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Abstract: Human pose estimation refers to the estimation of the location of body parts and
how they are connected in an image. Human pose estimation from monocular images has wide
applications (e.g., image indexing). Several surveys on human pose estimation can be found
in the literature, but they focus on a certain category; for example, model-based approaches or
human motion analysis, etc. As far as we know, an overall review of this problem domain has
yet to be provided. Furthermore, recent advancements based on deep learning have brought novel
algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from
monocular images is carried out including milestone works and recent advancements. Based on one
standard pipeline for the solution of computer vision problems, this survey splits the problem
into several modules: feature extraction and description, human body models, and modeling
methods. Problem modeling methods are approached based on two means of categorization in
this survey. One way to categorize includes top-down and bottom-up methods, and another way
includes generative and discriminative methods. Considering the fact that one direct application
of human pose estimation is to provide initialization for automatic video surveillance, there are
additional sections for motion-related methods in all modules: motion features, motion models,
and motion-based methods. Finally, the paper also collects 26 publicly available data sets for
validation and provides error measurement methods that are frequently used.

Keywords: human pose estimation; human body models; generative methods; discriminative methods;
top-down methods; bottom-up methods

1. Introduction

In Computer Vision, humans are typically considered as articulated objects consisting of rigidly
moving parts connected to each other at certain articulation points. Under this assumption, human pose
estimation from monocular images aims to recover the representative layout of body parts from image
features. Extracted human poses are being used to analyze human behaviors in smart surveillance
systems, to control avatar motion in realistic animations, to analyze gait pathology in medical practices,
and to interact with computers, to cite but a few applications.

Traditionally, a human body pose can be accurately reconstructed from the motion captured
with optical markers attached to body parts [1]. These marker-based systems usually use multiple
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cameras to capture motions simultaneously. However, they are not suitable for real-life non-invasive
applications, and the equipment is quite expensive, confining their applications to lab experiments or
long-term very costly productions such as controlling avatars’ movements in animations [2].

So, an increasing number of studies have been focused on markerless methods. The inputs are
also captured by cameras, but the acting humans are not bound to wear any markers. Several types of
images can be captured: RGB or grayscale images (which are the input image types we discuss in this
survey), infrared images [3], depth images [4], and others. RGB images capture visible light, and are
the most frequently seen images on the web; infrared images capture infrared light; and depth images
contain information regarding the distance of objects in the image to the cameras. Infrared images are
extremely useful for night vision, but are not in the scope of this review.

While ordinary cameras can capture RGB images, depth images require specialized equipment.
This equipment is much less expensive compared with those for acquiring motion capture data, and
can be used in everyday life settings. Commercial products include Microsoft Kinect [5], the Leap
Motion [6], and GestureTek [7]. These products provide application programming interfaces (APIs) to
acquire depth data [8]. The human pose detection problem has seen the most success when utilizing
depth images in conjunction with color images: real-time estimation of 3D body joints and pixelwise
body part labelling have been possible based on randomized decision forests [9]. Estimation accuracy
from depth images are comparatively more accurate, but these devices can only acquire images within
a certain distance limit (around eight meters), and a vast majority of pictures on the web are RGB or
grayscale images with no depth information.

Human pose detection from a single image is a severely under-constrained problem, due to
the intrinsic one-to-many mapping nature of this problem. One pose produces various pieces of
image evidence when projecting from changing viewpoints. This problem has been extensively
studied, but is still far from being completely solved. Effective solutions for this problem need to
tackle illumination changes, shading problems, and viewpoint variations. Furthermore, human pose
estimation problems have specific characteristics. First, the human body has high degrees of freedom,
leading to a high-dimensional solution space; second, the complex structure and flexibility of human
body parts causes partially occluded human poses which are extremely hard to recognize; third,
depth loss resulting from 3D pose projections to 2D image planes makes the estimation of 3D poses
extremely difficult.

In this paper, we collect milestone works and recent advancements in human pose estimation
from monocular images. The papers in the reference section were downloaded during the first semester
of 2016 from the following sources: Google Scholar, IEEE Explore, Scopus Elsevier, Springer, Web of
Science, Research Gate, arXiv, and several research lab homepages. Each section of the paper is
a possible component of human pose estimation algorithms. The flow of the sections follows the
degree of abstraction: starting from images of low abstraction level to semantic human poses of high
abstraction level.

Summarizing related works, there are two main ways to categorize human pose estimation
methodologies [10]. The first way clusters solutions based on whether the human pose estimation
problem is modeled as geometric projection of a 3D real-world scene or if it is treated as a general
classification/regression problem. In geometric projection modeling (Section 4.1.2), a 3D human body
model is required (Section 3.3). Furthermore, camera parameters are required for a projection model.
From an image processing perspective, human pose estimation can be treated as a regression problem
from image evidence.

In discriminative methods (Section 4.1.1), distinctive measurements, called features, are first
extracted from images. These are usually salient points (like edges or corners) which are useful
characteristics for the accomplishment of the estimation task. Later on, these salient points are
described in a systematic way, very frequently statistically. This procedure is named “feature
description”. In this review, we fuse feature extraction and feature description procedures into a feature
section (Section 2). Instead, we categorize features based on their abstraction level: from low-level
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abstraction to high-level abstraction. Features of high abstraction levels are semantically closer to
the human description of a human pose. Features are then assembled based on a predefined human
body structure (Sections 3.1 and 3.2) and then the assembled information is fed to a classification
or a regression model to predict human body part layout. Then, various mapping models between
extracted features and human poses are utilized (Section 4.1.1).

The second approach to categorization splits related works into top-down (Section 4.2.2) and
bottom-up (Section 4.2.1) methods based on how pose estimation is carried out: if it introduces
high-level semantics for low-level estimation or if human poses are recognized from pixel-level image
evidence. There are also works taking advantage of different types of approaches simultaneously by
fusing them to achieve a better estimation accuracy (Sections 4.1.3 and 4.2.3).

One straightforward application of monocular human pose estimation is the initialization of smart
video surveillance systems. In this scenario, motion cues provide valuable information, and progress
in motion-based recognition could be applied to enhance pose estimation accuracy. The advantage is
that an image sequence leads to the recognition of higher-level motions(like walking or running) which
consist of a complex and coordinated series of events that cannot be understood by looking at only
a few frames [11–13], and these pieces of higher-level information could be utilized to confine low-level
human pose estimation. Extracted motion features are introduced in Section 2.4, human motion
patterns extracted as motion priors are explained in the last paragraph of Section 3.4, and motion-based
methods are described in Section 4.3.

