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Abstract

The 1-2-3 Conjecture asks whether every graph with no connected component isomorphic to
K2 can be 3-edge-weighted so that every two adjacent vertices u and v can be distinguished
via the sum of their incident weights, that is the incident sums of u and v differ by at least 1.

We here investigate the consequences on the 1-2-3 Conjecture of requiring a stronger
distinction condition. Namely, we consider two adjacent vertices distinguished when their
incident sums differ by at least 2. As a guiding line, we conjecture that every graph
with no connected component isomorphic to K2 admits a 5-edge-weighting permitting to
distinguish the adjacent vertices in this stronger way.

We verify this conjecture for several classes of graphs, including bipartite graphs and
cubic graphs. We then consider algorithmic aspects, and show that it is NP-complete to
determine the smallest k such that a given bipartite graph admits such a k-edge-weighting.
In contrast, we show that the same problem can be solved in polynomial time for a given
tree.

Keywords: 1-2-3 Conjecture; Difference-2 distinction; Bipartite graphs.

1. Introduction

Let G be a graph, and ω be an edge-weighting of G. For every vertex v, one can
compute its incident sum σω(v) (or simply σ(v) when no ambiguity is possible) of weights
by ω, being σ(v) :=

∑
u∈N(v) ω(vu), where N(v) denotes the set of neighbours of v. We call

ω neighbour-sum-distinguishing if it yields a proper σ, i.e. we have σ(u) 6= σ(v) for every
edge uv of G. It can be observed that every connected graph different from K2 admits
a neighbour-sum-distinguishing edge-weighting. Graphs with no connected component
isomorphic to K2 are thus said nice, with respect to neighbour-sum-distinguishing edge-
weightings. For a nice graph G, it thus makes sense to investigate the smallest k such that
G admits a neighbour-sum-distinguishing k-edge-weighting. This smallest k is denoted by
χΣ(G).

The 1-2-3 Conjecture, addressed by Karoński, Łuczak and Thomason [3], asks whether
χΣ(G) ≤ 3 holds for every nice graph G.

1-2-3 Conjecture. For every nice graph G, we have χΣ(G) ≤ 3.

If true, the bound in the 1-2-3 Conjecture would be best possible, as attested for
example by nice complete graphs and cycles with length not multiple of 4. More generally,
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it is NP-complete to decide whether χΣ(G) ≤ 2 holds for a given graph G, as first proved
by Dudek and Wajc [1]. The same problem, however, can be handled in polynomial time
when restricted to bipartite graphs, as recently shown by Thomassen, Wu and Zhang [6].
To date, the best result towards the 1-2-3 Conjecture is due to Kalkowski, Karoński and
Pfender [2], who proved that χΣ(G) ≤ 5 holds for every nice graph G.

When designing neighbour-sum-distinguishing edge-weightings, the goal is to make
adjacent vertices distinguishable via their incident sums. In ordinary neighbour-sum-
distinguishing edge-weightings, adjacent vertices are considered distinguished as soon as
their incident sums are distinct. We here investigate edge-weightings that permit to distin-
guish the adjacent vertices in a stronger way. Namely, we require adjacent vertices to have
incident sums differing by at least 2. An edge-weighting verifying this stronger require-
ment is said to be neighbour-sum-2-distinguishing throughout. As observed in upcoming
Observation 2.1, a neighbour-sum-distinguishing k-edge-weighting can easily be turned
into a neighbour-sum-2-distinguishing 2k-edge-weighting. Moreover, since K2 does clearly
not admit any neighbour-sum-2-distinguishing edge-weighting, the notion of nice graphs
for neighbour-sum-distinguishing edge-weightings and for neighbour-sum-2-distinguishing
edge-weightings coincide. Again, we can thus wonder about the smallest k such that a
given nice graph G admits a neighbour-sum-2-distinguishing k-edge-weighting, which we
denote by χΣ>1(G).

Our main goal in this paper is to study how χΣ>1 behaves in general, in particular for
graphs for which the parameter χΣ is well understood. As noted in upcoming Observa-
tion 2.1, the 1-2-3 Conjecture, if true, would imply that χΣ>1(G) ≤ 6 holds for every nice
graph G. One could thus naturally wonder about a 1-2-3-4-5-6 Conjecture for neighbour-
sum-2-distinguishing edge-weightings. It actually turns out that we did not manage to
exhibit nice graphs G with χΣ>1(G) = 6. On the other hand, we prove, throughout this
paper, that several common classes of nice graphs G verify χΣ>1(G) ≤ 5. We are thus
tempted to address the following.

Conjecture 1.1. For every nice graph G, we have χΣ>1(G) ≤ 5.

We here give first evidence towards Conjecture 1.1. We start in Section 2 by raising
connexions between neighbour-sum-distinguishing edge-weightings and neighbour-sum-2-
distinguishing edge-weightings, from which we deduce first bounds on χΣ>1. In Section 3,
we then improve some of these bounds for some classes of nice bipartite graphs, and verify
Conjecture 1.1 for all nice bipartite graphs. The algorithmic aspects are considered in
Section 4, where we first prove that it is NP-complete to determine the exact value of
χΣ>1. This statement is showed to remain true even for bipartite graphs, which contrasts
with the complexity of determining the exact value of χΣ for these graphs. We then
show that determining the exact value of χΣ>1 can be done in polynomial time for trees.
Perspectives for future works are gathered in Section 5.

2. Preliminaries

We have the following relationship between neighbour-sum-distinguishing edge-weightings
and neighbour-sum-2-distinguishing edge-weightings:

Observation 2.1. For every nice graph G, we have χΣ>1(G) ≤ 2χΣ(G).

Proof. Let ω be a neighbour-sum-distinguishing k-edge-weighting of G, where k := χΣ(G).
Consider the 2k-edge-weighting ω′ of G where ω′(uv) = 2ω(uv) for every edge uv of G.
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We get σω′(v) = 2σω(v) for every vertex v. Since ω is neighbour-sum-distinguishing, σω(u)
and σω(v) differ by at least 1 for every edge uv, which yields that σω′(u) and σω′(v) differ
by at least 2. So ω′ is neighbour-sum-2-distinguishing.

Observation 2.1 already has several implications towards Conjecture 1.1. First, the 1-2-
3 Conjecture, if true, would imply that χΣ>1(G) ≤ 6 holds for every nice graphG. Although
we still do not know whether the 1-2-3 Conjecture is true, every partial result towards that
conjecture can be adapted to Conjecture 1.1. In that line, perhaps the most interesting
result to consider is the one due to Kalkowski, Karoński and Pfender [2], who proved that
χΣ(G) ≤ 5 holds for every nice graph G. In our context, this and Observation 2.1 yield
the following, which shows that, although we have strengthened the distinction condition
slightly, a constant number of weights is still sufficient to weight all nice graphs.

