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Spatiotemporal Low-rank Modeling for Complex
Scene Background Initialization

Sajid Javed, Arif Mahmood, Thierry Bouwmans, and Soon Ki Jung, Member, IEEE,

Abstract—Background modeling constitutes the building block
of many computer-vision tasks. Traditional schemes model the
background as a low rank matrix with corrupted entries. These
schemes operate in batch mode and do not scale well with the
data size. Moreover, without enforcing spatiotemporal informa-
tion in the low-rank component, and because of occlusions by
foreground objects and redundancy in video data, the design
of a background initialization method robust against outliers
is very challenging. To overcome these limitations, this paper
presents a spatiotemporal low-rank modeling method on dynamic
video clips for estimating the robust background model. The
proposed method encodes spatiotemporal constraints by regu-
larizing spectral graphs. Initially a motion-compensated binary
matrix is generated using optical flow information to remove
redundant data and to create a set of dynamic frames from
the input video sequence. Then two graphs are constructed, one
between frames for temporal consistency and the other between
features for spatial consistency, to encode the local structure for
continuously promoting the intrinsic behavior of the low-rank
model against outliers. These two terms are then incorporated
in the iterative matrix completion framework for improved
segmentation of background. Rigorous evaluation on severely
occluded and dynamic background sequences, demonstrates the
superior performance of the proposed method over state-of-the-
art approaches.

Index Terms—Background modeling, Matrix completion, Ro-
bust Principal Component Analysis, Spatiotemporal graph reg-
ularizations.

I. INTRODUCTION

BACKGROUND modeling and initialization is a major step in
many image processing and computer vision applications,

such as moving object detection [1], video surveillance [2],
video segmentation [3], and video inpainting [4]. This pre-
processing phase involves extraction of a good quality back-
ground image from a given input observation matrix or video
sequence containing outliers and missing data. A plethora of
algorithms have been proposed for background modeling and
initialization [5]–[9]. Interesting surveys on the segregation
of background-foreground can be perused in [2], [10]–[12].
Background modeling becomes challenging in the presence of
dynamic scenes, variations in lighting conditions, and occlu-
sions by foreground objects. Therefore, background modeling
remains an interesting and unresolved field of research [11].
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Subspace learning methods such as Robust Principal
Component Analysis (RPCA) [13] and Matrix Completion
(MC) [14] based on low-rank modeling have been investigated
for dimensionality reduction in high-dimensional space and
have attracted a considerable amount of attention over the
past few years. MC methods [15] try to decompose input
video sequence into an intrinsic structure known as low-rank
component, which corresponds to the model of background,
from partial observations of its entries. Fig. 1 shows an
MC-based successful reconstruction of the static model of
background given a sequence of input images of the Hall &
Monitor video taken from the Scene Background Modeling
and Initialization (SBMI) dataset [16]. The sparse component
constitutes irregular behavior of foreground objects. It can
also be computed from low-rank formulation, for example,
by solving the convex optimization framework of Candés et
al. [13], [14].

Unfortunately, most conventional MC and RPCA-based
matrix decomposition algorithms present some prevalent chal-
lenges for background modeling [2], [15]. Most of these
methods are based on batch processing. In order to model low-
rank matrix, given a few entries of an input video sequence,
a number of stacked training video frames must be stored
in memory prior to data processing. Also all frames have to
be accessed in each iteration of the optimization process. As
a result, these methods require a large amount of memory
and are computationally inefficient. In real-life background
modeling, it is more effective to quickly estimate low-rank
matrix incrementally when a new frame arrives rather than to
follow a batch strategy.

In many real world cases, the input video sequence consists
of redundant data in the form of motionless frames. In which
foreground objects remain static or move slowly within a spec-
ified time period. We observe that in these cases large number
of outliers appear in the low-rank component. Superfluous
data of this nature leads traditional MC approaches to poor
performance. The CaVignal sequence in Fig. 1 clearly demon-
strates the deficiencies of the recently proposed MC-based
methods [1], [17], [18] for background model computation
in the presence of superfluous data.

In some real world cases, clean background frames with-
out any foreground object, are not available for training. In
these cases either background and foreground coexist in each
frame, or background image is heavily occluded by foreground
objects. In such cases, background modeling becomes even
more challenging. For example, the Foliage sequence in Fig. 1
shows the failure of existing MC methods [1], [19] to estimate
background model because no prior knowledge about the
pixels of background-foreground was available. Another pitfall
of these methods is that they rely on the basic hypothesis
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(a) The set of input images [16] (b) Background 
model 

Fig. 1. Typical example of the initialization of constant model background
using state-of-the-art matrix completion frameworks [1], [19].

that background is static. This assumption is too restrictive in
real-life scenarios. Many contemporary methods are unable to
process situations in which background scene changes such
as those caused by rippling water surfaces, swaying trees, and
changing lighting conditions. For instance, the fall sequence
taken from the change detection (CDnet14) dataset [20] in Fig.
2 shows failure of the background-foreground separation in a
dynamic background scene.

Most existing RPCA [13], [19] and MC [1], [17] methods
cannot efficiently handle these challenges. The study presented
in this paper tries to overcome these limitations of the ex-
isting methods by proposing a robust Spatiotemporal Low-
rank Matrix Completion (SLMC) algorithm which is based on
multiple graph regularizations with dynamic frame extraction.
The graphs are constructed with dynamic video frames that
are computed from optical flow information. The proposed
SLMC is an unsupervised algorithm for the estimation of
background model and it efficiently handles the challenges
highlighted in Fig. 1 in a single unified framework. It is
assumed in SLMC that the images underlying background are
linearly correlated and that the observation matrix composed
of dynamic video frames can be approximated by the low-rank
component through iterative matrix completion assisted by the
optical flow information.