The main components of the survey paper are illustrated in Figure 1. As mentioned before, it is
not compulsory for a human pose estimation algorithm to contain all three components (features,
human body models, and methodologies). For example, in Figure 1, the first flow line denotes
three components of discriminative methods and bottom-up methods, including three feature types of
different abstraction level, two types of human body models, and their methods. Temporal information
provides motion-based components. In Section 5, we collect publicly-available datasets for the
validation of human pose estimation algorithms, several error measurement methods, and a toolkit
for non-expert users to use human pose estimation algorithms. Lastly, in Section 6, we discuss open
challenges in this problem.

2. Feature 3. Human Body

Models

4. Methodologies

2.1 Low-level Features

2.2 Mid-level Features

2.3 High-level Features

3.1 Kinema!c Model

3.2 Planar Model

4.1.1 Discrimina!ve Methods

4.2.1 Bo" om-Up Methods

3.3 Volumetric Model
4.1.2 Genera!ve Methods

4.2.2 Top-Down Methods

4.1.3 Combined Methods

4.2.3 Combined Methods

2.4 Mo!on Features 3.4 Human Pose Priors 4.3. Mo!on-based Methods
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Figure 1. The Composition of The Review. The survey considers three processing units, and dedicates
one section to each. After these three processing units, human poses can be estimated from images.
Each directed flow chart denotes the composition of specific types of methods. Rectangle units are
motion-based components.
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1.1. Related Works

Several surveys of human pose estimation can be found in literature. The authors of [14–17]
give surveys of vision-based human pose estimation, but these works were conducted before 2009.
A more recent comprehensive survey is from Liu et al. [18]. This survey studied human pose estimation
from several types of input images under various types of camera settings (both single-view and
multiple-view), and includes 104 references. In our survey, more than 300 references are included,
and these works concentrate on a specific type of input: monocular images.

Other recent surveys were carried out on specific methodologies.For example, the survey from
Lepetit et al. [19] and the survey from Perez-Sala et al. [20] both study model-based approaches,
which employ human body knowledge such as the human body’s appearance and structure for the
enhancement of human pose estimation. There are also surveys dedicated to human motion analysis
where motion information is prerequisite [15,16,21,22].

An area that is closely related to human pose estimation is action recognition. Although algorithms
and techniques used in human action recognition are different from those used in human pose
estimation, recognition results of these two are sometimes combined within a framework to boost the
performance of a single task [23–26]. Surveys on action recognition include [27–30].

1.2. Contributions

The past few decades have witnessed significant progress in human pose estimation, especially in
recent years; deep learning has brought advancements in many research areas, including human pose
estimation. The aim of this survey is to comprehensively overview milestone works on human pose
estimation from monocular images for novices and experts in the field. Compared with past works,
this review has the following contributions:

1. The first comprehensive survey of human pose estimation on monocular images including more
than 300 references. These works includes top conferences and journals, which are milestone
works on this topic. Table 1 gives a preview of included references, and its structure follows the
composition of this paper. This survey considers several modules: features, human body models,
and methodologies—as shown in Figure 1. We collect 26 publicly available data sets for the
evaluation of human pose estimation algorithms. Furthermore, various evaluation measurements
are included so that researchers can compare and choose an appropriate one for the evaluation
of the proposed algorithm.

2. The first survey that includes recent advancements on human pose estimation based on deep
learning algorithms. Although deep learning algorithms bring huge success to many computer
vision problems, there are no human pose estimation reviews that discuss these works. In this
survey, about 20 papers of this category are included. This is not a very large number
compared to other problems, but this is a inclusive survey considering the relatively few works
addressing this problem.
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Table 1. A complete overview of human pose estimation from monocular images.

Components Categories Sub-Categories

Low-level Features
(1) Shape: silhouettes [31–34], contours [35,36], edges [37,38]
(2) Color: [36,39,40]
(3) Textures: [41]

(1) Local features: like Fourier descriptor [42], shape contexts [43–47], geometric signature [48], Poisson features [49], histogram of oriented gradients (HOG) [50–52], relational edge distribution [53], Scale Invariant Feature Transform
(SIFT) [54,55] and SIFT-like features [56,57], edgelet features [58], and shapelet features [59]

Features Mid-level Features (2) Global Features: like object foreground map [46], max-covering [46], dense grid features [50,56,60]
(3) Multilevel hierarchical encodings: like Hierarchical Model and X (HMAX) [61], hyperfeatures [62] , spatial pyramid [63], vocabulary tree and Multilevel Spatial Blocks (MSB) [64]
(4) Automatic extracted features: like from a convolutional neural network (CNN) [65–67]

High-level Features (1) Context [8]
(2) Combined body parts [68–70]

Motion Features (1) Optical flow related: dense optical flow [71], robust optical flow [72]
(2) Combined motion features: like combined edge energy and motion boundaries [73]

Kinematic Models (1) Predefined model: pictorial structure models (PSM) [71,74], tree-structured models [41,75–81], improved tree-structured models [36,82–89]

Human Body Models

(2) Learned graph structure: learned pairwise body part relations [90], learned tree structure based on Bayesian Networks [91,92]

Planar Planar model: Active Shape Model (ASM) [93–96], cardboard [97]

Volumetric Models (1) Cylindrical model: [98]
(2) Meshes: Shape Completion and Animation of People (SCAPE) [99–103], enhanced SCAPE model [104], 3D models with shading [105], and others [94,99,106]

Prior Models Motion prior model: motion priors from motion capture data [107–110], joint limits [111], random forests (RFs) and principal direction analysis [2], physics-based models with dynamics [112,113]

Generative Generative methods [22,114–119]

(1) Mapping-based methods: Support Vector Machines (SVMs) [120–122], Relevance Vector Machines (RVMs) [32,123–125], Mixture of Experts (MoE) [126–128], Bayesian Mixtures of Experts
(BME) [129,130], direct mapping [32,60,120–125,131–133], 2D to 3D pose boosting [78,134–137]; supervised and unsupervised [64,138] and semi-supervised methods [139–141]

Learning-based Methods
(2) Space Learning: manifold learning [24,34,142–147], subspace learning [148,149], dimensional reduction [150], and others [56,64,151,152]

Discrimi- (3) Bag-of-words: [130]
native Methods (4) Deep learning: part detection with the accurate localization of human body parts through deep learning networks [66,153,154], features learned through deep learning and modeling the human body

with kinematic graphical models [155,156], learning both with deep learning [90,157–159], and enhanced deep learning algorithms [160–164]

Examplar Randomized trees [165], Random Forests [166,167], and sparse representation [168–171]

Methods Combined Methods Combined Methods of discriminative and generative methods: [147,172–180]

Top-Down Methods Top-Down Methods: [181]

Bottom-Up Methods
Pixel-based Boosting pose estimation accuracy iteratively [97,182–186], pose estimation combined with segmentation [187–193]

Part-based Methods (1) Pictorial Structures: Pictorial Structures [36,77,79,189,194–197] and its deformations [79,195,198,199]
(2) Enhanced Kinematic Models: better appearance [187], more modes [88], cascaded models [36,84,200,201], and loopy-graph models [87,202,203]

Combined Methods
First Combined methods of detection- and recognition-based methods: [37,60,204–207]

Second Combined methods of pixel-based and part-based methods: [46,193,205,208–210]

Motion-based Methods Motion model [211,212], kinematic constraints from motion [213–215], sampling based tracking [177,216–218], Gaussian Process Latent Variable Model (GPLVM) [45,219–222], Gaussian Process Dynamical
Models (GPDMs) [223]
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2. Features

Given monocular images, a very important question, and most frequently the first step in the
pipeline, is to extract key points, describe them, and feed to the next processing unit. The performance
of various features needs to be evaluated in order to determine which feature to choose within
a certain context.