Corollary 2.2. For every nice graph G, we have χΣ>1(G) ≤ 10.

The bound in Corollary 2.2 is immediately improved for every graph G for which we
know that χΣ(G) < 5 holds. In particular, we have χΣ>1(G) ≤ 6 for every nice graph
G verifying the 1-2-3 Conjecture, which is very close to Conjecture 1.1. Let us recall, in
particular, that the 1-2-3 Conjecture was verified for nice bipartite graphs, 3-chromatic
graphs, nice complete graphs, and regular graphs with sufficiently large degree. We here
refer the reader to the survey [5] by Seamone, wherein all such results are gathered.

By multiplying all weights assigned by a neighbour-sum-distinguishing k-edge-weighting
by a same integer α, we get another neighbour-sum-distinguishing αk-edge-weighting since
each σ(v) is multiplied by α. This of course does not have to be true if one decreases (or
increases) all weights by a same α, since, here, the effect on each σ(v) depends on d(v).
There are situations, however, where this can be done safely.

Observation 2.3. Let ω be a neighbour-sum-distinguishing edge-weighting of a graph G. If
we have σ(u) < σ(v) (resp. σ(u) > σ(v)) for every two adjacent vertices u and v verifying
d(u) ≥ d(v), then, by decreasing (resp. increasing) all edge weights by a same integer α, we
get another neighbour-sum-distinguishing edge-weighting of G. Furthermore, if σ(u) and
σ(v) were differing by at least x, then they still do.

Due to the fact that, in the context of Conjecture 1.1, we focus on edge-weightings
assigning strictly positive weights, when decreasing edge weights we should also make
sure that none becomes null or negative. Observation 2.3 can nevertheless be used when
the smallest edge weight value assigned by ω is known. As an illustration, we improve
Observation 2.1 (and, thus, Corollary 2.2) for nice regular graphs.

Corollary 2.4. For every nice regular graph G, we have χΣ>1(G) ≤ 2χΣ(G)− 1.

Proof. Let k := χΣ(G) and ω be a neighbour-sum-2-distinguishing {2, 4, . . . , 2k}-edge-
weighting of G, which exists as attested in the proof of Observation 2.1. Since G is
regular, according to Observation 2.3, when decreasing all edge weights by 1 we get an-
other neighbour-sum-2-distinguishing edge-weighting ω′ of G. Furthermore, since ω is a
{2, 4, . . . , 2k}-edge-weighting, ω′ is a {1, 3, . . . , 2k − 1}-edge-weighting.

Corollary 2.4 notably implies that Conjecture 1.1 holds for nice complete graphs and
3-colourable regular graphs, as they verify the 1-2-3 Conjecture. In general, this decreases
the bound in Corollary 2.2 down to 9 for nice regular graphs. More refined bounds also
follow for regular graphs with larger degree, see [5].
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3. Improved bounds for particular bipartite graphs

In this section, we focus on improving the bounds obtained in Section 2 for some nice
bipartite graphs. It was proved by Thomassen, Wu and Zhang [6] that a bipartite graph
G verifies χΣ(G) = 3 if and only if G is an odd multicactus. Odd multicacti can be defined
as follows. Start from a collection C1, . . . , Cm of m ≥ 1 cycles whose lengths are at least 6
and congruent to 2 modulo 4, and colour the edges of the Ci’s in a proper way using colours
red and green. An odd multicactus is then any connected graph obtained by repeatedly
applying the following operation: pick two connected components G1 and G2, and identify
a green edge of G1 with a green edge of G2. Note that, in particular, every cycle whose
length is congruent to 2 modulo 4 is an odd multicactus.

From Observation 2.1 and the previous remarks we directly get the following:

Corollary 3.1. For every nice bipartite graph G, we have

χΣ>1(G) ≤
{

4 if G is not an odd multicactus,
6 otherwise.

In what follows, we first refine the bounds in Corollary 3.1 for nice paths and cycles. We
then prove that χΣ>1(G) ≤ 5 holds for every odd multicactus G, hence that nice bipartite
graphs verify Conjecture 1.1.

3.1. Paths
We denote by P` the path of length `. Therefore, the path P1 = K2 is not nice. In the

next result, we determine the value of χΣ>1(P`) for every ` ≥ 2.

Theorem 3.2. For every path P`, ` ≥ 2, we have

χΣ>1(P`) =


2 if ` = 2,
3 if ` > 2 and ` ≡ 0, 2, 3 (mod 4),
4 otherwise.

Proof. Recall that χΣ>1(P`) ≤ 4 holds for every ` ≥ 2, by Corollary 3.1. Moreover, since
χΣ>1(G) = 1 if and only if G is a graph such that the degrees of every two adjacent vertices
differ by at least 2, we get χΣ>1(P`) ≥ 2 for every ` ≥ 2.

Let v0, . . . , v` denote the vertices of the path P`, with vivi+1 being an edge for every i,
0 ≤ i ≤ ` − 1. We clearly have χΣ>1(P2) = 2 since the weighting ω given by ω(v0v1) =
ω(v1v2) = 2 is neighbour-sum-2-distinguishing.

Suppose now that ` ≥ 3. Then P` has two adjacent vertices vi and vi+1 with degree 2.
For any 2-edge-weighting ω of P`, we have σ(vi) = ω(vi−1vi) + ω(vivi+1) and σ(vi+1) =
ω(vivi+1)+ω(vi+1vi+2). Since ω(vi−1vi), ω(vi+1vi+2) ∈ {1, 2}, necessarily σ(vi) and σ(vi+1)
differ by at most 1, so that ω cannot be neighbour-sum-2-distinguishing.

If ` = 3, then assigning successive edge weights 1, 3, 3 to the edges of P3 is neighbour-
sum-2-distinguishing as it yields successive incident sums 1, 4, 6, 3. So we may suppose from
now on that ` ≥ 4. Under that assumption, note that a neighbour-sum-2-distinguishing
3-edge-weighting ω of P` cannot assign weight 2. Indeed, if an edge vivi+1 is assigned
weight 2 by ω, then, because ` ≥ 4, either vi−2vi−1 or vi+2vi+3 is an edge, and that
edge must be assigned weight 0 or 4 so that ω is neighbour-sum-2-distinguishing, which
is not possible. We thus restrict our attention to {1, 3}-edge-weightings of P`. Note that
when assigning weights from left to right, in order to get a neighbour-sum-2-distinguishing
{1, 3}-edge-weighting, we must respect one of the two periodic patterns 1, 3, 3, 1, 1, 3, 3...
or 3, 3, 1, 1, 3, 3, 1, 1.... When applying any of these two patterns from left to right, we
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also have to find one of these two patterns when reading the edge weights from right to
left, as otherwise the edge-weighting would not be neighbour-sum-2-distinguishing. When
applying the first pattern, this property is fulfilled whenever ` ≡ 0, 3 (mod 4). When
applying the second pattern, this property is fulfilled whenever ` ≡ 2, 3 (mod 4). We thus
get χΣ>1(P`) ≤ 3 if and only if ` ≡ 0, 2, 3 (mod 4), which concludes the proof.

