and an example

of a component is given in Figure 5. It corresponds to

Application description 

Tasks Application 
Components 

Comp 
1 

Comp 
2 

Comp 
3 

Platform 
description 

Device 
1 

Device 
2 

Device 
3 

- Are chosen     
according to  
- Work with  

Interact with 

Virtual  
Environment 

Virtual  
Environment 

Are 
automatically 

associated 
with 

Runtime on a single platform 

Loaded 

Task  
1 

Task  
2 

Task  
3 

Fig. 4: The description of an application and its execu-

tion on a single platform that we presented in [22].

the application component of a 3D-ray based interac-

tion technique for the selection and manipulation task.

As shown, an application component is divided into five

facets. These facets decouple its different features:

– The Abstraction: it describes the semantics of the

component and the function it can perform,

– The rendering presentation facet is the only facet

depending on a 3D framework. It handles graphics

output and physics. In our case, in the examples

given, these facets are developed with Unity3D2. For

a given application component, this facet can also

define its representation in the virtual world. For

2 https://www.unity3d.com/
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3D Ray PAC Agent 

3D Ray 
Abstraction 

3D Ray 
Rendering 

Presentation 

3D Ray 
Logical 
Driver 

3D Ray 
Control 

3D Ray  
Supervision Control 

Selected from 

Driver  
« 6-Dof » 

Driver  
« GamePad » 

Driver  
« Mouse » 

Compatible with 

Presentation 
Unity3D 

Presentation  
Unreal 

Presentation 
Ogre3D 

Logical drivers 

Rendering presentations 

Fig. 5: One example of application component given in

[21]. The figure represents the application component

of a 3D ray-based interaction technique.

instance, the 3D aspect of a widget will be defined

in this facet.

– The logical driver handles input and output devices

management. Its main use is for the development of

interaction techniques. It implements the way the

interaction technique is controlled according to a

set of abstract interaction devices. In this facet, the

developer describes all required input and output

units according to a set of parameters taken from

the device model.

– the Control: it ensures the consistency between the

rendering presentation, the logical driver and the

abstraction.

– the Supervision Control: it receives the context mod-

ifications at runtime and then is able to determine if

it is still possible to use a particular logical driver. It

also contains all the types that can be instantiated

as a logical driver or rendering presentation facet for

the current application component.

As detailed in Figure 5, this technique has multiple

compatible logical drivers in order to be possibly driven

by different kinds of devices such as a 6-Dof tracker,

a mouse or a gamepad. Similarly, multiple rendering

presentations can be developed to make the technique

available in many 3D frameworks. For the same selec-

tion and manipulation task, we could also use a 2D cur-

sor for selecting and moving the objects on the screen

plane. Different logical drivers can control this tech-

nique based on devices such as a mouse and a multi-

touch screen. Other examples with more details are pro-

vided in [21].

4 Deployment of 3DUI’s in D3PART

4.1 Adaptation Process

In the previous Section we described the static repre-

sentation of an application implemented with D3PART.

In this Section we describe the adaptation process in-

cluded in D3PART that uses this representation in or-

der to dynamically adapt the application at runtime on

a single platform. At runtime, as detailed in Figure 4

high level tasks are automatically associated with con-

crete application components according to the encoun-

tered context of use (the devices connected to the plat-

forms) in order interact with the virtual environment.

For these components, the rendering presentation and

the logical driver facets are also chosen according to

the context of use. The control and abstraction facets

do not depend on this context. The association is per-

formed with an automatic adaptation process that we

included in D3PART on top of the device and task mod-

els as shown in Figure 3 in order to support dynamic

recasting. The association is made with a scoring sys-

tem that takes into account the platform capabilities

and the list of compatible components exposed by each

task. Its goal is to maximize the usability of the appli-

cation. We won’t give a full description of this scoring

mechanism because it is not in the scope of this paper.

The association process is performed at each context

change in order to detect any no longer usable applica-

tion components or more adapted ones. The association

process that we propose can be described as follows:

1. A context modification is detected. For example, it

can be the connection of a new device or the addi-

tion of a task. It can also be the disconnection of a

device or the suppression of a task.

2. For each deployed application component, we check

if the association with the current logical driver is

still possible in the current context of use. This asso-

ciation is still possible if the devices that it uses are

still plugged in and available. If not, the application

component is destroyed and the associated task is

classified as ”not in progress”.