The proposed SLMC algorithm consists of three main
stages: (i) detection of dynamic images to create an input
dynamic sequence by discarding motionless video frames,
(ii) computation of spatiotemporal graph Laplacians, and (iii)
application of MC to incorporate the preceding two steps
for the initialization of the background model which was
occluded by foreground objects. First, a dense optical flow
field is estimated between two consecutive frames and then the
initial motion mask is generated, which facilitates the removal
of superfluous data samples from the original sequence and
creates a set comprising only the dynamic video clips. Second,
spatiotemporal graph Laplacians are computed to encode the
local similarity in dynamic sequence. Finally, iterative MC is
applied on each column of the set of dynamic video clips with
an initialized basis that guarantees fast convergence during the
optimization procedure. Unlike existing approaches such as
those investigated in [15], SLMC processes only one video
frame from the set of dynamic sequence per time instance via
stochastic optimization. The low-rank component estimated
by the SLMC method is more robust and accurate than that
obtained by previous MC approaches. It is because of the
manifold information encoded in the graph Laplacian between

(a) (b) (c) (d) 
Fig. 2. Difficulties caused by dynamic background scenes using classical
RPCA [13] for background-foreground separation. From left to right: (a) input,
(b) low-rank component, (c) sparse component, and (d) mask of foreground
objects, of fall sequence.

the frames and pixels of the set of dynamic sequence.
The proposed SLMC algorithm is then further extended to

Spatiotemporal Robust Principal Component Analysis (SR-
PCA) with dynamic frames extraction. SRPCA efficiently
separates the segments of foreground objects from dynamic
background to overcome the challenges demonstrated by Fig.
2. In SLMC algorithm, a motion mask is used to label pix-
els obviously belonging to the foreground. While recovering
background model, these pixels are considered as missing
values or unobserved data. The observed background data still
contains significant number of outliers which actually belong
to the foreground. To effectively handle missing values and
outliers, we propose the recovered background model to be
smooth on the temporal as well as spatial manifolds. This has
been ensured by incorporating a spatial and temporal graph
regularization in the low-rank matrix completion objective
function.

In contrast, the proposed SRPCA algorithm does not use
optical flow based foreground pixel labeling process performed
by the motion mask. However, the redundant data removal
step is still used to remove motionless frames. The input
to the SRPCA algorithm is the matrix containing a set of
dynamic sequence, but there is no motion mask matrix input
to SRPCA method. In SRPCA, both the background and the
foreground components are optimized simultaneously while
spatiotemporal smoothness constraint is only applied to the
background model. The proposed SRPCA model may also
be useful for extracting foreground objects from pre-recorded
videos. However, because of the lack of computational re-
sources it is very difficult to achieve a real-time processing
for such task. Therefore, an important application of SRPCA
method is offline video analysis for data mining purpose.

Finally, this study presents two types of very extensive
qualitative analysis of the proposed SLMC and SRPCA al-
gorithms: 1) For the task of reconstructing stationary model
of background through SLMC on new challenging sequences
of the SBMI dataset [16], and 2) detecting foreground objects
from non-stationary scenes background through SRPCA on
dynamic sequences of the I2R [21], Wallflower [22], and
CDnet14 [20] datasets. In addition, for evaluating the quality
of the static estimated background, a set of eight metrics
described in [16] is used. A comparison of our method and
earlier RPCA or MC and non-parametric learning methods is
also presented to demonstrate the robustness of the proposed
methods against outliers and the improvements in the modeling
of background via graph regularization.

The rest of the paper is organized as follows. Related
work is reviewed in Section II. The proposed method is
described in Section III. The experimental results are discussed
in Section IV. Finally, our conclusions and future research
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directions are mentioned in Section V.
II. RELATED WORK

In the past decade, excellent methods [1], [7], [8], [17] have
been proposed to model the background image. These methods
can be classified into several categories: such as subspace
learning methods [1], [5], [6], [18], [19], a multiple features-
based method [9], and non-parametric methods [7], [8]. More
comprehensive and systematic reviews of all these methods
were presented in [2], [10], [11], [23]. As the proposed
method is based on subspace learning via the MC and RPCA
framework we restrict the literature review to studies on RPCA
and MC that process outliers with the integration of graph
structure and motion information.

Oliver et al. [24] were the first to use PCA to model
background using the eigenvalues of observation matrix. PCA
provides a very robust subspace-learning model but is very
sensitive to gross outliers. Several PCA enhancements are
available in the literature [14], [25] that address the limitations
of classical PCA with respect to outliers and noise, yielding
the field of RPCA, also known as robust MC. For instance,
the first study on RPCA and MC in [25], [26] concerned the
recovery of low-rank matrix. Later, Candés et al. [13], [14]
also used this recent notion of RPCA for the decomposition of
input video sequence into its low-rank and sparse components.
Under minimal assumptions, the technique, known as principal
component pursuit, perfectly recovers the underlying low-
dimensional subspace. Then, it was illustrated that this under-
lying subspace model can be exactly recovered if the number
of observed entries is sufficiently large. Wang et al. [27]
proposed a nonconvex relaxation method for MC tasks under
contaminated non-Gaussian noise. This method is faster than
the RPCA, since it includes a newly designed loss function
and norm that can be solved using two optimization methods,
called iterative soft and hard thresholding; however, it is
limited to small-scale observation matrix. He et al. [19] also
presented relatively stable online subspace tracking method
named as GRASTA, which performed an iterative gradient
descent on Grassmanian space for the recovery of the com-
ponent of low-rank. These significant methods, both RPCA
and MC, also provide a very elegant solution for the problem
of initializing background. Interested readers can find more
details in [15], [23].

A few studies such as those in [17], [18], recently con-
sidered prior knowledge of sparse observations (also known
as motion information) for designing a stable MC framework
for the estimation of a model of background. For example,
Ye et al. [17] recently proposed the Robust Motion-Assisted
Matrix Restoration (RMAMR) model for the segregation of
background image from foreground objects. In this method,
a dense motion field is incorporated in component low-rank
and then mapped into a weighting matrix that indicates prior
information about the pixels of background. Encouraging
results are reported for many simple and dynamic scene of
background. However, the method is based on a batch strategy
and thus it is not suitable for large-scale data. Therefore,
Javed et al. [28] recently proposed a new course to a fine
iterative matrix decomposition framework with structural con-
straints, one on background and the second on foreground.

New maximum norm (max-norm) constraints are applied on
different superpixels, and as a result high performance is
observed for the subtraction domain of background scene.

Manifold learning [29]–[31] has also been assimilated in
these approaches [13], [14] for promoting the robustness and
structure of the recovered subspace of low-rank. For example,
in [29] a graph Laplacian PCA (GLPCA) was proposed in
which the principal components are leveraged by the graph
structure. However, this graph regularized term is incorporated
into classical PCA, which is very sensitive against data corrup-
tion. Therefore, Shahid et al. [31] recently proposed RPCA on
a graph, in which graph regularization is incorporated in the
RPCA framework. Encouraging results were presented in the
case of recovery of low-rank matrix against gross corruption.