Feature points extract most of the representative information in images, but are usually noisy
and contain redundant information (as shown in Figure 2b). These features are then encoded to be
more concise and descriptive. According to how the feature is encoded, the following sections are
organized as follows: Section 2.1 presents low-level features which use extracted features directly;
Section 2.2 describes preliminary feature encoding; and Section 2.3 introduces high-level features which
denote semantic interpretation of image contents. In low-level features, both features measured in the
vicinity of described points and features describing overall characteristics of a target are considered.

(a) (b)

Figure 2. Edge Filter and Extracted Edge Feature Examples. (a) Haar Filters as Edge Filters;
(b) Edge Features in [37].

2.1. Low-Level Features

To capture appearance, geometry, and shape information of human body parts, features commonly
extracted are silhouettes [31–34], contours [35,36], edges [37,38], etc. Silhouettes extract outlines of
objects and are invariant to texture and lighting [32,128,224–226]. Contour captures the outline of body
parts and is a path with edges linking crossing points of segmentation boundaries [36]. Edges extract
sharply varying lines in images and are usually computed by convolution.

In comparison, silhouettes are global descriptors enclosing an overall view of an object and
usually require prior knowledge of the background to extract the foreground object, as shown in
Figure 3; Contours require pre-processing (such as segmentation), and they enclose details in addition
to outline information, as shown in Figure 4; Edges are rather scattered features and can be computed
directly from filtering, as shown in Figure 2b. Figure 2b shows examples of edge filters for convolution
and detected edge examples in [37]. Figure 2a shows Haar features as an example of edge and line
filters. Other features that model body part appearance include color [36,39,40] and texture [41].
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(a) (b) (c)

Figure 3. Examples of Silhouette Extraction in [227]. (a) The background image; (b) An original image;
(c) The extracted silhouette from (b).

(a) (b)

Figure 4. Contour Features from [228]. (a) An original image; (b) Extracted contours.

2.2. Mid-Level Features

Extracted silhouette features are usually encoded as Fourier descriptors [42], shape contexts [44],
geometric signatures [48], Poisson features [49], and so on. The most frequently used shape context
descriptor captures the distribution of points relative to the current point being described, as shown in
Figure 5a. Specifically, a histogram is computed using log-polar coordinates, and the space is divided
into several angle and radius bins. Points falling in each bin are accumulated to form a histogram
distribution, as shown in Figure 5b. It converts distributed points into a multi-dimensional descriptor,
and this statistical means of computation is robust against local silhouette segmentation errors [43–47].

Other features based on edges or gradients are encoded as histograms of oriented gradients
(HOG) [50–52], relational edge distribution [53], Scale Invariant Feature Transform (SIFT) [54,55] and
SIFT-like features [56,57], edgelet features [58], shapelet features [59], and so on. By measuring on
a number of scales, SIFT features (shown in Figure 6a) can be matched against scale variance and
are extremely popular among computer vision researchers before deep convolution networks are
widely applied to automatically extract features. HOG features are extremely popular features for
human pose estimation, and usually several HOG templates representing various states of a body
part are learned (visualized in Figure 6b). Edgelet (in Figure 7) and shapelet (in Figure 8) features are
combinations of edges and gradients, respectively.
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(a)

(b)

Figure 5. Shape context examples. (a) Log-polar coordinates in shape context; (b) Shape Context Encoding.

(a) (b)

Figure 6. Two widely utilized feature extractors and descriptors. (a) Scale Invariant Feature Transform
(SIFT); (b) Histogram of Gradient (HOG) templates [229].
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Figure 7. Edgelet features [230]. (a) The Sobel convolution result; (b) Examples of edgelet features and
orientation quantization.

Figure 8. Shapelet Features from Two Sample Images. Each computed in one direction [59].

Other than local features mentioned above, there are many global features which capture
overall characteristics, for example, the object foreground map [46] and dense grid features, like
the grids of HOG descriptors [50] or grids of SIFT features [56,60]. Grid features—for example, grid of
SIFT—outperform the SIFT feature extractor and descriptor, according to experience.

Multilevel hierarchical encodings, like Hierarchical Model and X (HMAX) [61], hyperfeatures [62],
spatial pyramid [63], vocabulary tree, and Multilevel Spatial Blocks (MSB) [64] are more stable
in preserving invariance to geometric transformations. Other features, such as local paths [231],
prediction pipeline [232], and Extremal Human Curves [233] are also common features in human
pose estimation.

A convolutional neural network (CNN, or ConvNet) is currently the most popular feature in
computer vision, artificial intelligence, machine learning, and many other fields. CNN is an extension
of a neural network. Input images are processed by convolution and downsampled several times
to extract features, and fully-connected layers consider integrated efforts from all. Estimated errors
are back-propagated, and network parameters are adjusted accordingly. Recently, many works have
used CNN extracted features for human pose estimation [65–67].

2.3. High-Level Features

Several descriptors have high-level characteristics, such as body part patches, geometry
descriptors, or context features. Body part patches assume any of the spaced orientation, and they can
have any position inside the patch. They are more general descriptors compared to body parts,
which are confined within a body limb, between body joints, or within the vicinity of a body
joint. The combined body parts, as a geometry descriptor, contain semantic relations among single
parts [68–70], usually encoded as putting two sets of features together, including body parts’ location
and orientation [36]. Context, on the other hand, captures spatial or temporal correlations, and can
represent task-specific features [8]. High-level features encode semantic co-occurrence between
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composing units. Compared with mid-level features, which are a spatial or temporal encoding
in a predefined pattern, high-level features mine correlations from training data and let data speak
for itself.

2.4. Motion Features

As mentioned previously, estimated poses from monocular images could be utilized as
an initialization for pose tracking in smart surveillance systems. Temporal and spatial consistency in
videos could be extremely useful; for example, it can be used to correct estimation failure in one single
frame. We review motion cues utilized by human pose estimation.