3. For each task classified as ”not in progress”, we cre-

ate a list of all possible triplets (application com-

ponent, logical driver, rendering presentation) that

can achieve the given task. A triplet is possibly in-

stantiable if device units needed by the logical driver

can be found in the list of connected devices and if

they are available. The rendering presentations that

do not correspond to the current used 3D framework

are omitted. A compatibility score is attributed to

each triplet. The one with the best score is deployed.

The devices units, associated with the logical driver,
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are set as not available. The task is classified as ”in

progress”.

4. For each task ”in progress” that has not been pro-

cessed in the previous step, we check if we can find

a triplet more adapted than the current one. This

optimization is not performed at the same time as

the previous step. Indeed, the priority is given to the

association of application components to the tasks

classified as ”not in progress”. To perform this opti-

mization, we create a list with all triplets that get a

better score than the current one. If the list is empty,

the current one is still the most adapted. Conversely,

we destroy the current application component and

we deploy the new best choice.

So, this adaptation process supports the dynamic re-

casting of the application and always ensures its opti-

mal usability whatever the context of use. It will make

it possible for the application to handle the different

context changes encountered during the redistribution

process presented in Section 4.2.

4.2 Redistribution Process

With the plasticity models and the dynamic recasting

mechanism introduced in the previous section, a de-

veloper can create an application that can be adapted

to the capabilities of a wide variety of platforms. As

shown in Figure 3 and described in [22] D3PART also

includes a redistribution process that makes the inte-

gration of redistribution capacities totally transparent

and automatic for the developer. The process consists

of distributing the high level tasks and the virtual envi-

ronment across the different dimensions: platform, dis-

play and user. The developer’s work is to create high

level tasks, and implement the compatible application

components with the help of the models from [21], de-

scribed in the previous section. With the implementa-

tion of multiple compatible components for each task

and multiple logical drivers, which use different kinds

of devices, for each component; the developer ensures

that his application will be usable on a wide variety of

platforms.

We added a built-in high level task and its corre-

sponding application component in order to allow any

developer to add redistribution capability to his appli-

cation. The application component for redistribution is

also defined with the extension of the PAC and ARCH

models described in Section 3. No logical driver is de-

fined as no specific interaction device is needed by this

component. The abstraction facet contains the redistri-

bution logic and the rendering presentation facet con-

tains the parts that are dependent on the target 3D
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Fig. 6: With D3PART, the redistribution process is per-

formed in four steps as shown in [22]. First, the differ-

ent platforms connect to the redistribution server. An

empty application runs on these distant platforms. It

only contains the redistribution task. Then, the user

initiates a new distribution of the system with the meta-

user interface. Here he chooses to replicate the task 2

and to migrate the task 3 to a second platform. For

these two tasks, thanks to the dynamic recasting mech-

anism described in Section 4.1, compatible application

components are automatically deployed on the second

platform that fits its capabilities. The third step con-

sists in replicating the VE from the first platform to the

second one. It includes 3D meshes, their materials, and

sound assets. With this step, we transmit the current

state of the application in order to keep it consistent on

the different platforms. Then in the last step, we main-

tain this consistency during the execution of the appli-

cation. Indeed, the redistribution server ensures state

synchronization between the two platforms while the

application is running. For now, the 3D objects trans-

form and the tasks events are synchronized.

framework. Regarding the process, redistribution needs

a connection mechanism between the different platforms.

This is needed for platform registration and state syn-

chronization. To do so, we use a client/server archi-

tecture to which the different platforms can register.

Once registered, these platforms are available for the

redistribution process. For now, this feature is imple-

mented with the network capabilities of the target 3D

framework. Therefore, it is integrated into the render-

ing presentation facet. We chose this solution in order
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to rapidly create prototypes. However, as future work,

this mechanism could become independent of the 3D

framework and implemented in the abstraction facet.

Our implementation does not show apparent latency

but being independent from the 3D framework would

allow us to optimize the network load. As proposed in

the model-based approach introduced by Melchior et

al. [28], this component implements an integrated user

interface for platform registration and for the control

of the redistribution process: the meta-user interface.

In our case, the redistribution is performed at runtime

and is user-initiated. Indeed, the meta-user interface is

proposed for the end-user of the application. The in-

terface can be shown and hidden at runtime with a

graphical button or a device button depending on the

context of use. The redistribution process is then per-

formed in four different steps as proposed in [22], and

shown in Figure 6.

The first step consists in connecting to the redis-

tribution server. The IP address of the server can be

given in the meta-user interface, or the XML task con-

figuration file, as shown in listing 1. This step must

be performed on the platform where the application is

running and on each platform that must be available

for redistribution. An empty application runs on these

distant platforms. It contains the framework that can

run an application developed with the D3PART model.