The methods that use either RPCA or MC for modeling
low-rank component are all based on the traditional batch
processing strategy for designing a structured low-rank matrix.
Therefore, computational efficiency is sacrificed. An online or
incremental method has also been reported in the literature
[19]. However, for a set of incremental video frames, when
a new frame is added, the optimization procedure has to be
re-implemented on all available frames in this method. This
is quite inefficient when input sequence is high dimensional.
Moreover, none of these methods have been shown to be
sufficiently accurate to produce a model of low-rank because
the spatial and temporal constraints of this model are not
exploited; therefore, the estimated component of low-rank is
very sensitive against outliers and noise.

In this work, we overcome these limitations by presenting
two algorithms for both the stationary and non-stationary
learning of background image. We propose an iterative al-
gorithm for batch learning. Unlike [19], when a new frame
arrives, it is learned with the previous frame by exploiting
spatial and temporal information. To the best of our knowl-
edge, incorporating graph regularization terms (encoding data
and feature similarity on low-rank) in an iterative algorithm
of MC to enforce spatiotemporal coherence information is a
novel approach that can be applied to model background.

III. PROPOSED METHODOLOGY

A. Method Overview

In this section we provide an overview of the proposed Spa-
tiotemporal Low-rank Matrix Completion (SLMC) method.
Our method consists of several components, which are de-
scribed in the system diagram shown in Fig. 3. Initially, a
dense optical flow is computed between each pair of con-
secutive video frames and motion-compensated binary mask
is generated. This motion mask is further utilized to remove
the motionless video frames from input video sequence and
to prepare a set of dynamic frames, which only consists of
those video clips that show dynamic scenes either because of
the foreground or background variations. Then, two graphs
are constructed to encode the spatiotemporal invariance of the
scene background. Both of these graphs lie on two manifolds
and ensure spatiotemporal smoothness. These two embedded
manifolds, one among the video frames and the second among
the spatial locations, are then incorporated in a unified iterative
MC algorithm. The objective function is solved using matrix
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factorization based on alternating minimization strategy. Most
of the existing methods [1], [5], [17] use batch processing
while the proposed SLMC algorithm is made computationally
efficient by using iterative processing approach. In the follow-
ing we describe each step of the proposed SLMC algorithm
in detail.

B. Notations

In this paper, we use following notations for matrices,
vectors, and scalars: xi ∈ Rp denotes the i-th frame of a
video sequence, which is represented as a column vector
consisting of p pixels. X = [x1, x2, ..., xn] ∈ Rp×n is a
matrix representing all n frames of a sequence. Let D be the
matrix consisting of only dynamic frames from the sequence
X, D = [d1,d2, ...,dc] ∈ Rp×c where c is the number of
dynamic frames. If no motionless frame exists, then c is
equal to n. The recovered low-rank and sparse components
are denoted by L and S, respectively. The main objective is to
separate, the underlying matrix L corresponding to background
model B, and component S belonging to foreground F from
sequence D. Let M be the motion-compensated binary mask
whose elements encode which pixel in matrix D belongs to B.
Following norms of a matrix are used throughout this paper:
||X||1=

∑
i,j |xi,j | is the l1-norm, and xi,j is an element of

matrix X. ||X||F=
√∑

i,j x
2
i,j is the Frobenius norm. ||X||max

is the max-norm. The general definition of ||X||max is given
in (8). For the case of semi positive definite matrix, ||X||max
is the maximum of the diagonal value of matrix X,

j
max|xj,j |,

as explained by Lee et al. [32]. ||X||2,∞= maxj(
∑
i x

2
j,i)

1
2 is

the maximum l2 row norm of a matrix [32].

C. Mathematical Formulation

Given a sequence D, we require that the corresponding
matrix L with singular vectors that are not spiky lie in a
low-dimensional subspace by minimizing the following loss
function under a convex optimization framework

L
min||D− L||2F+λ1||L||2max s.t. PΩ(D) = PΩ(L), (1)

where Ω is the subset of the complete set of observed entries.
To summarize the information available in D based on PΩ(D),
the sampling operator PΩ is defined by

[PΩ(D)]i,j =

{
Di,j , if (i, j) ∈ Ω,

0, otherwise.
(2)

For ease of optimization, the nuclear norm is often applied
on the matrix L in (1) to relax the matrix rank. Then the
closed form solution of (1) can be obtained via Singular Value
Decomposition (SVD). However, when the size of matrix D
increases in particular in real-life applications, it is not possible
to compute the principal components of such a huge matrix.
Therefore, a variational form of nuclear norm was proposed
in [33] and a maximum absolute value norm was used instead
of nuclear norm regularization [28]. This form of max-norm
is more robust than the nuclear norm in the presence of
outliers [34], [35].

In the proposed method, we incorporate temporal smooth-
ness constraint into (1) by encoding pairwise similarities
among the video frames. In addition we also enforce the spatial

graph regularization into (1) to incorporate the spatial smooth-
ness among the background pixels. With these constraints, the
proposed MC model is then re-formulated as

L
min||M ◦ (D− L)||2F+λ1||L||2max+

γ1tr(L>ΦsL) + γ2tr(L>ΦtL),
(3)

where M constitutes the sampling operator PΩ(D) and “◦”
is element-wise multiplication. Φt is the Laplacian matrix of
a temporal graph computed among the video frames. This
is the first data manifold information that can be leveraged
in the form of a discrete graph Gt. Similarly Φs ∈ Rp×p,
is the Laplacian of a spatial graph Gs computed among the
pixels. The regularization terms tr(L>ΦsL) and tr(L>ΦtL)
in (3) are referred to as a spatiotemporal graph regularization
of L. These terms encode a weighted penalization in the
Laplacian basis. The regularization parameters γ1, γ2, and
λ1 = 1/

√
max(p, c) assign relative importance to each of

the terms while optimising the objective function (3). Before
solving (3), first we need to compute D and motion message
M, and the graph Laplacian matrices, as described in the
following sections.

D. Detection of Dynamic Video Frames

All pixels in a video exhibiting motion larger than a thresh-
old definitely not belong to the background. The threshold is
selected to be large enough so that the large motion should
not result due to noise or estimation errors. We consider
these pixels as missing data and try to estimate their values
using the objective function (3) from the available pixels with
small or no motion. The problem is still hard because many
of the remaining pixels may still belong to the foreground
and form outliers. The motion information is incorporated in
our proposed framework by computing optical flow between
each pair of consecutive frames. Most of the motion detection
algorithms depend on optical flow to estimate motion between
pixel values. Many studies on optical flow methods have been
reported in the literature. The performance of optical flow
based algorithms degrades at the boundaries of the moving
objects, also known as motion boundaries. Therefore we
recommend the dense optical flow method proposed in [36]
because of its robustness against motion boundaries. These
boundaries are the most important regions because inaccurate
motion in the vicinity of the boundaries frequently produce
incorrect results. This effect has also been reported in a prior
work [37] since the erroneous motion vectors compromise
incorrect motion models.