Motion features such as dense optical flow [71], robust optical flow [72], edge energy and motion
boundaries, and their combinations [73] enhance estimation performance by temporal correspondence.
Optical flow [234] is the pattern of object, surface, and edge motions caused by the relative motion
between an observer and the scene (shown in Figure 9). The gradient in the optical flow is related to
movements, and could be used to track poses [213,235]. Features representing local motion similarities,
such as motionlet [151,152] and motion and appearance patches based on image difference [236] are
also used.

(a) (b) (c)

Figure 9. Illustration of the Optical Flow Descriptor. (a,b) Reference images at time t and t + 1;
(c) Computed optical flow.

Single features are insensitive to background variations, thus resulting in ambiguities. Features can
be combined to improve the performance of pose estimation [237,238]. Human poses in monocular
images could be estimated more accurately by combining multiple image cues with different traits,
such as edge cue, ridge cue, and motion cue [239].

3. Human Body Models

One of the key issues in human pose estimation is how to build and describe human body models.
A human body encloses human body kinematic structure information, human body shape information,
and texture information, if possible. For example, a kinematic joint model of around 30 joint parameters
and eight internal proportion parameters encoding the positions of the hip, clavicle, and skull tip joints,
and the human body shape can be denoted as nine deformable shape parameters for each body part,
gathered into a vector [226]. In discriminative methods, the kinematic models are utilized to assemble
separately detected body parts or body joints. Under geometric projections, these models with a pose
can be mapped to a plane, and thus compare with image evidence to verify the projected pose.

The configuration of a human pose can be determined by body part orientation. A stick is capable
of specifying a limb orientation, thus a human body can be modeled as a stick figure—as shown in
Figure 10a. Body part volumes play an important role in localization when the volumetric human
model (as shown in Figure 10c) needs to be projected onto a 2D image plane where the effectiveness of
the pose is validated by comparing with image evidence. In the following sections, we discuss various
types of human body models.



Sensors 2016, 16, 1966 11 of 39

( )a ( )b ( )c

Figure 10. Three Types of Human Body Models. (a) Kinematic model; (b) Cardboard model;
(c) Volumetric model.

3.1. Kinematic Model

Models that follow the skeletal structure are called kinematic chain models [91]. The set of joint
positions and limb orientations are both effective representations of a human pose. One coordinate-free
representation is introduced in [137]: the local coordinates of the upper-arms, upper-legs, and the
head can be converted into spherical coordinates, and the discretized azimuthal and polar angles
of the bones can be defined. The kinematic model allows us to incorporate prior beliefs about joint
angles. To achieve this, a set of joint angle training data needs to be labelled with positive and negative
examples of human pose [108].

There are two categories of the kinematic model; one is the predefined model, and the other is
the learned graph structure. A very popular graph model is pictorial structure models (PSM) [71,74].
A special case of PSM is tree-structured models. Thanks to their unique solutions, tree-structured
models are successfully applied in human pose estimation, in either 2D or 3D [41,75–81]. However,
the inference is unable to capture additional dependencies between body parts, other than kinematic
constraints between connected parts. For example, a kinematic tree model has its limitations in
representing global balance and gravity constraints. In addition, the body parts could not be completely
detected under the circumstance of partial occlusion [240].

Many researchers seek an improvement of tree-structured models [36,82–89]. For instance,
authors in [82] solve the lack of model description by adding tree-structured models with different
shapes, the authors of [83] add the spatial constraint of unconnected body parts by changing the
optimized objective function, the authors of [88] enhance the descriptive ability by adding the states of
the models. The authors of [82] use multiple tree models instead of a single tree model for human pose
estimation. The parameters of each individual tree model are trained via standard learning algorithms
in a single tree-structured model. Another example of using multiple tree structures is [241], where
different tree models are combined.

More general than predefined structure models, pairwise body part relations could be learned
from images [90]. Additionally, a tree structure based on Bayesian networks could be learned [91,92].
These models are non-parametric with respect to the estimation of both their graph structure and
their local distributions.

3.2. Planar Model

Other than capturing the connecting relations between body parts, planar models are also capable
of learning appearance. Various means are used to learn the shape and appearance of human body
parts. One example is Active Shape Models (ASMs). ASMs are used to represent the full human body
and capture the statistics of contour deformations from a mean shape using principal component
analysis (PCA) [93–96].
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Another example is the cardboard model (shown in Figure 10b), composed of information about
object foreground colors and body part rectangular shapes. The cardboard model usually has a torso
and eight half limbs, each body part’s appearance is represented by the average RGB color, and the
foreground color histogram is also stored. For example, the authors of [97] used the cardboard model
for human pose estimation.

3.3. Volumetric Model

Volumetric Models realistically represent 3D body shapes and poses. Geometric shapes and
meshes are both effective volumetric models. When using geometric shapes as model components,
human body parts are approximated with cylinders, conics, and other shapes, assembling body limbs.
For example, a person could be modeled as a composite of cylinders, with each cylinder connected to
one or several other cylinders [98]. Each joint of the cylinders has 1 to 3 degrees of freedom (DOF).
The model is described by the global translation and rotation. The limb pattern is extracted from the
model parameters, and the surface space can be determined by solving the least-square problem [242].
Conic sections are also utilized to model 3D human limb shapes. Cylindrical and conic sections
lead to rectangular or quadrilateral projected shapes. Such models clearly capture the true shape
of human limbs given wide variations in anatomy or clothing, and are more accurate than pictorial
structure-based approaches.

Another way of modeling a volumetric human body is meshes. The meshes are deformable and
triangulated models, so they are more suited for the representation of non-rigid human bodies [106].
One way to acquire mesh models is through 3D scans [243–245]. To estimate joint locations, the meshes
are usually segmented to several body parts. One widely-used 3D mesh model is Shape Completion
and Animation of People (SCAPE) [99–103]. Stitched puppet [104] models enhance the SCAPE
model by adding pairwise potentials. They define a “stitching cost” for pulling the limbs apart,
and learn pairwise relationships from images.

Furthermore, 3D human body models are incorporated with shading. For a given mesh, the shape
deformation gradients are concatenated into a single column vector. A Blinn–Phong model with
diffuse and specular components can be used to approximate a body’s reflectance when there is
a single light source [246]. The shadows cast from a point light source provide additional constraints
on pose and shape [105]. After the pose and shape parameters are estimated, the light position from
shadows are determined, and the pose and shape from foreground regionsand shadow regions are
also re-estimated.

Models that are expressive enough to represent a wide range of human bodies and poses with
low dimensions are also explored [94]. The authors of [99] build on the SCAPE model and develop
a factored representation.

3.4. Human Pose Priors

The human body pose is constrained by several factors, such as kinematics, operational limits
of joints, and behavioral patterns of motion in specific activities [247,248]. Kinematic constraints,
together with a dynamic model, provide enough information to estimate human poses [249].