The only task defined as ”needed” on these distant plat-

forms is the redistribution one. Therefore, the corre-

sponding application component is deployed on these

platforms.

The second step consists in configuring the desired

redistribution with the meta-user interface. First, the

user chooses the platform on which the application will

be redistributed from a list of available ones. These

available platforms are the ones that have registered

to the redistribution server. When a new platform reg-

isters, it is automatically added to this list. In our case,

the basis of the redistribution process is made on the

platform dimension. However, as each platform may

manage another display and may be used by another

person, user and display dimensions can also be tar-

geted. Then, the user configures the high level tasks

distribution across the two platforms. As shown in Fig-

ure 7: multiple choices are given to the user in the menu:

– Full migration: all tasks migrate. Each platform runs

an independent version of the application. It can be

performed when the user wants to switch to another

platform.

– Partial migration: the user chooses which task(s)

will migrate to the distant platform. The applica-

tion is distributed and so shared between the two

platforms. It can be performed to combine different

platforms.

– Partial replication: the user replicates some tasks

to the distant platform. He will be able to perform

these tasks on the two platforms within the same

shared application. In the same way, it can be used

to combine multiple platforms.

– Full replication: all tasks are replicated and can be

performed on different platforms in the same shared

application. This kind of redistribution can be used

to start a collaboration with a user on a different

platform.

Dependent tasks must be redistributed together. There-

fore, they are grouped into the menu as shown in Figure

7. In this figure the furniture control task is dependent

to the selection and manipulation task. In the meta-user

interface we associate a warning icon to a high level task

if it cannot be performed on the distant platform. To do

so, we ask the distant platform if an application com-

ponent can be deployed for each task according to the

platform capabilities. The goal of this feature is to warn

the end user that the application can be degraded if this

task is redistributed. On the other platform, thanks to

the adaptation process included in D3PART, described

in the previous section, an application component is au-

tomatically associated with each redistributed task. As

said, these components are chosen in order to fit the

platform capabilities in terms of device availability.

When the redistribution of tasks has been done, the

third step consists in fully copying the virtual environ-

ment to the distant platform. The goal is to maintain

the application state during the redistribution to the

target platform. This virtual environment includes 3D
meshes, their materials, and sound assets. To perform

this copy, we consider three options:

– Assets are known in the distant platform. Only the

names are transmitted.

– Assets are not known but can be downloaded from

a distant server. In this case, URLs are provided.

– Assets are not known. For instance in a case of a

3D painting application, the user is editing new 3D

content. Here, assets can be streamed over the net-

work.

For now, our implementation only includes the first one.

The last step consists in synchronizing the different

platforms. As for CVE’s, a synchronization is performed

in order to keep a consistent state between the instances

of the same application, running on different platforms.

In the case of a full migration, no synchronization is

performed because each platform runs an independent

version. The synchronization is performed as long as

all platforms are connected to the redistribution server.
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10 Jérémy Lacoche et al.

Fig. 7: The meta-user interface is an integrated user in-

terface designed to control the redistribution process.

Here, the user chooses the high level tasks that will be

redistributed to the distant platform. In this example,

also presented in [22], three tasks can be redistributed:

navigation, selection/manipulation and furniture con-

trol. The last two ones are dependent. The user selects

a partial migration, only the navigation task will be re-

distributed. The other two tasks remain on his current

platform.

Two kinds of information are synchronized between the

different instances of the application. First, the 3D ob-

ject’s transforms are synchronized in order to maintain

consistency between the different 3D worlds. In the case

of collaboration, to handle concurrency when moving

objects, the priority to move an object is given to the

first user who grabs it. Then, other users cannot grab

and move this object until the first user has released it.

Other mechanisms could be integrated as well. As de-

tailed by Margery et al. [24], it could also be possible to

let the user simultaneously modify independent param-

eters of a same object, or to let them simultaneously

modify co-dependent parameters of a same object. To

do so, we would have to use a more up-to-date synchro-

nization engine, such as the #FIVE architecture [6].

To continue, the events of high level tasks are also syn-

chronized. The events constitute the logical implemen-

tation of the application and have to be synchronously

performed on each application instance. To do so, we

use an observer design pattern. The redistribution ap-

plication component observes all task events. When one

event is triggered, it is transmitted with its correspond-

ing parameters through the network as text messages

in order to be triggered distantly. An example of an

event given in the example application in Section 5 is

the addition of a 3D object into the scene.