As discussed above, the matrix X comprises all the stacked
column vector images. Assume that xi and xi−1 are two
consecutive frames at times t and t−1, respectively. The dense
optical flow [36] is estimated between xi and xi−1 to obtain
the horizontal Vx and vertical Vy components of the motion
field. Motion mask M ∈ {0, 1} ∈ Rp×n of the entire video
sequence, X, is then generated using the simple operation:

mi,j =

{
0, if

√
(vxi,j)

2 + (vyi,j)
2 ≥ τ ,

1, otherwise,
(4)

where mi,j , vxi,j , and vyi,j are entries of M, Vx, and Vy at
the ith rows and jth columns, respectively. τ is the threshold
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Spatiotemporal Low-rank Matrix Completion for Background Model Initialization 

Fig. 3. Pictorial illustration of the proposed initialization of the model of B, which is heavily occluded by objects F. The input sequence X consists of two
types of video frames: Motionless images, i.e., no variation in pixel values and a set of dynamic images where motion is observed in the pixel values. Steps
(a) and (b) describe the output of the optical flow method and generate motion-compensated binary mask M. In step (c), the motionless frames are removed
and motion regions are detected in X based on M. The partially observed matrix D only shows the set of dynamic images, where the motion is represented by
the black region. In steps (d) and (e) two graphs are constructed and then finally, the proposed SLMC model is applied on D with spatiotemporal information
to recover the model of B.

of motion magnitude, which is computed adaptively as the
average of all the pixels in the motion field.

The next step is to prepare matrix D by eradicating the
motionless frames in X using (4). It is empirically observed
that the flow field is very small for motionless frames and
slowly moving objects, i.e., when the pixel value does not
deviate between two consecutive frames. Hence, the nth frame
in X is considered to be redundant or motionless, if all entries
are 1 in the corresponding nth column of M; otherwise, if
some parts of the entry are 0, then the frame is considered
as dynamic and it is augmented in matrix D. At this step, the
size of matrix M is same as matrix D i.e., M ∈ Rp×c, since
we are only considering the motion mask of dynamic images.
The steps described above are illustrated in Fig. 3 (a), (b), and
(c). Using this technique, the dimension of matrix X may be
reduced significantly depending on the number of stationary
frames.

E. Motion-Assisted Spatiotemporal Regularizations

As discussed above, the estimation of low rank L from ex-
isting approaches [1], [5], [19] is very sensitive against outliers
and noise. We try to improve the quality of L by incorporating
the data manifold information in the form of two graphs, one
along the temporal dimension, across columns D, and the
other along the spatial dimensions, across rows of D. The
underlying assumption is that the low-dimensional embedding
of the columns and rows of D lies on smooth manifolds both
temporally and spatially [29], [38]. Let Gt = (Vt,Et,At) be
the temporal graph with vertex Vt as the frames of matrix D,
the set of pairwise edges Et between Vt, and the adjacency
matrix At, which encodes the weights and connectivity of the
graph.

The importance of Gt is demonstrated by an example from
the Foliage sequence shown in Fig. 3 (c) that are corrupted
by M. The set of clean images of the Foliage sequence is

matrix L, because they all belong to the same sequence.
The underlying representation of L of the images has some
redundancy, i.e., the similarity between different images of
the same sequence is greater than that of any other sequence.
Therefore, the key to recovering matrix L is to exploit the
notion of similarity encoded in the data.

Similarly, the spatial graph Gs = (Vs,Es,As) can be
constructed with the set Vs as the rows of matrix D. The
pairwise relationship between the pixels is information that
could alternatively be exploited to refine matrix L for the
modeling of spatially consistent B. In the same sequence of
images, different parts of the same image might also be related
to each other. For example, different parts of the same image
may feature cars in a scene, which also get repeated in the
other images. Therefore, Gs between the rows of matrix D is
beneficial for exploiting this new idea of similarity between
the spatial features for improving the quality of L.

The frames and pixels connected with similar pixel values
most likely are part of B. Therefore a segmentation that is
spatially and temporally consistent with B can be obtained.
For this purpose we find similarity between every two frames
in the temporal direction and between pixel locations in the
spatial dimensions. The graphs are then built using s-nearest
neighbor strategy [39]. The first step consists of searching the
closest neighbors for all the samples using Euclidean distances,
where each node is connected to its s nearest neighbors. Let
∆ be the matrix that contains all pairwise distances, ∆i,j is
the Euclidean distance between (di , dj) ∈ D

∆i,j =

√
||(mi&mj) ◦ (di − dj)||22

||(mi&mj)||1
, (5)

where mi&mj is the AND operator applied on mi and mj ,
mi and mj are column vectors of motion mask M. Thus,
we consider only the observed pixels because mi(k)&mj(k)
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is 1 if both pixels di(k) and dj(k) are observed, otherwise
mi(k)&mj(k) is 0, if both or any one of them is missing entry.
Then, the adjacency matrix At for the Gt can be computed
using

At(i, j) = exp

(
−∆i,j − ωmin

σ2

)
, (6)

where ωmin is the minimum non-zero distance in ∆, and σ2

is the smoothing factor in Gt, which can be set equal to
the average distance of the s-nearest neighbors. In general,
if di is in the s-nearest neighbors of dj then there is a link
between two nodes {di,dj} and At(i, j) is > 0; otherwise,
At(i, j) = 0. Maximum value of At(i, j) will be 1. Finally, the
normalized temporal graph Laplacian matrix that characterizes
graph Gt is computed as

Φt = W−1/2(W− A)W−1/2 = I−W−1/2AW−1/2, (7)

where I is the identity matrix and W is the degree matrix
defined as W = diag(wi), where wi =

∑
j At(i, j). For ease

of notation we ensure the size of Φt to be p × p. In case
the number of frames c are larger than p, we select p < c
frames randomly to compute Φt. If c is less than p padding
is performed to ensure the size of Φt to be p× p.