The availability of motion capture techniques [250–252] allows pose priors to be learned from
data. To learn pose constraints efficiently, the authors of [107] collect a motion capture data set to
explore human pose possibilities. With collected data, a set of joint angle training data labeled with
positive and negative examples of human poses could be utilized [108]. However, pose priors learned
from one motion have problems generalizing to novel motions [110].

Some studies learn the human pose priors as a pose-dependent model of joint limits [111],
and others train random forests (RFs) and principal direction analysis to model the human bodies [2].
For physics-based models with dynamics, related works include [112,113]. When temporal information
is available, prior models [109] of human motion can be learned to constrain the inference of 3D pose
sequences to improve monocular human pose tracking.
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4. Methodologies

There are two main ways of categorizing human pose estimation algorithms. Based on whether
human pose estimation is modeled as a geometric projection or is treated as a specific image
processing problem, related works can be classified into two main groups: generative methods
or discriminative methods.

Another way of categorization differentiates between whether the human pose estimation problem
is worked out by beginning with a high-level abstraction and working downwards or by beginning
with low-level pixel evidence and working upwards. Methods working downwards are called
top-down methods, while bottom-up methods work upwards.

4.1. Discriminative Methods and Generative Methods

The generative model is defined in terms of a computer graphics rendering of poses. A volumetric
human body model is usually required, and the model is projected to image space (as shown in
Figure 11a) and adjusted so that the projection and the image observation are compliant (as shown in
Figure 11b). While in learning methods, correspondences between image features and human poses
are modeled, and the 3D human pose estimation problem is treated as a search or a regression problem.
The learning method is usually faster, as it considers only image observations, while the generative
method models the intrinsic process of this problem. The discriminative model consists of a set of
mapping functions that are constructed automatically from a labeled training set of body poses and
their respective image features.

(a) (b)

Figure 11. Geometric Reconstruction of 3D Poses. (a) Perspective camera models; (b) An example pose
and its projection.

One of the differences between generative methods and discriminative methods is that the first
category starts from a human body model initialized with a pose and projects the pose to the image
plane to verify with image evidence (as shown in Figure 11b), while the second category starts from
the image evidence and usually learns a mechanism modeling the relations between image evidence
and human poses based on training data. Their working directions are completely opposite.

4.1.1. Discriminative Methods

Discriminative approaches start from the image evidence, estimate pose by a mapping- or
a search-based mechanism. The model describing the relations between the image evidence
and the human poses could be learned from training data [253]. Once the model is trained,
testing is usually faster than generative methods, because it descends into a formulation calculation
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or a constrained search problem instead of optimizing a high-dimensional parametric space.
Discriminative approaches search for the optimal solutions within their scope [254–259].

There have been many studies utilizing this category of methods, and they can be further
divided into two main sub-categories: learning-based [34,160] and example-based [260,261] methods.
These sub-categories are further divided as follows:

1. Learning-based methods

(a) Mapping based methods. One extremely popular model for learning these types of maps
isSupport Vector Machine. Support Vector Machines (SVMs) [120–122] are discriminant
classifiers that train hyperplanes for discrimination between classes. The most decisive
examples in training are picked as support vectors. Similarly, in Relevance Vector Machines
(RVMs), which are a Bayesian kernel method, the most decisive training examples are picked
as relevance vectors [32,123–125]. Non-linear mapping models are also utilized, for example,
Gaussian Processes [26].

More complex mapping mechanisms can be modeled with a Mixture of Experts (MoE)
model, a Bayesian mixtures of experts (BME) model, and other models. For example, the
authors of [262] exploit a learned MoE model which represents the conditionals [126–128]
to infer a distribution of 3D poses conditioned on 2D poses. BME [129,130] could model
the multi-model distribution of the 3D human pose space conditioned on the feature space,
since the image-to-pose relation is hardly linear.

Mapping-based methods can also be further categorized into direct mapping methods and
2D-to-3D boosting methods. One class of learning approaches uses direct mapping from
image features [32,60,131–133,162,263], and another class of approaches maps the image
features to 2D parts and then uses modeling or learning approaches to map 2D parts to 3D
poses [78,134–137].

Based on whether the mapping is learned with labelled ground truth data or not, mapping
can be both supervised and unsupervised [64,138]. Furthermore, semi-supervised methods
are used as well [139–141].

(b) Space learning-based methods. Both topology space and subspace are utilized to learn
mapping. For example, in a topology space-based method, arbitrary non-rigid deformations
of a 3D mesh surface could be learned as manifold [24,34,142–147].

On the other hand, subspace could also be learned to constrain the solution space.
For example, an embedding can be learned by placing images in similar poses nearby,
avoiding the estimation of body joint positions [148,149]. Dimensional reduction
technologies can also be used to remove redundant information [150]. Locality-constrained
Linear Coding (LLC) algorithms [151,152] can also be performed to learn the nonlinear
mapping in order to reconstruct 3D human poses.

Other methods, such as Relevant Component Analysis (RCA) [64], Canonical Correlation
Analysis (CCA), and Non-negative matrix factorization (NMF) [56] are also typical
algorithms used to mine data correlations.

(c) Bag-of-words based methods. The bag-of-words pipeline is the most popular computer
vision algorithm solution before the deep learning algorithm. The main idea of the
bag-of-words pipeline is to first extract the most representative features as a vocabulary,
and then denote each training data based on image evidence and the vocabulary in
a statistical way: the occurrence of each word in the image is counted, all occurrences
of words in the vocabulary form a histogram, and this histogram is taken as the final
representation of the input image. This representation process is shown in Figure 12.
This feature representation is then fed to a classifier or a regression model to complete
the task [130].
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By selecting the most representative features as the vocabulary, followed by a histogram
representation based on the vocabulary, an image can be represented with a vector of
a fixed length equal to the size of the vocabulary. In this way, the image is represented
with a statistical occurrence of the most salient features and is compressed to the size of
the vocabulary.

…

Vector quantization

A Test Image

Codebook

Codewords

Frequency

Training Images

Features

Figure 12. Bag-of-words feature representation pipeline.

(d) Deep learning-based methods. Deep learning is an end-to-end learning method that
automatically learns the key information in images. Convolutional Neural Networks
(CNN) [156,157,264,265] are popular deep learning models which have multi-layers, with
each layer composed of multiple convolutions and some other hybrid architectures (refer to
Figure 13 for an example of CNN architecture). Deep learning-based human pose estimation
mainly has three categories: (1) combined part detection with the accurate localization
of human body parts through deep learning networks [66,153,154]; (2) learning features
through deep convolutional neural networks and learning human body kinematics through
graphical modelling [155,156]; (3) learning both features and body part locations through
deep learning networks [90,157–159].

