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ABSTRACT. The paper aims to illustrate the relevant use of infrared thermography and energy 

based approaches to study the plastic behavior and the crack initiation under plain fretting 

loadings. A well known 35Ni Cr Mo 16 low-alloyed steel was studied under various plain fretting 

partial slip conditions. The experimental results showed that the proposed 2D image processing 

method is able to estimate thermoelastic amplitude fields in a good agreement with the theory of 

linear thermoelasticity, and mean intrinsic dissipation per cycle fields reflecting localized 

microplastic deformation. The maximal local evolution of the intrinsic dissipation as function of the 

shear stress amplitude, underlined the presence of a non-dissipative regime, where the specimen 

mainly undergoes elastic deformation and a dissipative regime where plastic deformation take 

place. The transition between these two regimes was then coupled with the local elastic shakedown 

boundary.   
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NOMENCLATURE 

 

R Cylinder radius 

P Static normal force 

p(x) Hertz contact pressure distribution 

pmax Maximal Hertzian pressure 

a Hertzian contact half size 

am Measured contact half size 

cm Measured stick zone half size 

b Projected crack length 

 Cyclic relative displacement 

 Cyclic relative displacement amplitude 

Q Macroscopic  tangential force 

Q* Macroscopic  tangential force amplitude 

q(x) Classical shear stress distribution 
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qmax Maximal value of q(x) reach during a cycle 

E Young modulus 

u Ultimate stress 

y0.2 Yield stress at 0.2% 

 Poisson ratio 

T Absolute temperature 

 Small strain tensor 

j
The components of a vector  of n - 1 internal 

variables describing the thermodynamic state 

fa Camera frame rate 

  Mass density 

C Specific heat 

 Helmholtz free energy 

 Thermal conductivity tensor 

k Thermal conductivity constant 

d1 Intrinsic dissipation 

sthe Thermomechanical coupling sources 

sic Internal coupling sources 

rext Volumetric heat sources of external origins 

T0 System equilibrium temperature 

 Temperature variations 

(x,y,t) Specimen surface temperature variations 

D

th

2 

Time constant representing heat loss by convection 

and radiation between the specimen surfaces and the 

surroundings 

h Heat transfer coefficient 

a Stress amplitude tensor 

f(t) Periodic time function 

 Thermal expansion coefficient 

wthe Thermoelastic energy 

Γ Cycle period 

N Number of cycles  

fL Loading frequency 

fa Camera frame rate  

fit(x,y,t) Temperature approximation function 

P Polynomials in x and y 

Nx Smoothing window half-size according to x  direction 

Ny Smoothing window half-size according to x direction 

Nt Smoothing window half-size according to time, t  

x Spatial resolution 

Cr Crossland equivalent stress 

aJ ,2  
Square root of the maximum amplitude of the second 

stress invariant 

S Deviatoric stress 
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PH,max 
Maximum value of the hydrostatic pressure throughout 

the history of the stress 

d Alternating shear fatigue limit 

d Alternating bending fatigue limit 

qloc Cyclic microplasticity threshold 

1 INTRODUCTION 

 

Fretting, defined as oscillating contacts, of very small amplitudes can be considered as the worst 

case scenario introducing strong and heterogeneous stress gradients states in structures. Fretting 

damage has been recognized as a major problem in several industrial applications (helicopters, 

aircraft, trains, ships...) [1]–[3] and continue to require attention in a variety of important studies.  

Under partial slip conditions, a part of the contact zone remains stuck and the fretting damage is 

mainly characterized by the initiation of cracks. In order to describe this damaging process, a 

synthetic form of a fretting mapping is used [4]. This map defines two domains: the no cracks 

nucleated and the cracks nucleated. Experimentally, these maps are obtained by destructive methods 

[5] which are time and material consuming and give scattered results.  

Theoretically, current approaches to predicting crack initiation are based on the calculation of the 

subsurface stress field from an elastic analysis. Then applying multiaxial fatigue criteria coupled 

with non-local approaches to account for the severe stress gradient states imposed by the contact 

[3], [6], [7]. However, plasticity plays an important role in the damage process, specially at the 

early stages of crack growth [8]–[10]. Still the mechanics of plastic deformation near the contact 

interface is poorly understood. 

Recently, there have been attempts to include plasticity in contact analysis. For example, authors 

like Ambrico and Begley in [11][12] and Alquezar et. al in [13] proposed computed Shakedown 

maps and cyclic plastic strain behavior maps based on the evolution of the material elasto-plastic 

behavior. These works highlights the complexity of the studied phenomena and maps out major regions 

of response behavior. 