5 Examples of Redistribution

In order to illustrate the redistribution possibilities of-

fered by D3PART, we present different use cases that

are based on a furniture planning application. This ap-

plication consists of laying-out an empty room with

furniture. Its goal is to help people to plan the use of

particular premises. At the task level, the application

is composed of three tasks. First, a navigation task is

needed in order to navigate within the room. Second,

we need an application control task (named furniture

control) for adding furniture into the room with the

help of a menu. Adding an object is defined as an event

into the task. Last, we need a selection and manipu-

lation task for moving furniture, and for menu selec-

tions. These two last tasks are defined as dependent: in-

deed, selection possibilities are needed when interacting

with the menu. In these different cases we use two plat-

forms. First, we use a mobile device which is an Android

tablet. Then, we use an immersive system, a CAVE [11]

with active stereo and with dimensions: 9.6m length ×
3.1m height × 3.0m width. MiddleVR is used to handle

the different screens and clustering. Even if they are not

present in these examples, other platforms could also

be considered such as Head-Mounted-Displays (HMD)

and desktop environments. In the different examples, all

systems runs approximately at 25 fps. The difference in

frame rates does not impact the synchronization.

As described in section 4.2, the redistribution pro-

cess starts with the connection of the tablet and the

CAVE system to the redistribution server. For all the

presented cases, the application is first launched on a

tablet. According to the automatic adaptation process

described in Section 4.1, one concrete application com-

ponent is deployed for each needed task. Each compo-

nent is chosen in order to fit the platform capabilities.

First, for the furniture control task, a 2D menu is in-

stantiated with the list of furniture that can be added.

According to its implementation the menu can be hid-

den if needed. For the manipulation task, an interaction

technique based on the multi-touch capabilities of the

tablet is deployed. With this technique the user can

translate the objects onto the floor with one finger and

rotate them around the up axis with two fingers. For the

navigation task, a pan and zoom navigation technique

is deployed. Here, this component places the camera to

have a plan view of the scene on the tablet as shown in

Figure 8a. With the multi-touch capabilities, the user

can translate the point of view and can zoom within

the scene while keeping the plan view of the room.
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(a) (b)

Fig. 8: The redistributed World-In-Miniature: an example of redistribution that demonstrates how it can be used

for platform combination. Here the redistribution is performed between an immersive multi-display system (a

CAVE) and a tablet. (a) Interaction techniques for the selection/manipulation task and the application control

are deployed on the tablet. On this platform the user has a plan view of the virtual world at a reduced scale

with 2D interaction capabilities. (b) An interaction technique for the navigation task is deployed in the CAVE.

Therefore, at the same time, the user is immersed and can navigate at scale of one in the same shared virtual

world in a CAVE.

5.1 Redistribution for platform switching

Today, users are more frequently confronted with sit-

uations where they have to move from one platform

to another [12]. This is one scenario possible for our

furniture planning application. Indeed, the application

may be used on a wide variety of different platforms

such as desktop environments, smartphones, immersive

systems, touch tables, etc. All platforms do not offer

the same possibilities and therefore some can be more

adapted to specific needs. Therefore we want to ensure

for the end user seamless transitions between these dif-

ferent platforms. This example demonstrates how the

redistribution capabilities of our solution can ensure

usability continuity during these changes of hardware

environment. In this scenario, the redistribution is per-

formed on the platform and the display dimensions and

at the application level.

First, the user is interacting on the tablet at his

desk. With this tablet, he can also work while being

mobile. All the tasks are available, as corresponding

application components are deployed, as explained in

the previous section. However, the tablet only offers a

2D plan view of the result and the user would like to

have a 3D view at a scale of one, in order to better

perceive the volumes. To do so, an immersive system is

available: a CAVE. The meta-user interface allows the

user to perform a full migration of his application to

this platform. The application totally migrates to the

CAVE, all tasks and all contents, nothing remains on

the tablet. The user can now be immersed at scale of

one and continue to fine-tune the layout of the room.

Usability continuity is ensured thanks to the included

adaptation process. The application is adapted to the

target platform. Indeed, as described in Section 4.1, ap-

plication components are chosen according to the new

platform capabilities. In that case, a 3D ray-based ma-

nipulation technique is deployed. The position and the

rotation of the ray are set with the tracked flystick and

its buttons are used for object selections and to change

the ray length. For the navigation task, a walking nav-

igation metaphor is deployed. The tracked head posi-

tion, combined with the flystick joystick, are used to

move the point of view. For the furniture control task,

a 3D movable menu is deployed. The 3D ray is used to

select the menu items, to move it and also to hide and

show it.

