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The purpose of this paper is to use a new rational approach for the design of some magnetic couplings. Our method is based on
the association of analytical models and an exact global optimization algorithm named IBBA and developed by the third author. The
analytical model presented in this paper is more sophisticated than those previously dealt using IBBA. Therefore, some under and over
estimating functions have been constructed for those particular problems of design in order to improve the convergence of IBBA. Some

optimal results highlight the efficiency of this approach.

Index Terms—Analytical model, Branch&Bound, exact global optimization, interval arithmetic, inverse problem, magnetic coupling.

1. INTRODUCTION

HE problem of design is here understood and formulated
T as an inverse problem. This methodology is well adapted
to the design of some electromechanical actuators, see [1], [2].
In order to solve exactly the so-generated global optimization
problems, a particular deterministic global algorithm based on
a branch and bound technique and on interval arithmetic has
been developed by the third author, [3]. In [1] and [2], IBBA
was associated with analytical models of permanent magnets
motors to find optimized solutions of design.

The associated analytical models need several assumptions to
get simplified expressions of electromechanical quantities such
as the flux and the torque. Therefore, when optimal solutions of
a design problem are obtained, it is often necessary to validate
them by means of a numerical model. In order to reduce the
use of a numerical model, an analytical model that needs fewer
assumptions is proposed. This model is based on the method
of separation of the variables for solving Poisson’s equations.
It gives results that are very close to those obtained by using a
finite-element analysis (FEA), [4], [S].

In this paper, IBBA is used once more time but applied to
a new application of design concerning magnetic couplings.
That is the first time that IBBA is associated with such com-
plicated analytical expressions and thus, some ideas for con-
structing over and under estimating functions have been intro-
duced. Due to the particular geometrical structure of such de-
vices, it is possible to solve Maxwell equations by separation of
the variables. The analytical expressions of electromechanical
quantities are more complicated than those employed in [2] but
are far simpler than the ones in [4] and [5]. In our knowledge, no
other optimization method has been used to solve exactly those
kinds of design problems.
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Fig. . Geometry of the considered magnetic coupling.

The analytical model is presented in Section II. In Section III,
the principle of IBBA is summarized. Its adaptation to our
problem is detailed. Section IV presents some magnetic cou-
plings which are optimized using this methodology.

II. MAGNETIC COUPLING

Magnetic coupling are very useful devices for many appli-
cations as in chemical and petrochemical industries. In an ef-
fort to prevent leakage of hazardous fluids from piping systems,
the use of magnetically driven sealless pumps has become more
common. Magnetic couplings are used in them to transmit rota-
tional motion without mechanical contact. The studied structure
is a co-axial magnetic coupling as shown on Fig. 1. It consists
of two rings of permanent magnets separated by a containment
can. On each side of it, we find an airgap and a binding band.

A. Parameterization

In order to calculate the torque produced by such a device,
one must first choose the parameters required for the computa-
tion of the magnetic fields inside it. On Fig. 1, we can see that
the two rings of magnet are separated by five concentric areas:
two binding bands, two airgap zones and, in the middle, the con-
tainment can. These zones are all nonmagnetic, thus we include
them into only one big area named airgap thereafter. Moreover,
we can consider that the two rings of iron yoke have an infinite
permeability. Thus, we can take into account only three areas:
Area' is the inner ring of magnets, Area® the outer one and



TABLE I
DEFINITION OF PARAMETERS
Sy mbol Quantiy Units
int Angular length of an interior magnet rad
oxt Angularlength of an exterior magnet rad
R, Inner radius of interior magnets m
R, Outer radius of inter jor magnets m
R; Inner radius of exterior magnets m
Ry Quter radius of exterior magnets m
L Common length of the active magnetic parts m
p Number of pole pairs (=2) -
[ Kind of interior magnet
Ope Kind of exterior magnet
Oyi Kind of inner iron yoke mater ial
Cye Kind of outer iron yoke mater ial

Area? the airgap. Our structure can be described by 12 param-
eters (7 reals, 1 integer, 4 categorical variables, see Table I).