For the construction of Laplacian of spatial graph, Φs ∈
Rp×p, it is more reasonable to enforce smoothness on the
patch level of matrix D rather than on the pixel level. Indeed,
comparing patches of the image allows one to use the local
information of the image. As a first step, we vectorize the
patches that correspond to the same position for all the images
of the sequence. Let u2 be the size of each square patch
centered at the pixel under consideration. Then, we form
p data samples of size cu2, as mentioned in Fig. 3 (e).
These transformed data samples are then input into the graph
construction algorithm discussed above to get Φs. For larger
datasets ‘Fast Library for Approximate Nearest Neighbor’
(FLANN) [39] can be used to compute Laplacian matrices
more efficiently.

F. Modeling of Low-rank Matrix Completion

In this section, we present our iterative MC algorithm to
solve (3) for the computation of matrix L. This is achieved
by preserving prior knowledge of matrix D in the form of M
such that it is more suitable for the recovery of the stationary
model of B occluded by objects F.

Despite (3) is completely fitting our model. However, the
main drawback of problem (3) is that it requires the computa-
tion of full (or partial) SVD of matrix L in every iterative cycle
of the algorithm, which could become prohibitively expensive
when the dimensions are large. We overcome this problem by
adopting a proxy for the max-norm of rank matrix L defined
by the following matrix factorization problem as:

||L||max= min
U∈Rp×r,V∈Rr×c

1

2
(||U||2,∞.||V||2,∞) s.t. L = UV.

(8)
This variational form of the max-norm proxy has recently
been used in standard max-norm minimization algorithms
[32], [34], [35] that scale to very large matrix completion
problems. In (8) U is termed the spatial basis, and V represents
the temporal coefficients of U (also known as the principal
directions and components) in r-dimensional linear space, and
r is a rank that is upper bounded by the rank of L. The product

UV is known as the approximation L of matrix D. Taking this
into account (8) can be substituted into (3) as:

U∈Rp×rV∈Rr×c
min ||M ◦ (D− UV)||2F+

λ1

2
{ ||U||22,∞.||V||22,∞}+

γ1tr(U>V>ΦsUV) + γ2tr(U>V>ΦtUV).
(9)

Since ||V||22,∞= 1 as explained by Shen et al. [35]. (9) can
be simplified as follows

U∈Rp×rV∈Rr×c
min ||M ◦ (D− UV)||2F+

λ1

2
||U||22,∞+

γ1tr(V>U>ΦsUV) + γ2tr(V>U>ΦtUV).
(10)

As discussed above, (10) deals with the batch processing
problems in which all video frames have to be available in
a memory prior to any processing. In contrast, our goal here
is to derive an iterative solution of (10) over spatiotemporal
graph regularizations which only processes one frame per
time instance. To do so, the iterative solution of (10) can be
formulated as follows:

U∈Rp×r,vt
min

c∑
t=1

(
||mt ◦ (dt − Uvt)||22+γ1(v>t U>ΦsUvt)

+γ2(v>t U>ΦtUvt)
)

+
λ1

2
||U||22,∞,

(11)

which can be solved via alternating minimization strategy, in
which the cost function is minimized with respect to each
individual optimization variable, whereas the other functions
remain fixed [28], [35]. Thus, the estimated matrix L is more
robust than in the traditional MC-based approaches.

1) Fixing U in (11): Basis Initialization: First, we initialize
matrix U for solving V. In earlier MC approaches [15], these
bases are selected randomly and stored in a large matrix before
any optimizations are performed. In this study, U was first
initialized with a small number of images at the beginning of
the video feed, but no fewer than r of matrix L. In addition, the
corresponding M, spatiotemporal information Φs and Φt are
also incorporated in this step, i.e., U = [(Φ̃t[(m1,m2, ...,mr)◦
(d1,d2, ...,dr)]>Φs)

>], where Φ̃t is r × r block of Φt. The
size of U is (p × r), and r is manually selected to utilize a
small number of images from matrix D, with only r samples
that are used to encode the graph structures. In this case, U is
a very small sized batch and this operation is performed only
once; therefore, the complexity of using it does not consume
much memory.

2) Solving for V: Since the iterative method processes each
column of matrix D, V accumulates all of the coefficient
vectors v for each image. In this step, vt for the current
image is computed using the pre-defined matrix U above by
projecting each new sample. To that end, we keep only the
terms which depend on vt. This stage requires a small-scale
convex optimization problem as:

vt
min||mt ◦ (dt − Uvt)||22+γ1(v>t U>ΦsUvt) + γ2(v>t U>ΦtUvt).

(12)
Using a fixed U in (12), it constitutes a least-squares problem,
which can be solved using

vt = ρ−1
1 U>(mt ◦ dt), and

ρ1 = U>(M̃t + γ1Φs + γ2Φt)U,
(13)

where M̃t is p × p matrix having m on its diagonal [40].
After some new images have been revealed or projected, U
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is a full r matrix. At this point, the previously computed vt
is stored in another temporary vector, e.g., vt, and then, in
the next iteration, we can update these coefficients using the
prediction function as:

vt =

{
vt, if ||vt||2≤ 1,

update step otherwise,
(14)

and this update is performed by incorporating a prior vt
on (12). This step also requires another small optimization
problem [35]:

vt = argmin
ε,ε>0,vt

min
||vt||2=1

1

2
||mt ◦ (dt − Uvt)||22+

γ1(v>U>ΦsUv) + γ2(v>U>ΦtUv) +
ε

2
(||vt||22−1).

(15)

The closed form solution of (15) can be obtained by taking
a derivative with respect to vt and setting it to 0 constitutes
another least-squares solution as:

vt = ρ−1
2 U>(mt ◦ dt), and

ρ2 = [εI + U>(M̃t + γ1Φs + γ2Φt)U],
(16)

where I is the identity matrix. The positive dual variable ε is
introduced to solve (16) if l2 norm of vt is greater than 1.
The lower bound ε1 on the optimal ε is a constant α at this
step, since ||vt||2≤ 1, whereas the upper bound ε2 needs to be
searched for an optimal solution. Initially, we set ε2 = r, and
then, if ||vt||2> 1, it is iteratively updated at each iteration as
ε2 ← 2ε2 until ||vt||2≤ 1 is satisfied. Finally, ε is computed
as 1

2 (ε1 + ε2) to solve (16).
3) Learning U: In this step, the main model is learnt for

slowly changing model of B. In general, U is adaptively up-
dated whenever a new frame approaches through minimizing
previously computed vt. This is achieved by first defining two
new auxiliary matrix variables Q ∈ Rr×r and R ∈ Rp×r,
which retain the information about pre-computed U and vt,
as: Qt ← Qt−1 + vt(vt)>,