The regression methods [162] based on deep learning have various extensions, such as
a mixture of Neural Networks (NNs) [160] which uses a two-layer feedforward network and
linear output neurons as a model for local NN regression. The authors of [155] also propose
a combined architecture that involves a deep convolutional network and a Markov Random
Field (MRF) model. The authors of [163] present a CNN that involves training an Regions
with CNN features (R-CNN) detector with loss functions. The authors of [164] adopt an
iterative error feedback that changes an initial solution by feeding back error predictions.
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Figure 13. The convolutional network architecture used in [156]. It includes: one input layer, two
convolution and down sampling layers, one convolution layer, two fully connected layers, one logistic
regression layer, and one output layer. Note, “LCN” stands for local contrast normalization, and ReLU
and logistic are activation functions.

2. Exemplar-Based Methods

The exemplar-based approaches estimate the pose of an unknown visual input image [118] based
on a discrete set of specific poses with their corresponding representations [160]. Randomized
trees [165] and random forests [166,167] are fast and robust classification techniques that can
handle this type of problem [266].

Random Forest is an ensemble classifier that consists of several randomized decision
trees [142,267] and has a nonterminal node containing a decision function to predict the
correspondences by regressing from images to terminal nodes, like mesh vertices [9] (Figure 14
shows an example). Enhanced random forests were used by [268], which employed two-layered
random forests as joint regressors, with the first layer acting as a discriminative body part classifier
and the second one predicting joint locations according to the results of the first layer.

Another type of approach is based on Hough forests. Hough forests are combinations of decision
forests, and the leaf nodes in each tree are either a classification node or a regression node. The
set of leaf nodes can be regarded as a discriminative codebook. The authors iof [269] directly
regressed an offset to several joint locations at each pixel. Improved versions include an optimized
objective, like a parts objective (“PARTS”) based on discrete information gain [9], while other
works report the generalization problem of the specified objective [270,271]. Furthermore, sparse
representation (SR) is used to extract the most significant training samples, and later on, all
estimations are carried out based on these samples [168–171].
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Figure 14. A tree that composes random forests [167]. The tree consists of split nodes (blue) and leaf
nodes (green). The red arrows indicate the path that is taken for a particular input.

4.1.2. Generative Methods

The predictions made at the pixel level yield a set of independent local pose cues that are unlikely
to respect kinematic constraints. By fitting a generative model to these cues, [142,272,273] resolve
this problem.

Generative approaches [22,114–119] model the likelihood of the observations given a pose
estimate. Inference involves a complex search over the state space to locate the peaks of the
likelihood [128]. Generative methods are susceptible to local minima, and thus require good initial
pose estimates, regardless of the optimization scheme used. The pose is typically inferred using local
optimization [274–278] or stochastic search [279–281].

4.1.3. Combined Methods of Discriminative and Generative Methods

Generative methods project the human model into the 2D image space and measure a distance
between them [160], while the discriminative methods detect the parts of the human body to reconstruct
the human pose. Generative methods suffer from low efficiency, while discriminative methods struggle
to generalize to poses not present in the training data [130].

To take advantage of both categories and avoid their shortcomings, some research was done
exploring the combination of these two types of methods together. The combination is generally
implemented by initializing the pose with the estimation from discriminative methods [179] and
optimizing the human pose within a local area through generative methods [172–174], as shown in
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Figure 15. Through iterative optimization in the generative process, poses of the 3D human model are
adjusted by comparing with image evidence in the discriminative process.

Input 

images

image 

features(e.g.,s

ilhouettes)

3D model

Generative method

Discriminative method

Initialization

Projection

Figure 15. Overview of the combined method of discriminative and generative methods.

In generative methods, the space of silhouettes can be projected from 3D human poses. One pose
generates several different silhouettes under various viewpoints [175]. The structural parameters
of the 3D articulated volumetric model contribute to the projection of the 3D geometric human
body model [226,282], and Bayes’ rule could be used to estimate the model parameters and achieve
a probabilistic interpretation. An estimated pose with the discriminative method could be used as
initialization, and the manifold of silhouette space could be used to optimize the optimization [147,176].

Other combined methods include probabilistic Gaussian modelling and others [177–179].
These two models could also be combined to inference the articulated human pose by deriving
a combined formulation [180].

4.2. Bottom-Up Methods and Top-Down Methods

We consider a second way to categorize, based on the direction human pose estimation algorithms
are working semantically; that is, the method works from top level semantic abstraction to low level,
or it works the other way around. Images are considered as the lowest level in the semantic hierarchy,
human pose configuration is considered as in the higher level, and also human action types to which
human poses belong. Note that some notations use top-down methods to refer to generative methods
described above and use bottom-up methods to refer to discriminative methods. In this paper, we do
not use these terms in this way.

4.2.1. Bottom-Up Methods

In bottom-up methods, pieces of image evidence are collected and described to form descriptive
features. These features are sometimes utilized directly to predict human poses, and sometimes
used to localize body parts whose occurrences in images are then assembled to form a human
occurrence. In Section 4.1, we discuss mechanisms modeling image representations and human
pose correspondences. In this section, we collect and compare methods fusing low-level image
evidence to form high-level semantics. Based on unit size, bottom-up methods can be further divided
as follows:

1. Pixel- or superpixel-based methods. Pixel information can also be used to boost pose estimation
accuracy [186]. For example, pixel information is used as input to an iterative parsing process,
which learns better features tuned to a particular image [182].

The pixels or superpixels of an image can also be used to formulate a segmentation function
and be integrated into pose estimation. For example, they can be used to formulate the
energy function of segmentation algorithms and integrate object segmentation with a joint
optimization [187,191,193].
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Pixel-based methods can also be combined with other methods. For example, the authors of [192]
extend the per-pixel classification method with graph-cut optimization, which is an energy
minimization framework. Furthermore, results from segmentation can be utilized to enhance
pixel-level estimation. The authors of [188] propose an approach that progressively reduces the
search space for body parts by employing “grabcut” initialized on detected regions to further
prune the search space [189,190]. Part-based and pixel-based approaches can also be combined in
a single optimization framework [208].

The superpixels are also useful in restricting the joint positions in the human body model [283].
In superpixel-based methods, body part matching and foreground estimation obtained
by superpixel labeling could be optimized, for example, with a branch-and-bound (BB)
algorithm [97,183–185]. Additionally, the authors of [284] compare the quality of segmentation
derived from appearance models generated by several approaches.

2. Part-based methods. Part-based methods solve pose estimation problems through learning
body part appearance and position models. In part-based methods, body part candidates
are first detected from image evidence, and then detected body parts are assembled to fit
image observations and a body plan [206]. As an iconic work, a flexible mixture of parts
model was introduced in [80], which extends the deformable parts model (DPM) [41] for
articulated 2D body pose estimation. It was further improved using a compositional and/or
graph grammar model [285].