Because of the lake of experimental data in support of the wide range of contact fatigue life models, 

the present paper underline the relevant use of thermographic measurement to measure the onset of 

local plasticity accompanying fretting.  

Generally, fretting is accompanied with temperature variations that may present low order of 

magnitudes and are often neglected by scientists. Nevertheless, no matter how small these 

variations are, they may correspond to amounts of heat that cannot be neglected in the energy 

balance.  

The nature of the heat sources depends on the material behavior. They may represent an intrinsic 

dissipation of energy (frictional heating, plasticity, viscosity, damage, etc.), or result from 

thermomechanical coupling mechanisms (thermoelasticity, solid-solid phase transition, etc.). These 

experimental facts, are, of great interest since they characterize the irreversibility of deformation 

mechanisms and reveals the thermal sensitivity of the material. The importance of such energy 

approach is in its ability to unify microscopic and macroscopic data to facilitate the detection of 

damage [14]–[17].  

Nevertheless, the exact mechanism of frictional heating and its origins is still considered unsolved. 

Some authors like Landman in [18], consider that these processes occurs by atomic-scale 

interactions within the top several atomic layers of the contacting surfaces, while others, like 
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Rigney and Hirth in [19], believes that most energy dissipation occurs by plastic deformation 

processes. The issue of frictional heating was discussed in one of our previous works [20], where 

frictional heating in the sliding areas was modeled under partial slip conditions and found to be 

negligible compared to what was measured experimentally. The paper then introduce a new 

empirical methodology for rapid determination of crack nucleation thresholds under fretting 

loadings.  

In light of these encouraging results, in this paper, a quantitative calorimetric analysis of the fretting 

damage is proposed. The heat sources are derived from thermal images using a local expression of 

the heat diffusion equation. A specific 2D image processing technique is then introduced to 

separately estimate the dissipated energy associated with irreversible microstructural 

transformations and the thermoelastic coupling induced by the reversible thermal sensitivity of the 

material. The maximal local evolution of the intrinsic dissipation as function of the maximal shear 

stress is then coupled with the onset of micro-plastic phenomena responsible of the fretting damage. 

Finally, these results were used to build the elastic shakedown boundary. 

2 MATERIALS  

 

The present study was performed on a 35Ni Cr Mo 16 low-alloyed steel in a cylinder on flat contact 

configuration. The 35Ni Cr Mo 16 is a high strength, low alloy vacuum arc melted steel that takes 

its name from French industry designation. The combination of high strength, toughness and 

superior cleanliness available with the 35Ni Cr Mo 16 steel identifies it as a good candidate for 

many industrial applications. Cylindrical pads are made from a heat treated steel alloy 100 Cr 6, 

presenting same elastic properties as the 35Ni Cr Mo 16 but higher mechanical strength to ensure 

that cracks initiate only in flat pads. The mechanical properties of the studied materials are 

presented in Table 1.  

Material E (MPa) v u (MPa) y0.2% (MPa) 

35Ni Cr Mo 16 200 0.3 1130 810 

100 Cr 6 195 0.3 1500 813 

Table 1: Mechanical properties of the studied materials. 

 

The 35Ni Cr Mo 16 steel used for this work, is well characterized by our research team, and, an 

important data base on the cracking conditions already exist [21]. It also present good and 

homogeneous thermal properties. The thermo-physical data commonly used for steel materials, and 

used for this work, are presented in Table 2.    

 

 3mkg


 

 11   CKgJ

C p
 

 11   CmW

k
 

 1610   K


 

7800  460  60  1  

Table 2: Thermo-physical properties commonly used for steels. 

 

The different experimental conditions are illustrated in Table 3.  
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R (mm) pmax (MPa) 

80 1000 

80 800 

160 600 

160 400 

Table 3: Experimental conditions: R cylinder radias and pmax Hertzian maximum contact pressure. 

3 EXPERIMENTAL SET-UP 

 

Tests were carried out using an experimental set-up specially designed at our laboratory and 

mounted on a servo-hydraulic machine. This set-up includes two actuators: one for the normal load 

and another for the cyclic tangential displacement [4]. 

A fretting experiment consists in applying a static normal force P to the counter body (Figure 1 (a)) 

causing an elliptic pressure distribution, p(x), over the contact zone with a maximal value, pmax 

(Figure 2  (b)). A cyclic relative displacement , is then imposed (Figure 1 (a)) leading to a 

macroscopic tangential force Q and a classical shear stress over the surface, q(x), which exhibits its 

maximum value, qmax at the stick zone limit (Figure 2 (b)). P, Q and  are recorded during the tests 

and the Q* loop are plotted and monitored to maintain a partial slip contact conditions (Figure 2 

(a)). 