3.2. Cycles
For every ` ≥ 3, we denote by C` the cycle of length `. In the next result, we determine

the value of χΣ>1(C`) for every cycle C`.

Theorem 3.3. For every cycle C`, ` ≥ 3, we have

χΣ>1(C`) =

{
3 if ` ≡ 0 (mod 4),
5 otherwise.

Proof. Observe first that since cycles verify the 1-2-3 Conjecture and are regular, Corol-
lary 2.4 implies that χΣ>1(C`) ≤ 5 holds for every cycle C`.

Let v0, . . . , v`−1 denote the vertices of the cycle C`, with vivi+1 being an edge for every i,
0 ≤ i ≤ `− 1 (here and in the following, all operations over the subscripts are understood
modulo `).

For any 1-edge-weighting ω of C`, σ(vi) = 2 for every vertex vi, and thus no such edge-
weighting can be neighbour-sum-2-distinguishing. Similarly, for any 2-edge-weighting ω,
σ(vi) ∈ {2, 3, 4} for every vertex vi, which means that ω is neighbour-sum-2-distinguishing
if and only if every two adjacent vertices have incident sums 2 and 4. But this is impossible,
since σ(vi) = 2 if and only if the two edges incident to vi are weighted 1, while σ(vi) = 4 if
and only if the two edges incident to vi are weighted 2. Therefore, χΣ>1(C`) ≥ 3 for every
cycle C`.

We first claim that no neighbour-sum-2-distinguishing 3-edge-weighting ω of C` can
use weight 2. Indeed, if ω(vivi+1) = 2 for some edge vivi+1, then, for σ(vi) and σ(vi+1)
to differ by at least 2, we must have ω(vi−1vi) = 1 and ω(vi+1vi+2) = 3, without loss of
generality. We then get σ(vi) = 3 and σ(vi−1) ∈ {2, 3, 4}, so that ω cannot be neighbour-
sum-2-distinguishing.

Therefore, a neighbour-sum-2-distinguishing 3-edge-weighting of C` can only use weights 1
and 3. In such a weighting, the edge weights must follow the pattern 1, 1, 3, 3, 1, 1, 3, 3...
along the cycle, which is possible if and only if ` ≡ 0 (mod 4).

We now prove that χΣ>1(C`) = 5 whenever ` 6≡ 0 (mod 4). According to the first
observation in this proof, it suffices to prove that χΣ>1(C`) > 4 holds for every such
cycle. Let ω be a neighbour-sum-2-distinguishing 4-edge-weighting of C`. We claim that
we can produce, from ω, a neighbour-sum-2-distinguishing {1, 4}-edge-weighting ω′ of C`,
by decreasing all 2’s and incrementing all 3’s by one. More precisely, let ω′ be the {1, 4}-
edge-weighting of C` where, for every edge vivi+1, we have

ω′(vivi+1) =


1 if ω(vivi+1) = 2,
4 if ω(vivi+1) = 3,
ω(vivi+1) otherwise.

Let us prove that ω′ is indeed neighbour-sum-2-distinguishing. Suppose that we build
ω′ sequentially, modifying the weights of the edges one by one. We thus construct a
sequence of edge-weightings ω0 = w,ω1, . . . , ωp = ω′, for some p ≥ 0. We claim that for
every j, 0 ≤ j ≤ p− 1, ωj+1 is neighbour-sum-2-distinguishing whenever ωj is neighbour-
sum-2-distinguishing. Suppose that ωj(vivi+1) = 3 (resp. 2) and ωj+1(vivi+1) = 4 (resp.
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1). Since σωj (vi) and σωj (vi+1) differ by at least 2, σωj+1(vi) and σωj+1(vi+1) also differ
by at least 2. The only possible conflicts would thus concern vertices vi−1 and vi, or vi+1

and vi+2. Such a conflict arises if σωj+1(vi−1) and σωj+1(vi), or σωj+1(vi+1) and σωj+1(vi+2),
respectively, only differ by 1. But this would mean that σωj (vi−1) = σωj (vi) + 2 (resp.
σωj (vi−1) = σωj (vi) − 2), or σωj (vi+2) = σωj (vi+1) + 2 (resp. σωj (vi+2) = σωj (vi+1) − 2),
respectively, which implies ωj(vi−2vi−1) = 5 (resp. 0), or ωj(vi+2vi+3) = 5 (resp. 0), a
contradiction in both cases. Hence, since ω is neighbour-sum-2-distinguishing, we get that
ω′ is also neighbour-sum-2-distinguishing.

Now, since C` is 2-regular, the incident sums induced by ω′ range among {2, 5, 8}.
Therefore, the edge weights assigned by ω′ must follow the pattern 1, 1, 4, 4, 1, 1, 4, 4... along
the cycle, which is possible if and only if ` ≡ 0 (mod 4), contradicting our assumption.

3.3. Odd multicacti
Recall that χΣ>1(G) ≤ 6 holds for every odd multicactus G, according to Corollary 3.1.

Some obvious odd multicacti G, such as cycles with length congruent to 2 modulo 4, verify
χΣ>1(G) = 5 (recall Theorem 3.3). In the next result, we prove that all odd multicacti
verify Conjecture 1.1.

Observe first that connected multicacti can be defined inductively, as follows. Cycles
of length at least 6 and congruent to 2 modulo 4, with edges coloured green and red
alternatively, are multicacti. Consider now a multicactus G whose edges are coloured
green and red, and let uv be a green edge of G. Then the graph obtained from G by
identifying u and v with the end-vertices of a path of length at least 5 and congruent to 1
modulo 4, whose edges are alternatively coloured red, green, ..., red (from one end to the
other), is a multicactus. This operation will be referred to as a path attachment. Note
that, in any edge-coloured multicactus, the two ends of a green edge have the same degree.

Theorem 3.4. For every odd multicactus G, we have χΣ>1(G) ≤ 5.

Proof. We will prove a stronger statement, namely that every odd multicactus admits a
neighbour-sum-distinguishing {1, 3, 5}-edge-weighting. The proof is by induction on the
number of path attachments performed to construct G.