B. Modeling

In [4] and [5], an analytical model of the magnetic field in
permanent magnet motors is proposed. In [5], a magnetic scalar
potential formulation is used. We find the magnetic vector po-
tential formulation described in [4] suitable for magnetic cou-
plings.

1) Magnetic Vector Potential Formulation: As the two ar-
matures of a magnetic coupling rotate at the same speed, the
magnetic field can be considered static in a reference fixed on
one of them and static Maxwell equations may be applied [4].
The constitutive laws of magnetic media are as follows:

— in the airgap (Area?)

B = 1iH. (1)
— In the permanent magnets (Area' and Area®)
B=,H+1J. 2

From the Gauss’s law of magnetism, we can derive the mag-
netic field from a magnetic vector potential, A. Owing to the
geometry of the magnetic coupling (see Fig. 1), we can assume
a translational invariance along the Oz axis. Thus, the vector po-
tential has only one non-null component: A, . The magnetic po-
larizations of magnets J are assumed to be purely radial. They
have a spatial period equal to 27 /p in the € direction. Therefore,
in polar coordinates, we can write the harmonic series [4]

Jp(r,0) = Z Jren cos(np) + Jisn sin(nph).

3)
n=1
The partial differential equation governing A, is [4]
PA, 104,  109%°4. (o, in Area'
- ) =19 10J . “
or? r Or r2 962 ~%a, otherwise.

To these equations, we must add the boundary conditions and
the continuity conditions between two media. As the inner and
outer yokes are assumed to have an infinite permeability, we
have on surface boundaries at (r = R1) and (r = Ry):

() ()
o ) ._g, ’ o ) ._g,

where A’ is the value of A. in a media Area’, A%, Thus, the
continuity conditions of the magnetic field must be applied on

&)

the interfaces at (r = R») and (r = Rj). For instance, on
interfaces (r = R»), we have

(5,07 (3) o (5)m(5)
of r=Ro of r=R2 7 or r=R> or T:RQ.
(6)

Because (p > 2), the method of separation of the variables gives
the form of the analytical expression of A, in Area’:

; = ; ; scir
Al(r,6) = Apr™ + Brr P 4 —") cos(npb
o= |( o)
+ <C:.Lrn1’ + D:‘Ir—np + 1= (no)2 ji;;)2> Sin(npe):| . (D

The sci, and ss’, coefficients are null in Area®. In Area' and
Area3, we have the following relations:

sck =0
2er(Uint) . (npgint
— —— S1In
s 2

5l = )=
SC;’; — er(Uext) cos <np9ext + np90>
' T L 2
— Cos <— npgem + np60>} (1-(-1)")

3= piJr(oext) sin <npzem + np@o)

58, =
T

aex

—sin <—% + np90>] (1—(=1)")
®)
where 6y is the angular gap between the two armatures and
Jr(0int) and J,.(oext ) are respectively the radial polarization of
inner and outer magnets. The value of the torque is maximum
when 6y = ™ /2 '(see‘Fig. 1). Thanks to relations (5) and (6) the
values of A:,, B}, C? , and D}, coefficients appearing in relation

(7) can be known by solving the two equations

MatR.{AB} = {SAB} MatR.{CD} = {SCD} (9)

where
{ABY! = {A,,B;,, A%, B}, A}, By }
{cD}" ={C},D,,C:, D%, Cy D}
{SaB}" = knp {0,0,0,npRssc), Rysc), Rysch }
{SCD}T = knp{Rlss}”npsts}”Rgss}”npRgssi,

3 3
R3ss; , Ryss; }

. 1

" np(1 - (np)?)

MatR =

A 0 0 0
R —R;"™ R OR;™ 0 0
~R R;™ R _R;"™ 0 0
0 0 R R;™ _R' _R;"
0 0 R —R;" —R™ R;"™
0 0 0 0 —-R™ R™

2) Magnetic Torque: The magnetic flux density B! in each
Area’ can be calculated from the magnetic vector potential Az.