 
Figure 1: (a) Schematic of the fretting testing device and (b) illustration of the Infrared camera 

facing the contact. 
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Figure 2: (a) Fretting cycle, (b) related shear, q(x), and pressure, p(x), distributions for a cylinder 

on flat contact configuration for Q = Q* [22]. 

The Infrared camera used in this study is a FLIR SC7600 MWIR 2.5-5µm. The focal length of the 

optical lens is 25 mm. This camera is equipped with an InSb 640x512 element detector. The 

maximal frame rate, fa, is 380Hz and the noise-equivalent temperature (NET) is lower than 25mK. 

In this study, the size of a pixel correspond to a zone of 95x95 µm². The camera lens axis is then 

kept fixed and held perpendicular to the lateral surface of the specimens (Figure 1 (b)), and 

specimens were painted with a black paint to increase their emissivity. The specimen emissivity 

was then measured using indirect measurement of the specimen surface reflection [23] and a mean 

value of 0.96 was found.   

The IR camera is calibrated before and after each experiment using a pixel-to-pixel calibration as in 

[24]. The camera spatial and temporal noise were characterized using a laboratory blackbody (SR 

800R by CI-system) with a surface temperature accuracy of +/- 0.006 °C for 0<T<50 °C and a 

thermal uniformity of +/- 0.015 °C.  

Temporal noise corresponds to the temporal evolution of one pixel observing a constant and 

uniform thermal scene from the blackbody. This noise was found Gaussian with an amplitude equal 

to 0.02 °C (in correlation with the constructor data sheet). 

Spatial noise corresponds to the amplitude of spatial fluctuations of a temperature field generated by 

a homogeneous thermal scene and averaged over about one hundred images. This noise was also 

found Gaussian with an amplitude equal to 0.19°C. 

The camera internal thermal drift was also controlled by observing the blackbody at a constant 

temperature and the time needed to reach a stable state was estimated to 2 hours.  

Finally, in order to minimize the possible environmental effects on the thermal fields and maintain 

stable thermal boundary conditions, the camera and the specimens were covered with an insulation 

box, and experiments were carried out at room temperature. A thermocouple was also used to 

monitor the ambient temperature. 

Vibrations and flexibility of the experimental device impose rigid body movement (rotation and 

translation) on the flat specimen. A marker tracking method was developed and used to eliminate 

these displacements as in [20] (Figure 3 (a)). This method detects markers using edge detection and 

basic morphology [25]. The different heat sources were then computed on a Zone Of Interest (ZOI) 

defined at the contact as in Figure 3 (b).  
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Figure 3: (a) IR image of a fretting contact showing the markers, (b) illustration of the ZOI. 

 

3.1 Temperature variations for constant loading parameters 

 

An example of temperature evolution (averaged over a ZOI equal to 30x140 pixels) during a 

fretting test with constant loading parameters is shown in Figure 4. It can be observed that, the 

thermal signal undergoes an overall thermal drift. Added to this thermal drift oscillatory variations 

of about 0.17 °C. The overall heat generation can be divided into two phases: an unsteady state, 

where the averaged temperature increase from the equilibrium temperature to reach a local 

maximum. And a steady state, where the averaged temperature reach a stabilized and constant value

sta .  

 
Figure 4: Temperature evolution for a fretting contact of R= 80 mm, pmax= 1000 MPa, qmax= 570 

MPa, fL= 1 Hz, fa= 100 Hz, a = 1.4 mm. 

4 THERMOMECHANICAL FRAMEWORK 

 

In this section, we present the theoretical framework leading to the local form of the heat diffusion 

equation required for the estimation of the different heat sources. This approach consist on 

considering a fretting test as a quasi-static process mechanically and thermodynamically. This 

means, from a mechanical point of view, the quantities related to the acceleration in the equation of 

motion are neglected. From a thermodynamic point of view, the quasi-static character allows the 

use of the concept of local state, which is an axiomatic concept of the Thermodynamics of 
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Irreversible Processes (TIP). It states that, at any point in time, the local thermodynamic quantities 

of a system vary in a quasi-thermostatic way despite the fact that the system is moving [26]. The 

TIP of near balance (or local state), provides a consistent and flexible framework to describe the 

behavior of materials. Its flexibility comes from the fact that one can choose a set of state variables 

to describe macroscopic responses of complex microstructural phenomena. The use of such 

framework with applications in materials modeling began to multiply in the 60s, readers interested 

in such approaches may refer to the works of Germain 1973 and 1974, Sidoroff 1975 and Chaboche 

1978 in [26]–[29]. 