If no such path attachment was made, then G is a cycle C4k+2, for some k ≥ 1, and
the {1, 3, 5}-edge-weighting obtained by applying the pattern 1, 1, 3, 3, 5, 5, 1, 1, 3, 3, 5, 5...
cyclically is clearly a neighbour-sum-2-distinguishing {1, 3, 5}-edge-weighting of G.

Assume now that G is not a cycle. Then G must contain a green edge uv such that u
and v are joined by exactly x paths P1, . . . , Px, x ≥ 1, with length at least 5 and congruent
to 1 modulo 4, and whose internal vertices have degree 2 in G. In other words, no green
edge of the Pi’s was used to make a path attachment. When removing all internal vertices
of the Pi’s from G, we get another connected odd multicactus G′ in which both u and v
have degree 2.

By the induction hypothesis, G′ admits a neighbour-sum-2-distinguishing {1, 3, 5}-edge-
weighting ω, which we would like to extend to the edges of the Pi’s, in order to obtain a
neighbour-sum-2-distinguishing {1, 3, 5}-edge-weighting of G. Let us denote by u′ and v′

the neighbours of u and v, respectively, different from v and u, respectively, in G′. When
extending ω to the Pi’s, we have to make sure that:

1. σ(u) and σ(u′) still differ by at least 2;

2. σ(v) and σ(v′) still differ by at least 2;

3. both σ(u) and σ(v) differ by at least 2 from the incident sums of their x neighbours
in the Pi’s;
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4. σ(u) and σ(v) still differ by at least 2.

In order to respect the fourth condition above, we will edge-weight the Pi’s in such a
way that σ(u) and σ(v) are altered the same way, i.e. by a same integer. To that aim, we
will {1, 3, 5}-edge-weight every Pi in such a way that its two end-edges are assigned the
same weight. We say that such an extension is uniform (with respect to Pi).

Since the Pi’s have length at least 5 and congruent to 1 modulo 4, there are many
ways to {1, 3, 5}-edge-weight them in a neighbour-sum-2-distinguishing way, in particular
when we relax the distinguishing condition for their end-vertices (that is, we do not require
that the incident sums of the end-vertices are different from the incident sums of their
neighbours). In particular, it is easy to check that, for such a path, following any of the
patterns α1, α2, α2, α3, α3, α4, α4... or α1, α1, α2, α2, α3, α3, α4, α4..., where all αi’s belong
to {1, 3, 5} and every two successive αi’s are different, yields a (relaxed) neighbour-sum-2-
distinguishing {1, 3, 5}-edge-weighting. In particular, when the length is at least 5, there
is a satisfying {1, 3, 5}-weighting which is uniform for any same weight assigned to the
two end-edges, and this remains true if one requires the first two edges to be weighted
differently and the last two edges to be weighted with the same weight. That is, if the
successive vertices of the path are v0, ..., v`, then, for any same weight α ∈ {1, 3, 5} assigned
to v0v1, v`−2v`−1, v`−1v`, and any different weight α′ ∈ {1, 3, 5} \ {α} assigned to v1v2, it
can be checked that there always exists a way for extending this pre-weighting to all edges,
such that a (uniform and relaxed) neighbour-sum-2-distinguishing {1, 3, 5}-edge-weighting
is obtained.

In order to extend ω to all the Pi’s, we now consider four cases, depending on the number
x of such paths attached to the edge uv. Recall that we always extend the weighting in a
uniform way, to make sure that σ(u) and σ(v) are altered by a same integer α.

1. x ≥ 4.
In that case, when extending ω to the Pi’s uniformly, we can increase both σ(u) and
σ(v) by any value α among {x, x + 2, . . . , 5x}. Since σ(u) and σ(v) should differ
from σ(u′) and σ(v′), respectively, by at least 2, and since σ(u′) and σ(v′) may
forbid at most six values for σ(u) and σ(v) (three consecutive for each), there exists
α ∈ {5x− 8, . . . , 5x− 2, 5x} such that σ(u) +α and σ(v) +α are not in conflict with
σ(u′) and σ(v′), respectively.

Since x ≥ 4, we have α ≥ 12. Thereby we have σ(u)+α, σ(v)+α ≥ 14, which means
that, no matter how we extend ω to the Pi’s (in a uniform way so that σ(u) and
σ(v) are altered by precisely α), we cannot get any sum conflict involving u, v and
the internal vertices of the Pi’s (which are of degree 2, so their incident sums can
have value at most 10). We thus assign, to each Pi, a same weight to its two end-
edges, so that, in total, σ(u) and σ(v) are altered by precisely α. According to the
remarks above, this pre-weighting of the Pi’s can then be extended to a neighbour-
sum-2-distinguishing {1, 3, 5}-edge-weighting of the Pi’s, thus to a neighbour-sum-2-
distinguishing {1, 3, 5}-edge-weighting of G.

2. x = 3.
We apply the same strategy as in the previous case. Using the same arguments, there
exists α ∈ {7, 9, 11, 13, 15} such that σ(u) + α and σ(v) + α are not in conflict with
σ(u′) and σ(v′), respectively. If there is such an α with α ∈ {11, 13, 15}, then we
are done similarly as in the previous case since σ(u) + α, σ(v) + α ≥ 13, meaning
that we cannot get any sums conflict involving u, v and their neighbours in the Pi’s.
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Otherwise, we extend ω uniformly to the end-edges of the Pi’s similarly as earlier,
but with the further conditions that:

• the end-edges are all assigned weight 1 or 3 (more precisely, we assign weights
1, 3, 3 to the end-edges of P1, P2, P3, respectively, if α = 7, or 3, 3, 3 if α = 9),
and

• for every Pi, the second edge is assigned weight 1 while the second-to-last edge
is assigned weight 3.

Such a pre-weighting of the Pi’s can be extended to a neighbour-sum-2-distinguishing
{1, 3, 5}-edge-weighting of the Pi’s, according to similar arguments as previously.
When doing so, we eventually get σ(u), σ(v) ≥ 9, while the neighbours of u and v in
the Pi’s have incident sums at most 6. So this extension yields a neighbour-sum-2-
distinguishing {1, 3, 5}-edge-weighting of G.

3. x = 2.
If ω(uv) ∈ {1, 3}, then we raise that weight to 5. If this does not create any sum
conflict between σ(u) and σ(u′), or σ(v) and σ(v′), then we proceed with the next
step. Otherwise, similarly as in the previous case, and because there is currently a
conflict, there exists α ∈ {6, 8, 10} such that σ(u)+α and σ(v)+α are not in conflict
with σ(u′) and σ(v′), respectively. We then extend ω uniformly to the end-edges of
the Pi’s as previously. Since α ≥ 6 and ω(uv) = 5, we eventually get σ(u), σ(v) ≥ 12,
while the internal vertices of the Pi’s have incident sums at most 10.