When the user has finished his work, he may want

to continue his work while mobile. Therefore, the meta-

user interface is also available in the CAVE and so the

inverse process is also possible to migrate back to the

tablet. For example, he would show the result to a col-

league who could use another kind of VR setup, such

as an HMD.

5.2 Redistribution for platforms combination

This example demonstrates how redistribution can be

used in order to combine different platforms. This is the

example we gave in [22]. In that case, redistribution is

performed on the display and platform dimensions, and
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at the domain concept level. Our example is based on

the World-In-Miniature technique [32], which provides

the user with a handheld model of the virtual environ-

ment at a smaller scale. It can be used for manipulating

virtual objects, or for navigation. This miniature repre-

sentation is directly rendered in the virtual world. Here,

we propose to deploy this technique onto a tablet in or-

der to control the furniture planning application in a

CAVE system. The user will be able to interact with

the tablet while being immersed at a scale of one in the

CAVE. This use case can be useful for novice users who

are not confident with 3D interactions and may pre-

fer more common multi-touch interactions. Indeed, the

user can interact with the usual and easy-to-use multi-

touch capacities of the tablet, while being immersed at

the same time in the 3D world with the CAVE.

The user chooses a partial migration to the CAVE,

only the navigation task migrates to the distant plat-

form. Other tasks remain on the tablet. This choice is

made with the meta-user-interface, as shown in Fig-

ure 7. As described in Section 5.1, an interaction tech-

nique, based on a walking metaphor controlled with

head tracking and a joystick, is deployed in the CAVE

for this navigation task. It places the point of view in-

side the room in order to immerse the user in it. At this

time the application is distributed on two platforms and

displays. First, as shown in Figure 8a, a redistributed

World-In-Miniature is on the tablet. The virtual world

is displayed at a lower scale with a plan view. More-

over, as said in Section 5.1, a 2D menu for furniture

control and a multi-touch interaction for selection and

manipulation are deployed. Second, as shown in Fig-

ure 8b, at the same time the user is immersed at scale

of one into the room in the CAVE and can navigate

within it. Our transparent synchronization mechanism

ensures the consistency between the two parts of the

application. Indeed, the synchronization of the 6 DoF

transforms of the objects between the two platforms

ensures consistency when the user moves an object on

the tablet. As well, the command for adding an object

into the room is also synchronized. Therefore, when an

object is added with the 2D menu on the tablet, the

same object is also added in the CAVE.

5.3 Redistribution for collaboration

In this example, we demonstrate that our redistribu-

tion process can be used in order to create a Collabora-

tive Virtual Environment (CVE). Here, redistribution

is performed on the user, platform and display dimen-

sions and at the application level. Indeed, the replica-

tion capabilities included in our solution allow any user

to start at any time a collaboration with another person

Fig. 9: An example of redistribution on the user dimen-

sion. Two users are collaborating on the same VE with

two different platforms.

using a different platform. With this feature any appli-

cation developed with the D3PART model, including

the furniture planning one, automatically benefits from

collaboration capacities.

In this scenario, the first user has performed a first

configuration of the empty room with his tablet and

now wants to share his room configuration and wants

to finish it with another user. Therefore, he performs

a full replication from the tablet to the second user

platform: the CAVE. All tasks are replicated: naviga-

tion, selection and manipulation, and furniture control.

Therefore, the two users now have the same interac-

tion capabilities. The plasticity property handled by

the system ensures usability continuity between the two

platforms, and the interaction capabilities remain the

same. Indeed, the application components deployed for

these different tasks are chosen according to each plat-
form’s capabilities with the adaptation process included

in D3PART. They are the same as for the two scenar-

ios described in the two previous sections. In this case,

the collaboration is asymmetric as the two people are

using different platforms and different interaction tech-

niques, as shown in Figure 9. A collaboration with two

similar systems could also be performed. Here, the col-

laboration is co-located, both users are situated in the

same place and can directly communicate about the re-

sult. However, the collaboration could also be distant.

Indeed, our architecture makes it possible to have dis-

tant connections to the redistribution server. With the

virtual environment replication and the synchroniza-

tion performed by the redistribution process, a high

consistency between the two instances of the applica-

tion is ensured. Both users are interacting in the same

shared virtual environment. In order to provide aware-

ness about the activity of the distant user, for now, only

the view frustum of each user is represented in the vir-

tual environment. Future work could include different
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awareness mechanisms, for instance, trying to make the

distant user perceive his current context of use.