 

Since we consider a local state approach, the deformation process can be considered to be quasi-

static in a thermodynamic sense. It means that any particle in the studied systemis considered as a 

sub-system at a thermodynamic equilibrium state. The equilibrium state of each element of 

materials or sub-system is then described using a set of n + 1 state variables. The choice of these 

state variables is dictated by the phenomena we seek to model and the precision with which we 

wish to describe them. We can distinguish two types of state variables: 

 The p, observable variables, which are T the absolute temperature and the small 

deformation tensor (under the assumption of small perturbations and small displacements). 

 The n + 1 - p additional variables, that in our case are represented by the (i)i∈{2,....,n} internal 

variables. These variables should have a physical sense, such as, plastic deformation p or e 

elastic deformation, isotropic or anisotropic damage, etc., all describing the state of the 

material.  

In the particular context of the generalized standard materials [30], the local heat diffusion equation 

can be written as follows by combining both first and second principles of thermodynamic : 

 

   1 the ic extCT divK K grad T d s s r       (1) 

with the mass density, ,TTC T   the specific heat,  the Helmholtz free energy, K the thermal 

conductivity tensor.  

 

The left-hand side of Equation (1) is a differential operator applied to the temperatur, T, while the 

right-hand side the different heat sources are grouped: the intrinsic dissipation 



















 









 .:1d , the thermoelastic coupling sources the , , :Ts T     , the internal 

coupling sources ic , , :Ts T     , and rext representing the volumetric heat sources of external 

origins.  

 

A series of hypothesis on the spatiotemporal evolutions of the sources and the temperature fields are 

formulated as follows [31] : 

 The mass density  and the specific heat C are material constants with no variations in time. 

 The material is considered as a thermally isotropic solid, meaning that the conductivity 

tensor can be replaced with the conductivity constant:  

      TkTgraddivkTgradKdiv 2.   (2) 
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 The convective derivative associated with the particular time derivative of the temperature 

are neglected because temperature gradients and the sliding velocity amplitudes are low:  

 
t

T

t

T
Tgrad

t

x

dt

txdT




























.

,

 
(3) 

 The term rext is considered time independent undergoing a linear isotropic Fourier's law: 

extrTk  0

2.  with T0 the system equilibrium temperature 

 Temperature variations induced by the fretting loading under partial slip conditions are low 

and have no influence on the microstructural state. In such context, the internal coupling is 

neglected (sic = 0) and the fatigue mechanisms are considered as purely dissipative. It is 

important to note, that even if we assumed that there is no coupling between temperature 

and microstructural variables ((i)i∈{2,....,n}), we did not specify the exact nature of these 

variables. This is why, dissipation measurements are essential in order to indentify and 

clarify the physical meaning of these variables.  

 

Under those assumptions the heat diffusion equation can be written with the following form: 

 

0

2

1

2 TksdTk
t

T
C the 



  (4) 

  

If we note , the temperature variations, Eq. (4) can be written:  

 

thesdk
t

C 



1

2


  (5) 

 

On the left hand side of the above equation a linear partial differential operators are applied to the 

temperature, while on the right hand side, the different heat sources are grouped. In order to 

estimate the heat sources from equation (5) one must, first, solve an inverse and ill-posed problem 

and second estimate the left-hand side member of the equation from discrete noisy data. To 

overcome these difficulties, a regularization method is proposed in the next section.   

4.1 Heat diffusion model resolution 

 

The 3D heat diffusion equation (5) makes a direct link between thermal and calorimetric quantities. 

The idea here is to determine the heat sources in the volume of a body from the measurement of the 

surface temperature of this body. This type of problem falls into the category of inverse problems 

where it is impossible to find a single solution without a prior information on the spatial distribution 

of the sources.  

One way to simplify this problem is to switch from a 3D to a 2D formulation of the heat diffusion 

model assuming that the distribution of the heat sources and consequently the temperature field are 

very close to the mean distribution over the sample thickness. However, the difficulty with such 

formulation is that the solution (the heat sources) is very sensitive to the measurement noise 

(experimental temperature fields). To overcome these difficulties a regularization method is 

proposed as follows : 
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By integrating Equation (5) over the sample thickness and assuming that the specimen surface 

temperature, (x,y,t), can be compared to a mean temperature over its thickness. the following 

equation can be obtained [31]: 

 

theD

th

sd
yxC

k

t
C 










































12

2

2

2

2






  (6) 

with 1, d and thes  are respectively, the temperature variations, the intrinsic dissipation and the 

thermoelastic coupling averaged through the material thickness. D

th

2  is a time constant representing 

heat loss by convection and radiation between the specimen front and back surfaces and the 

surroundings. It depends on the material, the specimen geometry and h, the heat transfer coefficient 

between the specimen and the surroundings. It is determined experimentally and defined as follows:  

h

CeD

th
2

2 
   (7) 

Note that the division by the term C allows to define for each type of source an equivalent heating 

rate in °C/s, corresponding to a monotonous and adiabatic heating process. This also facilitates 

comparison between the dissipative source and the thermoelastic coupling source. 