Assume now that ω(uv) = 5. We again apply the same procedure. There must exist
α ∈ {2, 4, 6, 8, 10} with the same properties as before. If α ∈ {6, 8, 10}, then we are
done by the same arguments as in the previous case. If α ∈ {2, 4}, then we are done
as well since, in that case, we get σ(u) + α, σ(v) + α ≥ 8, while we can extend ω to
the Pi’s in such a way that the neighbours of u and v have incident sums at most 6
(just as in the case x = 3).

4. x = 1.
If ω(uv) = 1, then we set ω(uv) = 3. If no conflict arises, then we proceed with the
next step. Otherwise, we apply the same procedure as in the previous case. If there
exists α ∈ {1, 3, 5} with the desired properties, then we extend ω as follows. Note
first that, because ω(uv) = 3, we have, say, σ(u) ≥ 4 and σ(v) ≥ 6 by the induction
hypothesis. We then extend ω to P1 in the following way:

• If α ∈ {1, 3}, then we assign weight 1 to the first, second and last edges of P1,
and weight 3 to the second-to-last edge.

• If α = 5, then we assign weight 5 to the first and last edges of P1, weight 1 to
the second edge, and weight 3 to the second-to-last edge.

In all cases, it can be checked that the pre-weighting can be extended to all edges
of P1, and that, by our choice of the first two weights and last two weights, that no
sum conflict arises in G. Now, if no such α exists, then we set ω(uv) = 5. If no
conflict arises, then we proceed with the next step. Otherwise, there must now exist
α ∈ {1, 3, 5} with the desired properties. Similar extension arguments then apply.

So assume that ω(uv) ∈ {3, 5} and there is currently no sum conflict. Again, if
there exists α ∈ {1, 3, 5} with the desired properties, then we are done. Otherwise,
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note that no conflict may arise when setting ω(uv) = 1 (as otherwise there would
exist an α when ω(uv) ∈ {3, 5}), and there must exist α ∈ {1, 3} as required. Since
ω(uv) = 1, we have, say, σ(u) ≥ 2 and σ(v) ≥ 4. We then extend ω to the first edges
of P1 as follows:

• If σ(u) = 2 and σ(v) ∈ {4, 6}:
– if α = 1, then we assign weights 1 and 3 to the first and second edges of P1,

and weights 1 and 1 to the last and second-to-last edges;
– if α = 3, then we assign weights 3 and 5 to the first and second edges of P1,

and weights 3 and 1 to the last and second-to-last edges.
• If σ(u) = 4 and σ(v) = 6:

– if α = 1, then we assign weights 1 and 1 to the first and second edges of P1,
and weights 1 and 3 to the last and second-to-last edges;

– if α = 3, then we assign weights 3 and 1 to the first and second edges of P1,
and weights 3 and 3 to the last and second-to-last edges.

In all cases, it can be checked that the pre-weighting can be extended to the other
edges of P1 as required. Then no sum conflict arises in G, and we get a neighbour-
sum-2-distinguishing {1, 3, 5}-edge-weighting.

This completes the proof.

4. Algorithmic aspects

In this section, we consider the hardness of determining the value of χΣ>1(G) for a
given graph G. We first prove, in Subsection 4.1, that deciding whether χΣ>1(G) ≤ 2
holds for a given graph G is NP-complete, even when restricted to 3-degenerate planar
bipartite graphs. In Subsection 4.2, we prove that, although χΣ>1(T ) can take any value
in {1, 2, 3, 4} for a given tree T (recall Corollary 3.1), deciding the exact value of χΣ>1(T )
can be done in polynomial time.

It is worth recalling that determining the value of χΣ(G) for a given graph G is NP-
complete in general (Dudek and Wajc [1]), but can be done in polynomial time when
restricted to bipartite graphs (Thomassen, Wu and Yang [6]). Hence our result in Subsec-
tion 4.1 shows another difference between the parameters χΣ and χΣ>1.

4.1. General case
Before proceeding with the proof of the main result of this subsection, we first intro-

duce gadgets that we will use to force some weights to be used by any neighbour-sum-2-
distinguishing 2-edge-weighting. Each of these gadgets will have a root vertex of degree 1
being incident to a root edge. We here relax the notion of neighbour-sum-2-distinguishing
2-edge-weighting around the root; that is, we allow a neighbour-sum-2-distinguishing 2-
edge-weighting to have adjacent incident sums differing by less than 2, but the incident
sum of the root has to be involved in such a conflict. This is because our gadgets will be
attached to other graphs via the root, so, in the properties we point out below, the incident
sum of the root should not be regarded as fixed.

The gadgets we will construct are called (α, S)-gadgets, for some given α ∈ {1, 2} and
S ⊂ N∗. Every such gadget G will satisfy the two following properties:

1. the root edge of G is necessarily weighted α by any neighbour-sum-2-distinguishing
2-edge-weighting of G, and
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Figure 1: The (1, {3, 4})-gadget with root u1 (left), the (2, {5})-gadget with root u1 (middle), and the
(2, {2k + 1})-gadget with root u1 (right).

2. for any s ∈ S, there exists a neighbour-sum-2-distinguishing 2-edge-weighting of G
where the (unique) neighbour of the root has incident sum s.

These gadgets will be used as follows. Let H be a graph and v be a vertex of H. Add to
H an (α, S)-gadget G (for some α and S), and identify v with the root of G. Then, in any
neighbour-sum-2-distinguishing 2-edge-weighting of H, v will necessarily receive weight α
from the root edge of G, and v will be adjacent to a vertex whose incident sum belongs to
S. This mechanism can be used both to force particular edge weights to appear around v,
and to ensure that σ(v) does not belong to a particular set (in particular when |S| = 1).

We now introduce the gadgets we will use (see Figure 1 for an illustration). Consider
first a path G := u1u2u3 of length 2. We claim that G is a (2, {3, 4})-gadget with root u1.
Indeed, in any neighbour-sum-2-distinguishing 2-edge-weighting ω ofG (with the relaxation
mentioned above), we have ω(u1u2) = 2, while ω(u2u3) can have value either 1 or 2, in
which cases we get σ(u2) = 3 and σ(u2) = 4, respectively.