6 Discussion and Perspectives

According to the classification given in Section 2, D3PART

can support the creation of distributed user interfaces

on the platform, user and display dimensions. Dynamic

redistribution is supported at the application, workspace

and domain concept levels. The examples presented in

Section 5 allows us to demonstrate that these dimen-

sions and levels can be targeted with D3PART. Redis-

tribution at the pixel level is not handled by our so-

lution and could be a perspective of work to complete

in 3DPART. In that case, within D3PART, it would

be needed to include a method to synchronize multiple

stereoscopic displays and a system for placing cameras

in order to ensure view continuity between these dis-

plays.

In D3PART, the controller of the redistribution is

the end-user with the meta-user interface. As a per-

spective of our work, our goal would be to also obtain

system-initiated redistribution or mixed-initiated redis-

tribution. For instance, this kind of approach could con-

sist in finding the right platform, or the right user for

each task according to the platforms capabilities and

the user preferences. Our scoring system could be used

to do so, for example, by applying no longer locally,

but instead, by applying it on all available platforms.

Indeed, for each task we could compare the scores ob-

tained by the applications components on each of the

available platforms and instantiate the best ones. In

that case we could directly perform the redistribution

and we would obtain a system-initiated redistribution.

With the same mechanism, we could also assist the user

in the meta-user interface by telling him which task

would be adapted to each platform, here the redistri-

bution would be mixed-initiated.

D3PART is totally designed to handle distributed

3DUI’s as it includes solutions for 3D interactions and

for the synchronization of 3D worlds. For now, the dy-

namic recasting capability included in D3PART, fo-

cuses on adapting the interaction techniques to the avail-

able devices. As future work, we also want to consider

level of details during the virtual environment replica-

tion. Indeed, as each platform may not have all the

same computational capabilities, the rendering of the

assets could be handled differently. In some cases, it

would be necessary to consider adaptive assets. For in-

stance, a very complex 3D model cannot be rendered

in the same way on a PC with multiple GPUs as on a

mobile device. To solve this issue, we first plan to in-

tegrate information about the computing power of the

platforms into the device model. Second, we plan to give

the possibility to parametrize the choice of an asset ac-

cording to the computation capabilities of the target

platform. During the virtual environment replication

process, only the assets that correspond to the distant

platform computation capabilities would be transmit-

ted.

Regarding the literature review on plasticity pre-

sented by Lacoche et al. [20], the plasticity property

is defined on four dimensions: the adaptation sources,

the adaptation targets, the adaptation controller and

the adaptation time. D3PART can cover most of the

design space problem defined in this previous work. In-

deed, with our model adaptations can target the con-

tent presentation, the interaction techniques and the

system distribution. These adaptations can occur at

runtime and between sessions while they can be con-

trolled by the system (recasting) and by the end-user

(recasting and redistribution). However, for now, all the

cited adaptation sources cannot be targeted. For in-

stance, some future work are needed in order to include

in D3PART the users characteristics and preferences.

To finisg, two aspects of D3PART must be evalu-

ated if we really want to demonstrate its interest and

efficiency. First, we plan to evaluate D3PART with de-

velopers. We want to verify if our solution is easy to use

and efficient for the development of 3DUI’s with redis-

tribution capabilities. To do so, feedback from develop-

ers has to be collected during the creation of such an

application with D3PART. Second, we also plan evalu-

ate the system to assess the interest of redistributable

3DUI’s, their usability and their acceptability for end

users.

7 Conclusion

In this paper we introduce D3PART (Dynamic 3D Plas-

tic And Redistribuable Technology), a new model to

handle plasticity and redistribution for 3DUI’s. Based

on previous work on plasticity for 3DUI’s, our solu-

tion eases the development of 3DUI’s interfaces with

redistribution capabilities. Our approach is based on

a client-server architecture. Redistribution can be per-

formed at runtime by the user with an integrated user

interface, namely the meta-user interface. Dynamic re-

casting is handled by D3PART, with the included adap-

tation process, and ensures usability continuity what-

ever the new distribution chosen. The distributed appli-

cation will fit each of the target platform’s properties.

With this approach, any application developed with the

D3PART model automatically benefits from redistribu-

tion capabilities.
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To illustrate these possibilities, we have presented

three examples of redistribution on different dimensions

and at different levels for a furniture planning applica-

tion. These examples show how redistribution can be

used to switch from a mobile platform to an immer-

sive one, to combine these two platforms, and finally to

create a collaborative context of use between them.
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