Mapping of linear elements over cultivated landscape using VHSR data

J.S. Bailly ^{1,2}, F. Levavasseur ²

¹AgroParisTech, UMR TETIS, Montpellier, France ²INRA, UMR LISAH, Montpellier, France

18th of January 2012

Linear elements of cultivated landscapes

Selected elements on plot margins :

- Open drainage channels : ditches, pipes → Accelerate/Deccelerate water flows
- Terrace walls, embankments
 → Prevent soil erosion, reinfiltrate waters

Linear elements of cultivated landscapes

Selected elements on plot margins :

- Open drainage channels : ditches, pipes → Accelerate/Deccelerate water flows
- Terrace walls, embankments
 - \rightarrow Prevent soil erosion, reinfiltrate waters

Cultivated landscape modelling and required maps

- Spatially explicit modelling (Moussa et al. 2002, Braud et al. 2008) : need maps
- $\bullet\,$ Maps of linear elements : drainage channels, terrace walls $\rightarrow\,$ surface water pathways
 - Conditioning spatial model topology (Lagacherie et al. 2009)
 - Flow routing properties (Dages 2005, Hallema et al. 2010)

Channels and walls mapping background

Maps at catchment extent and segment resolution :

- Uncomplete in BD-TOPO©IGN
- Channels from raw LiDAR data : 40 % of omission (Bailly et al., 2008)
- Usual DTM drainage algorithm unsuitable (Duke et al. 2006)
- $\bullet \ \rightarrow \ {\rm Potential} \ {\rm of} \ {\rm low} \ {\rm solar} \\ {\rm elevation} \ {\rm optical} \ {\rm image}$

Channel and terrace wall segment detection ?

- from optical 'Pleiades-like' images
- from 'Pleiades-like' DEM

If omissions, reconstruct entire network (channels)?

- from unconnected detected segments
- using auxilliary data
- optimized to reproduce actual hydrological functioning

Channel and terrace walls detection : process workflow

The 'Peyne' catchment (OMERE Research Observatory) : 28km²

linear elements :

332km drainage network

403km terrace walls

Study area 🥯 📖 📰 🐨

The 'Peyne' catchment (OMERE Research Observatory) : 28km²

linear elements :

- 332km drainage network
- 403km terrace walls

Study area 🥯 📖 📰 🐨

The 'Peyne' catchment (OMERE Research Observatory) : 28km²

linear elements :

- 332km drainage network
- 403km terrace walls

Remote sensing data

Terrace walls detection from DTM-DSM 🍩

- Multiresolution topographic Openess layers (Yokoyama et al. 2002)
- Linear region detection using 'spectral' angles (Christophe and Inglada 2007)

- Multiresolution topographic Openess layers (Yokoyama et al. 2002)
- Linear region detection using 'spectral' angles (Christophe and Inglada 2007)

Linear detection : accuracies assessment

The buffer method from (Heipke et al. 1997) and (Molloy and Stepinski 2007)

Overall :

- TP:67 %
- FP:15 %

TP = f(Height):

• Local contrast enhancement (Gaussian Filtering)

- LSD algorithm (Grompone von Gioi et al., 2010)
 - lacksquare line-support region growing on aligned ot gradient image
 - Ind and validate the line segment that best approximates each line- support region

- Local contrast enhancement (Gaussian Filtering)
- LSD algorithm (Grompone von Gioi et al., 2010)
 - f 0 line-support region growing on aligned ot gradient image
 - Ind and validate the line segment that best approximates each line- support region

- Local contrast enhancement (Gaussian Filtering)
- LSD algorithm (Grompone von Gioi et al., 2010)
 - lacebox line-support region growing on aligned ot gradient image
 - Ifind and validate the line segment that best approximates each line- support region

Overall :

- TP:85 %
- FP : 11 %

Terrace walls from DEM : result synthesis

Open-channel network detection from images

Channels signature in from images

Quickbird P+XS image : shadows (low solar elevation)

• Drainage channels

Bande noire entre deux bandes « claires » fines (« bourrelets »)

Bande noire entre deux bandes « claires » fines et rectilignes Bande noire entre deux bandes de végétation basse et active

Expert interpretation from images

Quickbird P+XS image (Pan-sharpening) Drainage channels :

- TP:59 %
- FP : 22 %

b need to reconnected detected segments to provide a network Bailly and Levavasseur PleaidesDays 2012, Toulouse 19

- start from unconnected segments and directed plot lattice
- uses stochastic branching-pruning converges up to a given drainage density while maximise reconnection
- produce directed tree network

- start from unconnected segments and directed plot lattice
- uses stochastic branching-pruning converges up to a given drainage density while maximise reconnection
- produce directed tree network

- start from unconnected segments and directed plot lattice
- uses stochastic branching-pruning converges up to a given drainage density while maximise reconnection
- produce directed tree network

- start from unconnected segments and directed plot lattice
- uses stochastic branching-pruning converges up to a given drainage density while maximise reconnection
- produce directed tree network

- start from unconnected segments and directed plot lattice
- uses stochastic branching-pruning converges up to a given drainage density while maximise reconnection
- produce directed tree network

- start from unconnected segments and directed plot lattice
- uses stochastic branching-pruning converges up to a given drainage density while maximise reconnection
- produce directed tree network

- start from unconnected segments and directed plot lattice
- uses stochastic branching-pruning converges up to a given drainage density while maximise reconnection
- produce directed tree network

- start from unconnected segments and directed plot lattice
- uses stochastic branching-pruning converges up to a given drainage density while maximise reconnection
- produce directed tree network

Objects	From Pleiades- like	Accurate	Limitations
Channels	images		vegetation, solar az- imuth
Terrace walls	images	$\bigcirc \bigcirc \bigcirc \bigcirc$	vegetation, solar az- imuth
Channels	DTM	$\bigcirc \bigcirc \bigcirc \bigcirc$	vegetation, resolution
Terrace walls	DTM	$\bigcirc\bigcirc\bigcirc\bigcirc$	vegetation
Channels	images + recon- struction		CPU

On going works :

- Optimise network reconstruction criteria for accurate hydrological response ?
- Multi-incidence SAR images for terraces walls detection

Pleiades expectations :

- Validation on terrace walls detection with actual Pleiades DSM-DTM
- Monitoring non explored usefull linear elements for hydrology : weed control practices on vineyards