Rt ← M̂ ◦ (Rt−1) + M̂ ◦ [(Ut−1)vt(vt)>],
(17)

where M̂ is p × r block selected from M. In contrast to the
method in [28], we update R only for those pixels that belong
to B. In (17), all the information in U and vt is updated in
the current image. Then, the subgradient Ũ of 1

2 ||U||
2
2,∞ is

computed by Ũ = 1
2∂||U||

2
2,∞. Finally each column uj of U

is then updated using the block-coordinate descent method as:

uj ← ρ−1
3 [uj −

1

Q jj

(Uqj − rj + λ1ũj)], and

ρ3 = (M̃t + γ1Φs + γ2Φt),

(18)

where ũj is the jth column of Ũ, which is basically the
maximum of the l2 row norm of U. The solution converges to
the optimal solution asymptotically as compared to its batch
counterpart, as proved in [33], [35], only if r is given and
basis U is estimated as above. Furthermore, this U is updated
column-wise and therefore it is independent from the number
of samples. Hence, it solves the computational issues that arise
when enforcing such hard constraints on matrix L. Finally,
matrix D is then recovered by component L that is the product
of U and its V, which changes sequentially at a time instance
t. Alg. 1 presents the details of SLMC.

Indeed, image B is then recovered by computing the average

Algorithm 1 SLMC for static model of B occluded by F.
1: procedure SLMC (X ∈ Rp×n, λ1, γ1, γ2, α, r, η). Inputs
2: Compute M using (4)
3: D← [d1,d2,d3, ...,dc],L ∈ Rp×c . Initialize input
4: Compute Φs and Φt using (4), (5), (6), and (7)
5: U ∈ Rp×r,V ∈ Rr×c, v ∈ Rr . Dual variables
6: Q ∈ Rr×r,R ∈ Rp×r, e ∈ Rp×1 . Auxilliary

matrices
7: while not converge do
8: Fix U and solve V(:, t)← vt using (12) and (13)
9: Update vt using (14), (15), and 16)

10: Solve Q and R using (17)
11: Update U(:, j)← uj using (18)
12: Compute y←max[(d− Uv)− λ1, 0]
13: Compute e← y+min[(d− Uv) + λ1, 0]

14: if max(||e||2,||v||2)
p < η . Convergence

15: break
16: else
17: repeat step 8 to 15 until convergence
18: end while
19: return U, V
20: Compute the model B
21: L← UV
22: B ∈ Rm1×m2 ← b← mean[L(:, 1 + r : end)]
23: end procedure

values in the columns of L, excluding first those r images,
resulting in a vector b ∈ Rp×1, which is then reshaped into
a matrix B ∈ Rm1×m2 having width m1 and height m2 as
mentioned in the final step in Alg. 1. Fig. 4 (d) shows the
estimated model of B obtained by SLMC.
G. Extension to SRPCA

The solution of (3), is obtained after the convergence of the
iterative procedure. The recovered matrix L represents the B of
the entire sequence, but it is modeled by using only the entries
corresponding to B from M and the average of all columns in
matrix L. The component S that belongs to objects F cannot
be modeled explicitly using (3) since the observation of matrix
S, which contains outliers of the objects F, is already utilized
by (3) using M. Matrix S is fully optimized by considering
the case of a dynamic sequence, in which B scene changes
continuously at each frame. SRPCA aims to decompose matrix
D into non-stationary matrices L and S by converting (3) into
the following constrained problem as:

L,S
min||D− L− S||2F+λ1||L||2max+λ2||S||1+

γ1tr(L>ΦsL) + γ2tr(L>ΦtL),
(19)

where the l1-norm on matrix S imposes the sparsity constraints
on the pixels of objects F. Incorporation of spatiotemporal
graphs regularization in matrix L enhances the robustness of
the proposed component S against noise and dynamic pixels.
Thus, a spatiotemporally coherent mask of F can be obtained,
thereby reducing many false positives as shown in Fig. 5 (d) to
(e). (19) can also be solved using an alternative minimization
technique. The entire algorithm that is used to solve (19) is
summarized in Alg. 2. The shrink(·) in step (10) of Alg. 2 is
known as the soft-thresholding function defined as shrink(S) =
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Algorithm 2 SRPCA for the dynamic separation of B-F.
1: Input: D ∈ Rp×c,Φs ∈ Rp×p,Φt ∈ Rp×p,U ∈

Rp×r,V ∈ Rr×c, v ∈ Rr,Q ∈ Rr×r,R ∈ Rp×r, e ∈
Rp×1, λ1, λ2, γ1, γ2, α, r

2: Output: L, S
3: Set S=0.
4: repeat
5: Initialize U = (Φ̃t[d1,d2, ...,dr]>Φs)

>,
6: Minimize V with respect to U, removing m from (12),

(13) changes to
vt = ρ−1

4 U>(dt − st), and

ρ4 = [U>(γ1Φs + γ2Φt)U]
(20)

7: Update V by ignoring M in (14), (15), (16)
8: Learn U with respect to v by ignoring M in (17) and (18),

(18) changes to
uj ← ρ−1

5 [uj −
1

Q jj

(Uqj − rj + λ1k̃j)], and

ρ5 = (γ1Φs + γ2Φt),

(21)

9: Compute L← UV
10: Update S as S← shrink[d− Uv].
11: until convergence

sign(S) max(abs(S), 0). Fig. 5 (c) and (e) are the results of F
detection using the RPCA [13] and proposed SRPCA methods.

(a) (b) (c) (d) 
Fig. 4. Testing of spatiotemporal model to show robustness in the initialization
of the stationary model of B against severe occlusions and a cluttered scene.
From left to right: (a) two video frames, (b) static model B obtained by [28],
(c) results by MC without spatiotemporal regularizations, and (d) results by
the proposed SLMC. From top to bottom: 2 frames captured from the Board
and Toscana sequences of the SBMI dataset [16].

IV. EXPERIMENTAL EVALUATIONS

We test both of the proposed algorithms by conducting
extensive evaluations on challenging datasets including new
SBMI [16], I2R [21], Wallflower [22], and CDnet14 [20].
First, we test the proposed SLMC algorithm for the task
of reconstructing a constant background model B. Then, we
perform experiments on highly dynamic scenes of B to detect
objects F using SRPCA. Both quantitative and qualitative
results are reported, followed by a description of the imple-
mentation and computational complexities.