Hence, by applying the Maxwell stress tensor in the airgap, the
torque I'.,, can be obtained. Comparisons with FEA show that
we can take into account only the first harmonic (n = 1). Thus,
using MAPLE, we can get an analytical expression of the torque
(10)

—8pL
pom(p? — 1)2 (Rip _ pr)
X Jp(Omi) SIn(pbint /2) T (Ome ) SIN(plaxt /2)
x((p = )RE™ + 2RV — (p+ DRY /R

x((p — )R 2R — (p + I)RZ”/Rg’l) .(10)

1—‘em =

3) Thickness of Iron Yokes: We present here a simple method
which allows to calculate an approximation of the thickness of
each iron yoke (t,). Indeed, the mean value of magnetic flux
density B} in the yokes must be less or equal to the maximum
value By (o, ) above which the iron is definitely saturated.

In the yoke, the maximum value of magnetic flux is ®, =
Bjt, L and the magnetic flux per pole is given by

104, B
(pm://B,dS:/ (; = )erH_ZL.MaX(Az) (11)
6

where Max(Az) is the maximum value of the magnetic vector
potential and can be obtained from relations (7) and (9). Ac-
cording to the Gauss’s law of magnetism we have ®,, = 29,.
Eventually, the analytical expression of the thickness of the
inner yoke ¢, is

4., (0 mi) sin(pbint /2)
WdeUm)Oﬂ-—l)(R?”—fﬁp

Ri\* 1
(7 =7 s enmem (1= () )
2

where By (o) is the maximum flux density in the inner iron
yoke. An analogue expression for the thickness of the outer yoke
t3 can be derived.

th =

) (- 1R}

III. FORMALIZATION OF THE DESIGN PROBLEM

A. Formulation

An inverse problem is formulated as mixed constrained
global optimization problems defined as follows:
min f(z,z,0,b)

TERM,zEN™

l
nel | Ki,be BT
i=1

subjected to:
gi(x,z,0,b) <0Vi e {1,...,p}

hj(z,z,0,b) =0Vj € {1,...,q}

12)

where f is a real function; K represents an enumerated set of
categorical variables, that is for example the type of magnet; and
B = {0, 1} the boolean set which is used to model, for example,
the fact that an actuator is with or without slot(s).

B. IBBA Algorithm

Interval analysis was introduced by Moore in 1966 [6].
All real values are enclosed by an interval where the bounds

TABLE II
LIST OF CONSTRAINTS

Number Relation
C; L =T as0a
(&) Ry — R, >1,™
G R;—Ry>g™
Cy R;—Ry < g™
Cs R;—R; >1,™"
Cs R, >N L
C; Ry, <AL
Cs R, - l\-l >Ry

are the two closest floating point numbers. Expanding the
classical operations—addition, subtraction, multiplication and
division—into intervals, defines interval arithmetic. A straight-
forward generalization allows computations of reliable bounds
of a function over a hypercube (or box) defined by an interval
vector. Moreover, classical tools of analysis such as Taylor
expansions can be used together with interval arithmetic to
compute more precise bounds [6], [7].

The principle of IBBA is first to bisect the initial domain
into smaller and smaller boxes and then, to eliminate the boxes
where the global optimum cannot occurs:

* by proving, using interval bounds, that no point in a box

can produce a better solution than the current best one;

* by proving, with interval arithmetic, that at least one con-

straint cannot be satisfied by any point in such a box.

To accelerate the convergence, constraint propagation tech-
niques are used in some steps of IBBA [8]. Such interval Branch
and Bound algorithms guarantee to produce an e-global optimal
solution, where ¢ > 0 is the maximal error on the objective
function value; ¢ is fixed by the user of IBBA. Actually, IBBA
was used to solved exactly some non-homogeneous mixed con-
strained global optimization problem with almost 25 variables
and 15 parameters (taking between few seconds to 6 days of
computing times). The difficulty to solve a problem depends on
the number of variables and of constraints but also on the com-
plexity of the analytical equations. Indeed interval arithmetic
has not all the properties of the classical one (for example it
is sub-distributive). Therefore, bounds computed using interval
arithmetic can be very large [6]. This is the main difficulty that
we have to deal with in this work. For details on such an algo-
rithm see [3] and [7].