4.1.1 Thermoelastic coupling source 

 

For temperature variations T close to the thermal equilibrium T0 and in case of a fretting loading, 

considered as a non-proportional multiaxial fatigue loading, the thermoelastic source, is defined as 

follows: 













 trTsthe 0
 (8) 

where  is the thermal expansion coefficient.  

 

In this case, the components of the cyclic stress tensor can be written as follows:  

  )(tft ijamij ijij
   (9) 

with m,  the mean stress tensor, a, the stress amplitude tensor and fij(t) a periodic time function 

such as : 

)()( tftf ijij  , with Γ, the period and tduuf

t

t

ij 


,0)(  (10) 

 

In such conditions: 

 The thermoelastic source is phase shifted having the same frequency spectrum as the 

loading   

 The variation of the thermoelastic energy wthe vanishes at the end of each complete loading 

cycle: 
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0)()(
0

0

0

 


duufTdtsw iiathethe ii
 ,  (11) 

4.1.2 Dissipative source 

 

The dissipation is always positive. Its definition (


















 









 .:1d ), also suggest that 

the dissipated energy may be induced by both the strain rate 


  and 


 , which stands for the 

microstructural evolution.  

Lemaitre and Chaboche in [32], shows that for a viscous behavior the dissipated energy is 

proportional to 2

Lf , while for a plastic behavior it is proportional to Lf .  

 

In case of a fretting loading under partial slip conditions, the kinetics of microstructural degradation 

is slow for a small number of cycles and therefore, we consider a mean intrinsic dissipation per 

cycle 1

~
d , defined as follows: 





0

1

1

1

~
dtdfNd L

 (12) 

1

~
d  is a positive heat source with a spectrum limited to low frequencies.  

 

4.2 Heat sources determination 

 

The partial differential equation (6) and the boundary conditions being linear, it is possible to 

separately study the influence of each source on the temperature fields: 

dthe    (13) 

with the, the temperature pattern induced by sthe and d, the one induced by d1. 

 

The first step in the determination of the intensities of both heat sources, go through the estimation 

of the overall heat generation using a finite difference approximation of the temperature field (more 

details are given in the next section). Only stabilized thermal fields are considered. For the 

amplitude of the thermoelastic source, it is possible to extract from the thermal signal, the periodic 

part having the same frequency as the loading frequency and introduce it into equation (6). The 

second step, consist on a time-integration of the overall heat source in order to get the overall 

involved energy. With the thermoelestic energy, wthe, vanishing at the end of each complete cycle, it 

is possible then to determine the mean intrinsic dissipation per cycle.  

5 2D IMAGE PROCESSING TECHNIQUE 

 

As we saw in the above section, the computation of the heat sources implies different derivatives 

that have to be locally estimated using discrete and noisy thermal data. To reduce the amplitude of 

the noise while conserving as much information as possible on the thermal gradients and their 
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evolution in space and time, a sliding-smoothing least-square fitting method is considered [15]. It 

consist on approximating the measured temperature by a periodic function based on the spectral 

properties of the underlying heat sources. Therefore, the approximation function becomes:      

 

   1 2 3 4( , , ) ( , ) ( , ) ( , ) cos 2 ( , )sin 2fit

L Lx y t P x y P x y t P x y f t P x y f t       (14) 

where the linear time function takes transient effects due to heat losses, dissipative heating and 

possible drifts in the equilibrium temperature into account. While the trigonometric functions 

describe the periodic part of the thermoelastic effects. The P functions are polynomials of degree 2 

in x and y accounting for local spatial heterogeneities of the temperature fields. 

 

The resolution of the smoothing problem consists then, in minimizing the following Ɓ2 sum 

compared to the P coefficients, in a least squares sense, on a discrete smoothing window, 

characterized by two spatial parameters, Nx and Ny, and one temporal parameter Nt (Figure 5): 
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This system can be written as:  



 PMB  (16) 

The M matrix is related to the smoothing parameters (Nx, Ny and Nt), the loading frequency fL, and 

the time step t. In addition, it is symmetrical and certain terms corresponding to the sums of odd 

functions are null. The vector P, is the vector containing polynomial unknowns. 