One key issue in part-based methods is to decide how to fuse responses of each single body part
into a whole, and this is related to how the human body is modeled. We organize the following
based on the characteristics of the human body models, and further divide part-based methods.

(a) Pictorial Structures. Pictorial structures [36,77,79,189,194,196,197,286] are a kind of graphical
kinematic model over detection methods, with the nodes of the graph representing object
parts, and edges between parts encoding pairwise geometric relationships.
Different deformations of the classic Pictorial Structures models have been developed, such
as Adaptive Pictorial Structures (APS) [79], Multi-person Pictorial Structures (MPS) [195],
Poselet Conditioned Pictorial Structures [198], the Fields of Parts (FOP) [199], and others.
The tree structure is one of the most successfully applied pictorial structures. The model
decomposes a tree structure into unary appearance terms and pairwise potentials between
pairs of physically-connected parts, as shown in Figure 16a. With sliding windows methods,
trained body part templates (HOG templates are visualized in Figure 6b) are compared
with image features. Responses from all body parts are passed through the tree structure
(as shown in Figure 16b), and a final score is calculated at the root of the tree.

(a) (b)

Figure 16. Tree-structured human body model in human pose estimation. (a) Tree-structured body
model; (b) A pose estimation example.
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(b) Enhanced Kinematic Models. Enhanced kinematic models often have better appearance,
and are more expressive in describing pose constraints. For example, a variety of modes
are included to enhance the representation abilities of the kinematic model, such as the
Multimodal decomposable model (MODEC) model [88], which has a left and right mode
and half- and full-bodied modes.

There have also been many studies conducted on improving kinematic models with cascaded
structures. For example, the authors of [36] propose a coarse-to-fine cascade of pictorial
structure models. The states of cascade framework could be pruned and computed [201].
By resorting to multiple trees, the framework estimates parameters for all models, requiring
only a linear increase in computation over learning or inference than a single tractable
sub-model [200]. The authors of [84] propose a new hierarchical spatial model that can
capture an exponential number of poses with a compact mixture representation on each
part. Using latent nodes, it represents a high-order spatial relationship among parts with
exact inference.

Furthermore, instead of pre-defining a kinematic model, a latent tree model [287] can
recover a tree-structured graphical model which best approximates the distributions of a set
of observations. In addition, by modifying regression methods, pose estimation accuracy
can be improved. For example, the authors of [187] introduce part-dependent body joint
regressors to classify the body parts and predict joint locations.

The local scores of children in tree-structured models could be correctly traversed to their
parents, while in case occlusion, the score may traverse to the wrong parent, resulting
in missing parts and inaccurate detection, turning the tree structure into a graph [288].
Enhanced tree-structured models are also proposed to deal with this problem. The occlusion
rectification method based on regression could detect occlusion by encoding the kinematic
configurations in a tree. Since non-adjacent parts are independent, the occluded parts could
be estimated [289]. The problems of foreshortening and part scale variation can be addressed
by defining a body part with body joints instead of body limbs [206,258,290].

None-tree methods have recently been proposed to facilitate stronger structure constraints,
and can be optimized using convex programming or belief propagation [130]. It is believed
that loopy graphical models are necessary when combined parts are used to handle large
variance in appearance [87]. Loopy Graphical Models [202,203] begin by sending messages
from the leaf nodes to the root, and then from the root node to the rest. Articulated grammar
models are another example of non-tree models. The authors of [285] present a framework
using the articulated grammar model to integrate a background model into the grammar to
improve localization performance.

4.2.2. Top-Down Methods

The top-down method is used to refer to generative methods in [181,291], but in this survey we
use this term to denote the problem solving process of working from high-level semantic to lower-level
image evidence [181], where high-level semantic is used to guide low-level recognition. By this
notion, top-down methods are more frequently combined with bottom-up methods than being used as
a separate method, since higher-level semantics are usually what we want to achieve.

4.2.3. Combined Bottom-Up and Top-Down Methods

The way that bottom-up methods and top-down methods combine is more flexible than the way
discriminative and generative methods combine:

1. Combined detection- and recognition-based methods. Motivated by extensive literature
on both detection [33,35,51,58,59,200] and recognition [32,52,236,260,292–294], many works
explore the possibility of combing these two types of methods together to enhance estimation
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accuracy [37,204]. For example, by combining the graphical kinematic models with detection
methods, the detection and 3D poses could be obtained simultaneously [60,205–207]. On the
other hand, the authors of [295] introduce a method of monocular 3D pose estimation from video
using action detection on top of a 2D deformable part.

2. Combined pixel-based and part-based methods. Concurrent optimizing object matching and
segmentation enables more robust results, since the two closely-related pixel-based and part-based
methods support each other [46,193,208]. For example, pixel-wise body-part labels can be obtained
by combining part-based and pixel-based approaches in a single optimization framework [208].

The authors of Bray et al. [205] use graph cuts to optimize pose parameters to perform integrated
segmentation and 3D pose estimation of a human body. Global minima of energies can be found
by graph cut [209], and the graph cut computation is made significantly faster by using the
dynamic graph cut algorithm [210].

4.3. Motion-Based Methods

With temporal information, human pose estimation could be boosted with temporal and spatial
coherence, and human pose estimation could also be considered as human pose tracking. In this case,
not only body part shape and appearance are learned, but body part motion should also be extracted.
With motion cues, the articulation points of the human body can be estimated by the motion of the
rigid parts, and the constraints between adjoining parts in part-based models are modeled mainly as
graphical models [41,188,296,297]. The authors of [211] model the human body as a collection of planar
patches undergoing affine motion, and soft constraints penalize the distance between the articulation
points predicted by adjacent affine models. In a similar approach, authors [212] constrain the body
joint displacements to be the same under the affine models of the adjacent parts, resulting in a simple
linear constrained least squares optimization for kinematic constrained part tracking.

Motion model parameters can also be directly optimized. For example, the Contracting Curve
Density algorithm (CCD) [298] refines an initial parameter set to fit a parametric curve model to an
image. Additionally, the Wandering–Stable–Lost (WSL) model [299] was developed in the context of
parametric motion estimation. Motion information can also be extracted as flow fields. For example, the
articulated flow fields are inferred by using pose-labeled segmentation [300]. Part motion estimation
methods are also proposed [213–215].

Sampling is another way to solve motion models. The Markov chain Monte Carlo (MCMC)
technique is frequently used in motion-based human pose estimation as a sampling method. It samples
the complex solution space. The set of solution samples generated by the Markov chain weakly
converges to a stationary distribution equivalent to the posterior distribution. Data-driven MCMC
framework [177,216] allows the design of good proposal functions derived from image observations
such as face, head–shoulder contour, and skin color blobs. Particle Message Passing (PAMPAS) can also
be used to solve motion-based problems in the form of non-parametric belief propagation [217,218].
Additionally, a scale checking and adjusting algorithm is proposed to automatically adjust the
perspective scales during the tracking process to tackle the multiple perspective scales problem [301].