A. Evaluations of SLMC on SBMI Dataset

The SBMI dataset1 [16] consists of 14 different videos
recorded indoors and outdoors. Note that many state-of-the-
art approaches [1], [7], [9], [19] were tested on very simple
scenes of B, while SBMI dataset comprises of complex scenes

1http://sbmi2015.na.icar.cnr.it/

(a) (b) (c) (d) (e) 
Fig. 5. Testing of dynamic segmentation of B and F. From left to right: (a)
one input frame, (b)-(c) model B and mask of objects F of classical RPCA
algorithm [13] (red rectangle in (b) shows ghost appearance in recovered
image of B), (d)-(e) B and F segmentation results of non-stationary scene by
the SRPCA.

TABLE I
DETAILS OF THE 14 SEQUENCES OF THE SBMI DATASET USED

IN OUR EXPERIMENTS..

Seq. Name Size×No. of frames Challenges Size of D

Board [200, 164]× 228 B is less visible [200, 164]× 228
Candela [352, 288]× 350 Intermittent object motion [352, 288]× 156

CAVIAR1 [384, 256]× 610 Slowly moving people [384, 256]× 414
CAVIAR2 [384, 256]× 460 Slowly moving and stop people [384, 256]× 366
CaVignal [200, 136]× 258 Intermittent object motion [200, 136]× 116
Foliage [200, 144]× 395 Severe occlusions [200, 144]× 386

Hall & Monitor [352, 240]× 296 Slowly moving people [352, 240]× 250
HighwayI [320, 240]× 439 Moving cars [320, 240]× 439
HighwayII [320, 240]× 499 Moving cars [320, 240]× 490

HumanBody2 [320, 240]× 740 Moving people with dominant F [320, 240]× 740
IBMtest2 [320, 240]× 90 Short sequence of moving people [320, 240]× 90

People and Foliage [320, 240]× 349 B is more occluded by F [320, 240]× 338
Snellen [144, 144]× 320 Severe occlusions B is not visible [144, 144]× 316
Toscana [800, 600]× 6 Short sequence of cluttered B scene [800, 600]× 6

in which B is largely occluded by objects F. Therefore this
dataset permits a rigorous comparison of initialization tech-
niques suitable for constructing a static model of B. However
real world videos may contain more than one states of the
static background scenes. For instance, the lobby sequence (see
Fig. 7 (1st row) and Table III) contains multiple static scenes
of background with all lights on and a few lights off and the
task is to estimate foreground-free image for each static state.

Both SLMC and SRPCA can be employed to efficiently
estimate background model for each of these states. The size
of matrix D may or may not be different in this case. To
employ SLMC, the final step in Algo. 1 may be ignored and
the best estimate of B may be directly found from L. Since
SLMC is designed to cope with occluded scenes of B, it is
more suitable to handle such sequences.

Table I provides more details of the SBMI dataset. In Fig. 6
1st row shows input images and 2nd row shows the only one
available ground truth image of B for each SBMI sequence.
We group these sequences into following three categories.

(i) B is heavily occluded by F objects: Five videos including
Board, Snellen, Foliage, People & Foliage, and Toscana depict
situations in which B is either little or not visible and is largely
occluded by F objects about 90% of the frames. For example,
in Board two people appear and one person starts dancing
to occlude B. Similarly, moving leaves occupy most of the
B area most of the time in Snellen, Foliage, and People &
Foliage sequences. In these sequences, only 2% clean B frames
are available. In SLMC motionless frames are removed and D
only contains dynamic frames. Size of D differs from X which
contains the original video sequence sizes described in Table I.
Moreover, Toscana is a very short sequence consisting of only
six frames corresponding to a crowded scene.

(ii) Intermittent object motion: Three SBMI sequences in-
cluding Candela, CaVignal, and Hall & Monitor belong to this
category. For instance, in Candela sequence, one man enters
the indoor scene carrying a small bag and then sits on the sofa



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2016.2632302, IEEE
Transactions on Circuits and Systems for Video Technology

9

(a)           (b)           (c)           (d)           (e)           (f)           (g)           (h)           (i)           
Fig. 6. Qualitative results of the proposed method. From left to right: 9 typical video frames of, (a) Board, (b) Foliage, (c) People and Foliage, (d) Snellen,
(e) Toscana, (f) Candela, (g) CaVignal, (h) HumanBody2, and (i) Caviar1. From top to bottom: 1st row: input images, 2nd row: true background images G,
3rd row: results by the DECOLOR [1], 4th row: the GoDec [6], 5th row: the GRASTA [19], 6th row: the RMAMR [17], 7th row: the IMBS [8], 8th row:
the SOBS [7], 9th row: and the proposed SLMC. The first 5 rows from (a) to (e) belong to a very difficult sequences, where B is severely occluded and
cluttered by objects F, whereas (f) to (g) and (h) to (i) demonstrate the Intermittent Object Motion and Bootstrap conditions.

in about 50% of the frames of the entire sequence. Then, he
abandons the bag and leaves the sofa. In this case, the number
of frames in D is also different from that in sequence X, as
indicated in Table I. The same situation is also observed in the
Hall & Monitor sequence, in which some training images that
are available at the beginning become redundant. The sequence
named CaVignal is even more challenging. Indeed, the only
man appearing in the sequence stands motionless on the left
of the scene for the first 60% of the sequence, see Fig. 1.
Then starts moving slowly towards the right, before suddenly
stopping on the right, see Fig. 6 (7th column). Approximately
50% of the redundant frames are extracted from this sequence,
see Table I.(iii) Bootstrap Sequences: The six videos including
CAVIAR1, CAVIAR2, HighwayI, HighwayII, HumanBody2,
and IBMtest2 are related to the bootstrap situation in which
clean background frames do not exist neither in the beginning
nor in the middle of the sequence. However in each frame the
number of background pixels are larger than the foreground
pixels. For instance, in HighwayI and HighwayII sequences,
the highway is always crowded with cars which keep on
moving throughout the sequence. In each frame B is revealed

for at least 50% of the pixels.
1) Qualitative Results and Comparison: We compare visual

quality of the reconstructed B with several state-of-the-art
approaches including 40 existing methods based on subspace
learning and multiple features, as well as non-parametric
methods for stable recovery of B. The implementation of
these methods is publicly available in Background Subtraction
(BGS) [3] and Low-rank and Sparse (LRS) [41] libraries.