Since we perform tests with fixed loading frequencies and camera frame rates, meaning constant 

smoothing parameters, the M matrix do not depend on the considered time and position. The 

advantage of such property is that one needs to calculate this matrix and its inverse only once to 

entirely process all the data obtained from an experiment. The system size does not require an 

iterative method. In this way, the specific values of the approximation function at all points, are 

determined as follows, which greatly reduces the computation time: 






 BMP 1  (17) 

 
Figure 5: Discrete smoothing window. 
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Once the polynomials are determined, the heat sources are estimated at the center of the smoothing 

window, using the definition of each type of these sources and the 2D heat diffusion equation (6): 
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(19) 

with L = 2fL and df = k/C. 

 

In order to determine the spatiotemporal evolution of the heat sources, this window is moved at 

each point in space and time. 

This method offers the advantage of working with under-sampled signals with the correct ratio 

between sampling frequency and loading frequency. 

6 EXPERIMENTAL RESULTS AND INTERPRETATIONS  

6.1 Heat sources  

 

A first example, presented on Figure 6 (a)  for R = 80 mm, pmax = 1000 MPa, qmax = 603 MPa, fL = 

12 Hz and fa = 20 Hz, shows the noisy aspect of the experimental temperature fields, exp. This can 

underline the necessity of processing such images in order to obtain accurate estimate of the second 

derivatives in space and therefore good estimate of the different heat sources. On Figure 6 (b) is 

presented the same field, fit, after being locally fitted. The smoothing parameters used to process 

this experiment were: Nx = 15, Ny = 5 and Nt = 2fa +1, and x = 0.95 mm/pixel. It can be noted the 

difference in size of both fields. This is due to side effects induced by the fitting process accounting 

for the fitting spatial window size (loss of few pixels). 

 
Figure 6: Temperature fields: (a) experimental and (b) fitted for a contact condition of R = 80 mm, 

pmax = 1000 MPa, qmax = 603 MPa, am = 4 mm and cm = 2.8 mm. 
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Fields of sthe, corresponding to the amplitude of the thermoelastic source and d1, the mean intrinsic 

dissipation per cycle for the same contact condition, are represented respectively on Figure 7 (a) and 

(b). It can be first observed the difference in the order of magnitude between these two sources. 

This reflect the difficulty in the determination of such sources. Second, both fields present 

heterogeneous spatial distribution with maximum values (hot spots) in the sliding areas. The 

asymmetry of these two hot spots can be explained by a difference in stiffness between the upper 

and bottom side of the tested sample and that due to the configuration of the testing device (Figure 1 

(a)).  

 
Figure 7: Fields of (a) thermoelastic amplitude and (b) mean dissipation per cycle. 

 

In order to control the nature of the estimated heat sources, a series of numerical and experimental 

tests are conducted and presented in the next sections.  

6.2 Experimental control of the nature of the estimated heat sources 

6.2.1 Temporal evolution 

 

The spatial heterogeneities of the estimated fields were found to be time independent for constant 

loading parameters (pmax = 1000 MPA, qmax = 603 MPA, fL = 12 Hz and fa = 20 Hz, am = 4 mm and 

cm = 2.8 mm), and that at least before a crack is initiated. This can be seen on Figure 8 where, for 

each source, are represented two fields, one after 3000  cycles (2.5 minutes) of testing and the other 

one after 15000 cycles (10.5 minutes).  

The time independent feature of the thermoelastic source can be explained by the fact that, for 

constant loading parameters, the stress level and distribution stay constant unless damage occures. 

As for the dissipative source, the time independent feature can be related to the low kinetics of the 

fretting damage.  
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Figure 8: Fields of (a) thermoelastic amplitude and (b) mean dissipation per cycle after 3000 and 

15000 cycles. 

6.2.2 Influence of the loading parameters 

 

The intensities of the estimetated sources were found to increase with the increase of the loading 

frequency and the shear stress amplitude, while the spatial heterogeneities were found to stay 

constant as shown on Figure 9 (a) and (b) and Figure 10 (a) and (b). 