Gaussian Processes (GP), which can be used to specify distribution over function,
are generalizations of Gaussian distributions defined over infinite index sets [259,302,303].
After incorporating temporal information, the Gaussian Process Latent Variable Model
(GPLVM) [45,219–222] is proposed to learn the distributions of styles of human motion with
multi-factor correspondence to the latent variables. In addition, the use of Gaussian Process Dynamical
Models (GPDMs) [223] have been advocated for learning human pose and motion priors for 3D people
tracking [304]. Furthermore, based on learning dynamical models, Gaussian auto regressive processes
can be learned by automatically partitioning the parameter space into regions with similar dynamical
characteristics [305]. For a particular motion sequence, a circle dynamics model (CDM) is used when
the style is assumed constant over time to restrict the content of different styles to lie on the same
trajectory [110].
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The locality-constrained linear coding (LLC) algorithm [152] is another way to encode motion
attributes in reduced dimensions. LLC is performed to learn the nonlinear mapping in order to
reconstruct a 3D human pose. A novel motionlet LLC coding is proposed in a discriminative framework
using motionlets as codebooks in [151].

5. Datasets, Error Measurements, and Toolkits

5.1. Datasets

In this section, widely-used validation data sets for human pose estimation are collected and
shown in Table 2. We divide the collected data sets into two categories: still images and image
sequences, to distinguish between sequential image sequences with temporal coherence between
frames and those without. For each data set, the content is listed in the third column: some are action
types to which collected poses belong, and others are the compositions of the data set. In the last
column, the image numbers included in each data set are displayed. The table displays the collected
data sets in approximately chronological order within each category.

Table 2. Publicly available human pose estimation data sets.

Data Set
Content Image No.

Type Name

Still Images

PASCAL VOC 2009
Phoning, Riding Horse,
Running, Walking 7054

Gamesourcing [306]
300 images each from PARSE,
BUFFY, LEEDS 748

Leeds Sports Pose Dataset [307]

Athletics, Badminton,
Baseball, Gymnastics,
Parkour, Soccer,
Tennis, Volleyball

2000

“We are family” stickmen [308]

PASCAL VOC 2012
Ten actions, including
jumping, phoning, playing
instrument, etc.

11,530

PASCAL Stickmen [309] 549

PEAR [310] Five subjects performing
seven predefined

KTH Multiview Football Dataset I [311] 2D dataset 5907

KTH Multiview Football Dataset II [312] 3D dataset 2400

FLIC (Frames Labeled In Cinema) [313] Images in 30 movies 5003

FLIC-full [314] Images in 30 movies 20,928

FLIC-plus [315]

PARSE [316] Mostly playing sports 305

MPII Human Pose Dataset [317]
hockey ice, rope skipping,
trampoline, rock climbing,
cricket batting, etc.

25,000

Poses in the Wild [318] 900

Multi Human Pose [319]

Human 3.6H (H36M) [320]

Seventeen scenarios,
including discussion,
smoking, taking photo,
talking on the phone, etc.

3.6
million

ChaLearn Looking at People 2015: Human Pose Recovery [321] 8000
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Table 2. Cont.

Data Set
Content Image No.

Type Name

Image Sequences

CMU-Mocap [322]
Jumping Jacks, Climbing
a ladder, Walking

Utrecht Multi-Person Motion [323] Multi-person motion image
sequences

HumanEva-I [324]
Walk, Jog, Gestures,
ThrowCatch, Box 74,267

HumanEva-II

TUM Kitchen [325] >20,000

Buffy Pose Classes (BPC) [326]
Episodes 2 to 6 of the 5th season
the TV show “Buffy the vampire
slayer” (BTVS)

748

Buffy Stickmen V3.01 [327] Five episodes of the fifth season
of BTVS

H3D database With 3D joint positions 1240

Video Pose [328]
Forty-four short clips from Buffy
the Vampire Slayer, Friends,
and LOST

1286

Video Pose 2.0 dataset 900

5.2. Error Measurements

For the validation of human pose estimation algorithms, various error measurements are used.
These error measurements can be split into two categories, based on whether human pose is represented
as a collection of body parts or body joints. Body part-based error measurements include the PCP
(Percentage of Correct Parts) metric [329]) and Mean (over all angles) in [127]. Body joint-based
error measurements include PDJ (Percent of Detected Joints) metric, APK (Average Precision of Key
Point) [229], and PCK (Probability of Correct Key Point) [229]. In addition, these two error measurement
methodologies are combined as an overall measurement [88].

5.3. Toolkits

OpenVL provides a high-level interface to image segmentation [330]. Pose detection is a
component in this library. It introduces an abstraction layer above the sophisticated techniques
in vision: an abstraction layer is developed through which a description of the problem may be
provided, rather than requiring the selection of a particular algorithm that is confined to computer
vision experts. The algorithm can be chosen by searching in a table [8]. The table contains four
algorithms, four image descriptions, seven target descriptions, and three output requirements. Various
elements are combined, and users can select a proper algorithm based on descriptions.

6. Discussion

Human pose estimation from monocular images has been extensively studied over past decades,
and the problem is still far from being completely solved. Different from other computer vision
problems, human pose estimation requires the localization of human body parts from images and
their assembly based on a predefined human body structure. What is more, it is mostly a regression
problem which has a continuous output space. One interesting problem is to model the human pose
space or to confine the high-dimensional solution space. For example, instead of using the Euclidean
difference of two deformations—which is not capable of providing a meaningful measure of shape
dissimilarity—the authors of [144] explore lie bodies, a Riemannian structure which factors body
shape deformations into multiple causes or represents shape as a linear combination of basis shapes.
In this space, arithmetic over body shape deformations makes sense. Furthermore, when working
with deep learning, an extensive collection of human poses would be useful for training deep nets, but
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this would be tons of work due to the high degree of freedom of human poses and ambiguous human
body joint limits.

Until now, almost all solutions are aiming at designing an algorithm, but very few work on
algorithm efficiency. To be successfully applied in real-life applications, this is a factor that must be
considered. So, the proposal of efficient human pose estimation algorithms for real-time application
could provide a bright future to this problem. Efficient and accurate algorithms based on deep learning
are still an open challenge. Successful algorithm design and engineering experience are both required
for further advancements in this direction. Either an algorithm that can take advantage of various
types of data sets could be proposed, or a new large-scale data set should be collected to facilitate
the solution.

Another unsolved challenge is partial and self-occlusions. Almost all human pose estimation
algorithms use predefined human body structure to be efficient and deterministic; only a few learn
the human body structure from the images. How to efficiently and accurately model human body
structure from images is still an open challenge.
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