Now consider a claw G with vertices v, u1, u2, u3, where the ui’s are the leaves. Add two
(2, {3, 4})-gadgets G1 and G2 to G, and identify u3 and the roots of G1 and G2. We claim
that G is a (1, {3, 4})-gadget with root u1. In any neighbour-sum-2-distinguishing 2-edge-
weighting ω of G, the vertex u3 is incident to at least two edges with weight 2 (because of
the gadgets G1 and G2), so that σ(u3) = 5 (if ω(u3v) = 1) or σ(u3) = 6 (otherwise). In
both cases, we necessarily have ω(vu2) = ω(vu1) = 1, so that σ(v) and σ(u3) differ by at
least 2. We thus get σ(v) = 3 in the first case, and σ(v) = 4 in the second case.

We now describe how to obtain (2, S)-gadgets with S := {2k + 1} for any k ≥ 2. We
first build a (2, {5})-gadget as follows. Start from G := u1u2 being the path of length 1,
then add three (1, {3, 4})-gadgets G1, G2, G3 to G, and identify u2 and the roots of G1,
G2 and G3. We claim that G is a (2, {5})-gadget with root u1. In any neighbour-sum-
2-distinguishing 2-edge-weighting ω of G, the vertex u2 is incident to at least three edges
weighted 1, namely the root edges of the Gi’s. Now, if ω(u1u2) = 1, then σ(u2) = 4, which
creates sum conflicts with vertices from the Gi’s. So we necessarily have ω(u1u2) = 2, in
which case σ(u2) = 5, which is fine since the Gi’s are (1, {3, 4})-gadgets.

We now turn to the general case. Let 2k+1 ≥ 7, and assume that we have constructed
(2, S′)-gadgets with S′ := {2k′ + 1} for every k′, 2 ≤ k′ < k. Start from G := u1u2 being
the path of length 1. Add k − 1 (2, {2k − 1})-gadgets G1, . . . , Gk−1 to G, as well as one
(1, {3, 4})-gadget G0, and identify u2 and the roots of G1, . . . , Gk−1 and G0. We claim that
G is a (2, {2k + 1})-gadget with root u1. In any neighbour-sum-2-distinguishing 2-edge-
weighting ω of G, the Gi’s force σ(u2) to have value at least 2k−1. Depending on whether
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ω(u1u2) = 1 or ω(u1u2) = 2, we thus have σ(u2) = 2k or σ(u2) = 2k + 1, respectively.
In the first case, we get sum conflicts between u2 and its neighbours in G1, . . . , Gk−1

since their incident sums differ by 1. Therefore, we necessarily have ω(u1u2) = 2, so that
σ(u2) = 2k + 1, which produces no sum conflict in G.

Analogous (1, S)-gadgets with S := {2k + 1}, k ≥ 2, will also be needed. A (1, {5})-
gadget can be obtained as follows. Start from G := u1u2 being the path of length 1, add
two (2, {7})-gadgets G1 and G2 to G, and identify u2 and the roots of G1 and G2. In any
neighbour-sum-2-distinguishing 2-edge-weighting ω of G, the Gi’s force u2 to be incident to
at least two edges with weight 2. So we have σ(u2) = 5 or σ(u2) = 6 depending on whether
ω(u1u2) = 1 or ω(u1u2) = 2, respectively. In the second case, however, we get sum conflicts
between u2 and its neighbours in G1 and G2. We thus necessarily have ω(u1u2) = 1 and
σ(u2) = 5, which produces no sum conflict in G.

Let now 2k + 1 ≥ 7, and assume that we have constructed (1, S′)-gadgets with S′ :=
{2k′ + 1} for every k′, 2 ≤ k′ < k. Start from G := u1u2 being the path of length 1,
add k (2, {2k + 3})-gadgets G1, . . . , Gk to G, and identify u2 and the roots of G1, . . . , Gk.
We claim that G is a (1, {2k + 1})-gadget. In any neighbour-sum-2-distinguishing 2-edge-
weighting ω of G, the Gi’s force σ(u2) to be at least 2k. Depending on whether ω(u1u2) = 1
or ω(u1u2) = 2, we thus have σ(u2) = 2k+1 or σ(u2) = 2k+2, respectively. In the second
case, we get sum conflicts between u2 and its neighbours in G1, . . . , Gk, since their incident
sums differ by 1. Therefore, we necessarily have ω(u1u2) = 1 and σ(u2) = 2k + 1, which
produces no sum conflict in G.

Note that all the above-constructed gadgets are trees. With all these gadgets in hand,
we now prove the main result of this section.

Theorem 4.1. For a given 3-degenerate planar bipartite graph G, deciding whether χΣ>1(G) ≤
2 holds is NP-complete.

Proof. Since the problem is obviously in NP, we proceed with the proof of its NP-hardness.
The proof is by reduction from 1-in-3 SAT. From a formula F , we construct a graph
G such that F is satisfiable in a 1-in-3 way if and only if G admits a neighbour-sum-2-
distinguishing 2-edge-weighting. Since the Monotone version of 1-in-3 SAT remains
NP-complete (see e.g. [4]), we may assume that F has no negated variables. Also, we
may assume that all clauses of F have three distinct variables, as otherwise F could be
simplified. That is:

• if F has a clause (xi1 ∨ xi1 ∨ xi1), then F is not satisfiable in a 1-in-3 way;

• if F has a clause (xi1 ∨ xi1 ∨ xi2), then xi2 and xi1 are forced to true and false,
respectively, by any truth assignment making F satisfied in a 1-in-3 way.

We denote by x1, . . . , xn the variables of F , and by C1, . . . , Cm its clauses. The con-
struction of G, which is clearly achieved in polynomial time, is as follows. We start by
adding variable gadgets in the following way. For each variable xi of F , we add to G a
star Vi with root vi and 2ki leaves ui,1, . . . , ui,2ki , where 2ki is any even integer greater
than 10. Next we add (1, {4ki + 1})-, (2, {4ki + 3})-, (2, {4ki + 5})-, . . . , (2, {6ki − 3})-
and (2, {6ki − 3})-gadgets G1, . . . , Gki to G, and identify vi and the roots of G1, . . . , Gki .
Because of the Gi’s, in any neighbour-sum-2-distinguishing 2-edge-weighting ω of Vi, the
value of σ(vi) lies between 4ki−1 (when all viui,j ’s are assigned weight 1) and 6k−1 (when
all viui,j ’s are assigned weight 2). Furthermore, 4ki−1 and 6ki−1 are both odd. Hence, we
cannot have σ(vi) ∈ {4ki, . . . , 6ki−2} as otherwise there would be a sum conflict involving
vi and one of its neighbours in the Gi’s. Therefore, either all ω(viui,j)’s are equal to 1, or
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all ω(viui,j)’s are equal to 2. In what follows, we call the vertices ui,1, . . . , ui,2ki the output
vertices of Vi, and the edges viui,1, . . . , viui,2ki the output edges of Vi,

We now modify G by considering the clauses of F . For each clause Cj = (xi1∨xi2∨xi3)
of F , we add a clause vertex cj to G. For each Vi1 , Vi2 , Vi3 , we then select one output vertex
still having degree 1, and identify cj and the three selected output vertices. Finally, we add
a (2, {7})-gadget G1 to G, as well as a (2, {11})-gadget G2, and identify cj and the roots of
G1 and G2. In any neighbour-sum-2-distinguishing 2-edge-weighting ω of G, σ(cj) has thus
value at least 4 (because of G1 and G2), and ranges in {7, . . . , 10}. However, σ(cj) cannot
take any value among {7, 8, 10} because of G1 and G2. So we necessarily have σ(cj) = 9,
which occurs only if exactly one of the three output edges originating from Vi1 , Vi2 , Vi3 is
assigned weight 1.