 
Figure 9: Fields of (a) thermoelastic amplitude and (b) mean dissipation per cycle as function of the 

loading frequency. (R = 80 mm, pmax = 1000 MPa, qmax = 603 MPa, am = 4 mm and cm = 2.8 mm) 
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Figure 10: Fields of (a) thermoelastic amplitude and (b) mean dissipation per cycle as function the 

shear stress amplitude. (R = 80 mm, pmax = 1000 MPa, fL = 12 Hz) 

 

On Figure 11 (a) and (b) are plotted respectively, the evolutions of the local maxima of the 

estimated fields as function of different loading frequencies. In case of the thermoelastic source, the 

linear behavior indicate that the estimated source is in a good agreement with the theory of linear 

thermoelasticity (Eq. (8)). As for the intrinsic dissipation, the linear behavior is linked to the plastic 

behavior of the tested specimen [32]. 

 
Figure 11: Evolution of the local maxima of the: (a) thermoelastic amplitude and (b) mean 

dissipation per cycle, as function of loading frequency. 

6.3 Numerical control of the nature of the estimated heat sources 

6.3.1 Thermoelastic coupling 

 

Knowing the time evolution of the surface shear stress distribution, q, and the constant Hertz 

contact pressure distribution, p, allow to compute the subsurface stress fields using elastic 

hypothesis [3]. A 3D analytical model of linear thermoelasticity applied to non-proportional 
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multiaxial cyclic loading was then developed [20]. This model allows to compute thermoelastic 

source fields from the knowledge of the subsurface stress fields, using the following equation:  

 

   tftrfTtrTs aLthe

'

00 











  (20) 

where  is the thermal expansion coefficient and  the stress tensor. 

  

For comparison purposes, amplitude field, sthe, of the computed source was smoothed using a 2D 

median filter with a [33µm 112µm] box accounting to the effect of the experimental smoothing 

window size, as illustrated on Figure 12 (a). On this figure, it can be observed that the spatial 

heterogeneities of the following fields, and their order of magnitudes are in close correlation. 

 

 
Figure 12: Fields of (a) computed thermoelastic source amplitude and (b) experimental 

thermoelastic source amplitude. (R = 80 mm, pmax = 1000 MPa, qmax = 603 MPa, fL = 12 Hz and fa = 

20 Hz) 

For the same cylinder radius and normal pressure, different shear stress amplitudes were tested and 

the local maxima of the computed thermoelastic fields amplitudes were compared to experimental 

data as in Figure 13.   

It can be observed that the computed and experimental data undergo a linear behavior. The small 

differences in their order of magnitudes can be explained by the choice made on the material 

thermo-physical properties taken from literature (Table 2).  
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Figure 13: Experimental thermoelastic local maxima as function of computed thermoelastic local 

maxima. 

 

Both the experimental and numerical results leads to the conclusion that, the estimated 

thermoelastic source is in a close agreement with the theory of linear thermoelasticity.   

6.3.2 Intrinsic dissipation 

 

The estimated dissipation fields were compared to the distribution of the multiaxial fatigue criterion 

of Crossland. Different studies [21], [33], showed that the Crossland criterion is well adapted to 

describe the crack risks under fretting loadings. This criterion is also a good indicator of micro-

plastic behavior. The Crossland equivalent stress is defined as follows:  

 

max,,2 HcaCr PJ    (21) 

where the square root of the maximum amplitude of the second stress invariant is defined as 

follows: 
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With Γ the period, S the deviatoric stress and PH,max the maximum value of the hydrostatic pressure 

throughout the history of the stress defined as follows:  

 







  )(

3

1
maxmax, ttraceP tH   (23) 

and,  

3

3

d

d
d

c 








  (24) 

with d the alternating shear fatigue limit and d the alternating bending fatigue limit.  
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On Figure 14, are presented fields of the estimated mean dissipation per cycle and the Crossland 

equivalent stress distribution for the following condition : R = 80 mm, pmax = 1000 MPa, qmax = 603 

MPa. The computed field was smoothed using a 2D median filter with a [33µm 112µm] box, so it 

can be compared to the experimental one. With the exception of the experimental field asymmetry, 

it can be observed that the spatial distribution of these fields undergo a close correlation.  

The local maxima of both the mean intrinsic dissipation and the Crossland equivalent stress were 

then compared for different contact conditions and plotted on Figure 15. It can be observed that 

both quantities undergo a linear behavior. Consequently, this assumes that the estimated mean 

dissipation can be linked to early cyclic microplasticity. 

 
Figure 14: Fields of (a) the Crossland equivalent stress distributions and (b) the estimated mean 

dissipation per cycle. 
 

 
Figure 15: Maximal local evolution of the dissipative source as function of the maximal local 

Crossland equivalent stress. 

 

Both experimental and numerical results leads to the conclusion that, the estimated intrinsic 

dissipation source reflect the onset of the plastic behavior of the tested specimen. 