C. Application and Adaptations of IBBA

Our input vector is defined by the parameters used in Table I.
The minimum value of the volume of magnets V, or the global
volume Vy is searched

Va :pL (Hint (Rg - R%) + Hemt (RZ - R%)
Ve =pL[(Ra+1)" = (R —1})"].

13)
(14)

Each solution must satisfy an equality constraint upon the
fixed electromagnetic torque I'.,,, (10), and seven geometric in-
equalities (see Table II), I'gxeq is the value of torque imposed
by the schedule of conditions; t?ii“, g™, ¢ and R are
respectively the minimum values of the thicknesses of the in-
terior magnets, the airgap, the exterior magnets and the inner
radius of our device; g™?* is the maximal value of the airgap;

A = [AL, \"] is a shape coefficient.



TABLE III

RESULTS
Parameters Bounds Unit [ MinV, Min V,

Gt [0.001;1] w/p | rad 38.15 48.65
6, [0.001;1] w/p | rad 25.75 37.80
R, [10;200] mm | 26.785 | 22.015
R, [10;200] mm | 29.785 | 25.015
R; [10;200] mm | 31.785 | 27.015
R, [10;200] mm | 34.785 30.015
L [50;500] mm | 5022 50.025
p 12,7] - 7 4
O [1.2] - 2 2
Ge [1,2] - 2 2
Gy [1,2] - 1 2
Oy [1.2] - 1 2

% mm 1.177 1.724
IS mm 0.867 1.448
Va cm 18.33 20.95
v, cm’ | 97.08 90.87
r,, N.m 9.806 9.809

CPU Time hours 161 117
Iterations - 2210055 | 2035197

In front of the complexity and the strong nonlinearity of many
expressions (criteria, torque, thicknesses of yoke), the use of in-
terval arithmetic is not easy. The returned bounds are not effi-
cient enough. Hence, to improve the convergence of IBBA, we
propose to intersect I'.,,, with an undervaluation I and an
overvaluation of it 'SP, We use for 'nf

2.107p2L (RYT! — R§+1) (RQ“ - R{“)
w(p+ 1) (R - RY)
X Jp(Omi ) SIN(POint /2) T (T me ) SIN(POext /2).

inf _
Fem -

15)

This procedure replaces the constraint C';. An example can ex-
plain it. If, during the process, our one-column input vector { X }
is:

[0.637,0.649] x 7/5,[0.662,0.675] x 7 /5,
[0.297, 0.320],

[0.300, 0.324], [0.373,0.397], [0.376, 0.400],

[0.466, 0.480], [5, 5], [1, 1], [2, 2], [2, 2], [2, 2]

Xy =

Therefore, the obtained intervals of the torque without and with
these limiting actions are, respectively:

L., = [—55513, 50604]

Tepn () [min (T0F) |, max (T52P)] = [—6589, 1064].

A same method has been applied to ¢, and ¢, [9].

Fig. 2. Geometries of the two optimal solution (Min V, and Min V).

IV. RESULTS AND CONCLUSION

To illustrate the use of this new IBBA algorithm, let us con-
sider the following optimal design problem. It deals with the
minimization of our two criteria (V, and V). The equality
constraint is true when the torque is equal to 10 &= 0.2 N-m. The
magnets can be in Sm2Co17 (if o,,,; or o, = 1) or in NdFeB
(if opni OF O ppe = 2). The iron yokes can be in steel z15 (if o;
or oye = 1) orin z30c13 (if o,; or oy = 2). The initial bounds
of our parameters and the obtained results are shown in Table III
and on Fig. 2. First we can see that the value of torque is close
to the allowed lower limit (9.8 N-m). We can also note that the
obtained numbers of pole pairs are clearly different (4 and 7).
Moreover the kinds of steel of yokes are different.

These results show the efficiency of our approach. Indeed
without the dimensions, the integer and the categorical parame-
ters describe a set of 116 (7 x 2%) different geometries of mag-
netic couplings. The method is able to find the most efficient
one and the result is guaranteed.
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