It can be checked that no unexpected sum conflicts (that is, different from those listed
above) can arise, in particular thanks to our choice of the 2ki’s. We now claim that we
have the desired equivalence. This directly follows from the following arguments:

• Assigning weight 1 (resp. 2) to an output edge vicj simulates the fact that variable
xi brings truth value true (resp. false) to Cj .

• Following that equivalence, the fact that, for any Vi, all output edges of Vi must be
weighted 1 (resp. 2) simulates the fact that setting xi to true (resp. false) by some
truth assignment brings the same truth value to every clause containing xi.

• The fact that, for every clause vertex cj , exactly one incident output edge must be
assigned weight 1 simulates the fact that a clause of F is considered satisfied if and
only if it includes exactly one true variable.

To complete the proof of the theorem, it suffices to observe the following:

• The Planar version of Monotone 1-in-3 SAT remains NP-complete (see [4]),
so we may assume that F is a planar formula. Since every gadget is a tree, the
construction above then yields a planar G.

• Since every gadget is a tree, the graph G is 3-degenerate.

• The only cycles in G are those of the subgraph induced by the vi’s and the cj ’s. Since
this subgraph is bipartite, so is G.

This concludes the proof.

4.2. Tree case
In this section, we prove that the counterpart of Theorem 4.1 for trees is not true.

That is, we prove that determining the value of χΣ>1(T ) for a given tree T can be done
in polynomial time. Recall that for a tree T , we always have χΣ>1(T ) ≤ 4 (according to
Corollary 3.1), while χΣ>1(T ) = 1 if and only if, for every two adjacent vertices u and v
of T , the values of d(u) and d(v) differ by at least 2.

Theorem 4.2. For a given tree T , determining χΣ>1(T ) can be done in polynomial time.

Proof. For any fixed k ∈ {1, 2, 3, 4}, we introduce below an algorithm that checks in poly-
nomial time whether T admits a neighbour-sum-2-distinguishing k-edge-weighting. So, to
determine χΣ>1(T ), we can essentially run this algorithm successively with k = 1, 2, 3, 4.
The first value of k for which the algorithm answers positively is the value of χΣ>1(T ).
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Designate a node r of T as being its root. This defines a root-to-leaf orientation of T
in the usual way, where every non-root node v has a father, and every non-leaf node v has
children. By the descendants of v, we refer to the nodes of T for which we find v when
iterating the father relationship.

The subtree Tv of T rooted at v is the subtree whose nodes are v and all its descen-
dants. This subtree Tv can itself be decomposed into several subtrees, in the following
way. Assume that v has d ≥ 1 descendants u1, . . . , ud, ordered following an arbitrary or-
der (supposed to be fixed throughout the proof). Then Tv can be edge-decomposed into
d subtrees Tv,1, . . . , Tv,d being Tu1 + vu1, . . . , Tud + vud, respectively, whose root, v, has
degree precisely 1. Trees with this property are called shrubs throughout. Conversely, Tv
is obtained by identifying the roots of the shrubs Tv,1, . . . , Tv,d. For every shrub, we call
the edge incident to the root the root edge. The non-root end of the root edge is called the
subroot.

We are now ready to describe our algorithm for deciding whether T admits a neighbour-
sum-2-distinguishing k-edge-weighting. The rough ideas are the following. The tree T can
be seen as a union of d := d(r) shrubs S1, . . . , Sd whose roots were identified, result-
ing in r. A neighbour-sum-2-distinguishing k-edge-weighting of T is thus essentially the
union of (relaxed, see below) neighbour-sum-2-distinguishing k-edge-weightings of the d
shrubs attached to r, with the additional property that the resulting σ(r) does not cre-
ate any sum conflict. Therefore, in order to construct a neighbour-sum-2-distinguishing
k-edge-weighting of T , it suffices to find convenient neighbour-sum-2-distinguishing k-edge-
weightings of S1, . . . , Sd that can be “glued”. So we need to know, for each shrub Si and
for every α ∈ {1, . . . , k}, whether Si admits a neighbour-sum-2-distinguishing k-edge-
weighting where the root edge is assigned colour α, and, for such an edge-weighting of Si,
which possible incident sums can be obtained for the subroot.

More formally, for a shrub S with root v′ and subroot v, we want to compute, for every
weight α ∈ {1, . . . , k}, the set Xα(v) of possible values of σ(v) by a neighbour-sum-2-
distinguishing k-edge-weighting of S assigning weight α to v′v. Note that a shrub might be
a single edge, and may thus admit no neighbour-sum-2-distinguishing k-edge-weighting. In
that special case, we relax the notion of neighbour-sum-2-distinguishing k-edge-weighting,
and allow the root and the subroot to have the same incident sums.

Assume v has d children u1, . . . , ud, d ≥ 0, and let S1, . . . , Sd denote the d shrubs
attached to v in S. We claim that each Xα(v) can be computed in polynomial time from
the sets

X1(u1), . . . , Xk(u1), X1(u2), . . . , Xk(u2), . . . , X1(ud), . . . , Xk(ud),

computed by induction for the shrubs S1, . . . , Sd. So, in a way, the sets X1(v), . . . , Xk(v)
can be computed from smaller shrubs, and deduced successively towards the subroot of S.
We prove this below.

The base case is when S is a single edge, that is, v has no child. If the edge v′v is
assigned any weight α ∈ {1, . . . , k} by a neighbour-sum-2-distinguishing k-edge-weighting,
then σ(v) = α. So, for such a shrub S, we have Xα(v) = {α} for every α ∈ {1, . . . , k}.