6.4 Relationship between intrinsic dissipation and cyclic plastic behavior 
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It was shown that the intrinsic dissipation reach a stabilized state after few cycles and that it stays 

constant for a low number of cycles. To study the influence of the contact stress on the mean 

dissipation, a test in blocks of cycles with constant maximal Hertzian pressure, pmax, and variable 

shear stress amplitude was made Figure 16.  

 

 
Figure 16: Schamatic illustrating a test in block of cycles. 

 

For each block, the number of cycles was high enough (about 4000 - 5000 cycles) to reach 

stabilized mechanical (cycle stabilization) and thermal (temperature stabilization) conditions in 

order to estimate fields of the mean dissipation per cycle.   

On Figure 17, are plotted the local maxima of the mean dissipation as function of the maximal shear 

stress amplitudes, qmax, for each block of cycles for the following experimental condition: R = 80 

mm and pmax = 1000 MPa.    

 
Figure 17: Local maxima of the mean dissipation as function of the maximal shear stress 

amplitudes, qmax, for each block of cycles. 
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The above figure underlines the presence of two dissipative regimes. A first regime with a non-

dissipative phase, where the specimen mainly undergo elastic deformation, and a second one, where 

the mean dissipation increases with the shear stress amplitude indicating a plastic behavior. This 

suppose the existence of a threshold shear stress value from which cyclic plasticity start to take 

place and this latter can be considered as the elastic shakedown threshold.     

The same test was then made for the different tested conditions presented in Table 3 and the 

different results are presented on Figure 18. For each case, the same behavior as in Figure 17 was 

found. It can be concluded that the transition between the two dissipative regimes can be correlated 

to a threshold value from which localized microplastic deformation starts to take place. 

 
Figure 18: Local maxima of the mean dissipation as function of the maximal shear stress 

amplitudes, qmax, for different contact configurations. 

6.5 Relationship between intrinsic dissipation and cracking conditions 

 

In order to study the link between the estimated intrinsic dissipation and the cracking conditions, a 

threshold value is defined as the mean value of the two first shear stress amplitudes corresponding 

to 01 
C

d



~

. Cracking boundaries were determined by a conventional method as in [5] and 

illustrated on Figure 19 and Figure 20. The following maps are known as the fretting maps and it is 
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reminded that the crack initiation threshold values given by that method, are calibrated 

experimentally for a crack length b = 10 µm and for 106 cycles.      

On these maps are also presented the boundaries obtained by thermographic measurements. It can 

be observed that as expected these boundaries are left-shifted compared to the crack nucleation 

boundaries. However, the difference between the two boundaries stays very small, which suggest 

that the thermal measurement provides very relevant elastic shakedown boundaries and allow us to 

predict the cracking conditions.  

 

 
Figure 19: Fretting map and elastic shakedown boundary for R = 80 mm. 
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Figure 20: Fretting map and elastic shakedown boundary for R = 160 mm. 

7 CONCLUSION  

 

In this paper, the thermomechanical framework responsible for the interpretation of a fretting test 

and the definition of the heat diffusion equation along with the assumptions made to simplify the 

diffusion problem were first presented. A 2D image processing technique was then introduced. This 

technique relies on a local spatiotemporal smoothing of the experimental temperature fields to 

estimate then, via the heat equation, fields of mean intrinsic dissipation per cycle and thermoelastic 

amplitudes. It was shown that, this method is capable of detecting the intensities and the spatial 

distributions of these sources.  

The experimental results showed that the above method is able to estimate thermoelastic amplitude 

fields in a good agreement with the theory of linear thermoelasticity, and mean intrinsic dissipation 

per cycle fields reflecting localized microplastic deformation. The spatial distributions of the 

different fields showed a strong localization around the contact in the sliding areas.  

The study of the maximal local evolution of the intrinsic dissipation as function of the shear stress 

amplitude, underlined the presence of a non-dissipative regime, where the specimen mainly undergo 

elastic deformation and a dissipative regime where plastic deformation takes place. The transition 

between these two regimes was then coupled with the local elastic shakedown boundary. 

This work underlined the great potential of infrared thermography to accurately detect localized 

microplasticity responsible of initiating a fretting crack. The amount of information provided by 

such technique can be of great interest for the development of new behavioral models. The 

thermoelastic coupling data can be related to state equations, while dissipation data can be 

associated with evolution equations. Such thermomechanical approach should enhance the overall 

understanding and identification of the damage mechanisms in relation to microstructure properties. 

It could also give rise to new criteria for material characterization and structure design. 
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