Suppose now that v has d ≥ 1 children u1, . . . , ud, and, for each shrub Si, 1 ≤ i ≤ d,
attached to v, and every α ∈ {1, . . . , k}, the set Xα(ui) has been computed by induction.
We now want to compute the sets X1(v), . . . , Xk(v). Since d(v) = d + 1, by any k-edge-
weighting of S, the sum σ(v) can take up to kd + k − d values, namely those among
{d + 1, . . . , kd + k}. We repeatedly fix one of those sums x, and we determine whether x
can be added to some of the sets X1(v), . . . , Xk(v).

Assume we want to determine whether x has to be added to Xα(v), where α is any
value in {1, . . . , k}. Successively consider all partitions x1 + 2x2 + · · · + kxk of x into
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x1 + · · · + xk = d + 1 values among {1, . . . , k} only. Recall that we are focusing on
computing Xα(v), so if xα = 0, then we can consider the next partition of x. Since x is
linear in |V (T )| and k ≤ 4 is fixed, the number of such partitions to consider is polynomial
in |V (T )|. Essentially, we have x1, . . . , xk ≤ |V (T )|, meaning that the number of such
partitions is roughly |V (T )|k−1. We now want to know if there is a neighbour-sum-2-
distinguishing k-edge-weighting of S where xi edges incident to v are assigned weight i, for
every i ∈ {1, . . . , k}. If such an edge-weighting exists, then for any Si to which the weight
β is assigned to the root edge, Xβ(ui) contains some value not in {α− 1, α, α+ 1}.

Since we are focusing on Xα(v), one of the xα weights α around v will be assigned
to v′v. This leaves us with d other weights to assign bijectively to the vui’s, with the
constraint that if we assign a weight β to vui, then Xβ(ui) should contain a value not
among {α − 1, α, α + 1}. If β can indeed by assigned to vui safely, then we call this a
valid assignment. To find a correct assignation (if any exists), we build a compatibility
bipartite graph C of the valid assignments, as follows. In one side of the bipartition of C,
we put d vertices corresponding to the d weights we want to assign. In the other side, we
put d vertices corresponding to the edges vu1, . . . , vud of S. We then add an edge joining
two vertices of C if assigning the corresponding weight to the corresponding edge of S is
valid. Now, finding a satisfying assignment of the d weights to the root edges of the Si’s is
equivalent to finding a perfect matching in C, which is known to be doable in polynomial
time. If there indeed exists such a perfect matching of C, then we add x to Xα(v).

We now go back to T , with the root r having d children u1, . . . , ud. For each Si of the
d shrubs S1, . . . , Sd rooted at v, we can compute the sets X1(ui), . . . , Xk(ui) as explained
above. These sets memorize, in a compact way, all possible ways, in terms of incident
sums and weights assigned to the root edges, to k-edge-weight the Si’s in a neighbour-
sum-2-distinguishing way. Now, again, we can consider every potential incident sum x as
σ(r), every potential way to partition x into d integers among {1, . . . , k}, and, building the
compatibility bipartite graph as above, find, if it exists, a valid way to bijectively assign
the d weights to the d root edges vu1, . . . , vud. If a valid assignment for a partition of some
x exists, then T admits a neighbour-sum-2-distinguishing k-edge-weighting. Otherwise, it
does not.

Concerning the complexity aspect, determining Xα(v) for a shrub of T with subroot v
can be done in polynomial time. Recall that k ≤ 4 is constant. The number of possible
sums x as σ(v) to consider is at most k|V (T )|. For each of these values of x, we consider
up to |V (T )|k−1 partitions into 1’s, 2’s, . . . , and k’s. Deciding whether there is a valid
assignment for one of those partitions can be done in polynomial time, using for instance
Edmonds’ Blossom Algorithm for computing maximum matchings. The procedure above
is almost the same when r is considered. By all these arguments, the whole procedure can
be achieved in polynomial time.

5. Conclusion

In this work, we have investigated the consequences on the 1-2-3 Conjecture of requiring
adjacent vertices to be distinguishable in a stronger way, namely by asking their incident
sums to differ by at least 2. We have addressed Conjecture 1.1, to which we did not
manage to come up with any counterexample, as an equivalent of the 1-2-3 Conjecture in
this context. As a main evidence that our conjecture might be true, we have pointed out
some connexions between the 1-2-3 Conjecture and Conjecture 1.1, and verified the later
one for nice bipartite graphs.
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Several aspects related to Conjecture 1.1 remain unclear to us, and could thus be sub-
ject to further work. First, we do not fully understand how necessary the weights 2 and 4
are for our conjecture. In particular, most graphs for which we have verified Conjecture 1.1
actually admit neighbour-sum-2-distinguishing {1, 3, 5}-edge-weightings, as illustrated by
our proof of Theorem 3.4. Also, the neighbour-sum-2-distinguishing edge-weightings con-
structed in the proof of Observations 2.1 and 2.3 use half of the weights only. Hence, we
think the following stronger conjecture could be worth studying.

Conjecture 5.1. Every nice graph admits a neighbour-sum-2-distinguishing {1, 3, 5}-edge-
weighting.

In the context of neighbour-sum-2-distinguishing edge-weightings, Conjecture 5.1 might
be an equivalent to the 1-2-3 Conjecture more natural than Conjecture 1.1. Indeed, in the
1-2-3 Conjecture we aim at getting incident sums differing by at least 1 by using three
successive weights α − 1, α, α + 1 differing by 1. In Conjecture 5.1, we aim at getting
incident sums differing by at least 2 by using three “successive” weights α − 2, α, α + 2
differing by 2.

There are intriguing examples, though, such as nice paths P` of length congruent to 1
modulo 4 (for which χΣ>1(P`) = 4, recall Theorem 3.2), showing that the weights 2 and 4
are worth using in some cases. We thus believe this could be an interesting aspect to study
further.

More directions for future works are also worth mentioning. Notably, we did not manage
to improve the bounds given in Section 2 for many classes of graphs. Generally speaking,
it does not seem obvious to us how to improve the bound in Corollary 2.2, and this would
surely require new tools. Concerning particular classes of graphs, let us mention the case
of subcubic graphs. Although we know that cubic graphs verify Conjecture 1.1, and even
Conjecture 5.1 (recall Corollary 2.4), we did not manage to prove that nice subcubic graphs,
in general, also do. We believe this would be an appealing first case to consider towards
verifying Conjecture 1.1 for 3-chromatic graphs, which verify the 1-2-3 Conjecture.

More generally speaking, the notion of neighbour-sum-2-distinguishing edge-weighting
could be generalized to neighbour-sum-d-distinguishing edge-weighting, for any d ≥ 3,
where one could require incident sums to differ by at least d. Many of the arguments and
techniques used in this work could actually be generalized to deal with such a notion. For
larger values of d, it is likely that more intriguing phenomenon arise.
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