Because of space limitations, we present comparison of
qualitative results of the proposed SLMC algorithm with six
most noteworthy methods, including DEtecting Contiguous
Outliers in the LOw-rank representation (DECOLOR) [1], Go
Decomposition (GoDec) [6], Grassmanian Robust Adaptive
Subspace Tracking Algorithm (GRASTA) [19], and RMAMR
[17]. A non-parametric method Independent Multimodal Back-
ground Subtraction (IMBS) [8] and a neural network-based
method Self-Organizing approach to Background Subtraction
(SOBS) [7] are also used for comparison. The visual compar-
ison results over nine sequences are illustrated in Fig. 6.

2) Quantitative Evaluations and Analysis: We quantita-
tively compare the quality of the results of the proposed
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TABLE II
QUANTITATIVE ANALYSIS ON SBMI DATASET USING 6 ACCURACY MEASURES. SEE FIG. 6 FOR VISUAL COMPARISON. THE BEST MODEL OF B

CORRESPONDS TO LOWER VALUES OF AGE, PEPS, PCEPS AND HIGHER VALUES OF MS-SSIM, PSNR, AND CQM.

Methods Evaluation Measures Board Candela CAVIAR1 CAVIAR2 CaVignal Foliage Hall&Monitor HighwayI HighwayII HumanBody2 IBMtest2 People&Foliage Snellen Toscana Average

AGE 25.93 3.88 7.60 1.07 18.20 51.27 3.11 21.42 9.95 12.29 7.11 50.14 65.98 14.74 20.91
pEPs 0.37 0.03 0.08 0.00 0.10 0.71 0.00 0.26 0.08 0.14 0.05 0.72 0.87 0.26 0.26

pCEPs 0.28 0.02 0.07 0.00 0.07 0.59 0.00 0.24 0.05 0.09 0.03 0.61 0.80 0.18 0.22
DECOLOR [1] MS-SSIM 0.65 0.94 0.93 0.99 0.40 0.38 0.98 0.40 0.71 0.87 0.93 0.35 0.47 0.83 0.73

PSNR 16.21 27.58 24.46 42.02 17.02 11.86 34.09 15.80 19.12 20.99 27.57 11.31 10.73 20.96 21.41
CQM 31.27 40.26 44.09 57.52 29.35 25.51 45.49 22.13 27.49 31.70 37.74 21.38 24.83 32.82 33.68

AGE 22587 9.42 14.28 21.09 17.92 39.28 3.86 2.40 2.89 9.47 23.86 29.32 59.61 11.52 19.17
EPs 11100 4792 14039 55809 4251 17631 2869 350 607 6457 29459 36625 16289 68240 19180

pEPs 0.33 0.04 0.14 0.56 0.15 0.61 0.03 0.00 0.00 0.08 0.08 0.47 0.78 0.14 0.24
GoDec [6] CEPs 8377 3265 11980 44745 3094 14586 1708 70.03 41.78 3504 16599 28900 14778 47530 14227

pCEPs 0.25 0.03 0.12 44745 0.11 0.50 0.02 0.00 0.04 0.21 28900 0.37 0.71 0.09 0.21
MS-SSIM 0.81 0.94 0.95 0.45 0.81 0.65 0.94 0.98 0.98 0.86 0.52 0.79 0.53 0.91 0.83

PSNR 18.52 25.17 23.70 0.96 18.63 15.26 29.18 36.33 32.31 21.00 17.48 17.04 11.26 23.50 22.17
CQM 43.98 38.48 34.01 31.41 31.69 28.76 43.08 58.72 38.93 34.40 28.62 28.16 25.10 36.46 35.84

AGE 28.00 3.88 1.80 5.22 11.16 25.85 3.33 4.13 3.25 9.70 2.94 41.04 43.98 12.77 14.14
pEPs 0.40 0.03 0.00 0.00 0.10 0.59 0.02 0.01 0.00 0.09 0.00 0.82 0.86 0.21 0.22

pCEPs 0.32 0.02 0.00 0.00 0.07 0.45 0.01 0.00 0.00 0.06 0.00 0.75 0.79 0.16 0.19
GRASTA [19] MS-SSIM 0.69 0.94 0.96 0.95 0.93 0.89 0.95 0.96 0.96 0.92 0.97 0.84 0.85 0.86 0.91

PSNR 15.73 27.58 38.43 41.22 24.80 19.06 30.21 32.56 31.09 22.88 36.17 14.86 14.03 22.03 26.58
CQM 32.02 40.26 49.82 41.35 39.61 33.63 40.73 57.59 45.68 35.86 44.36 26.46 36.91 32.72 40.58

AGE 28.42 5.05 1.55 1.78 12.00 12.51 2.04 2.76 2.70 12.34 4.46 38.82 20.21 18.67 14.22
pEPs 0.54 0.03 0.00 0.00 0.14 0.63 0.00 0.00 0.00 0.15 0.03 0.83 0.89 0.31 0.25

pCEPs 0.43 0.02 0.00 0.00 0.09 0.47 0.00 0.00 0.00 0.09 0.02 0.77 0.83 0.19 0.21
RMAMR [17] MS-SSIM 0.79 0.92 0.96 0.97 0.90 0.89 0.99 0.97 0.99 0.84 0.92 0.85 0.88 0.66 0.89

PSNR 17.20 27.41 41.22 50.32 24.31 18.41 37.97 35.88 35.66 19.77 29.13 15.14 17.22 19.53 27.62
CQM 41.75 40.13 55.64 57.74 39.80 33.23 46.32 58.62 46.20 35.47 41.20 27.59 40.24 30.53 42.26

AGE 24.90 3.68 1.68 2.66 4.09 3.82 2.44 1.22 0.65 8.78 7.2 15.10 16.88 7.86 7.21
pEPs 0.31 0.02 0.00 0.00 3.19 0.55 0.98 0.00 0.00 0.07 0.01 10.02 37.35 0.07 3.97

pCEPs 0.22 0.01 0.00 0.00 1.60 0.00 0.32 0.00 0.00 0.03 0.00 5.01 24.37 0.04 2.23
SOBS [7] MS-SSIM 0.56 0.94 0.84 0.81 0.87 0.99 0.96 0.99 0.99 0.86 0.93 0.75 0.93 0.90 0.88

PSNR 16.69 26.65 38.37 46.32 21.85 31.77 30.93 42.68 44.63 22.21 29.18 16.61 21.25 23.55 27.50
CQM 30.35 39.44 49.55 60.32 42.26 39.13 43.18 65.57 54.37 34.94 39.72 35.36 44.74 27.50 43.90

AGE 9.08 5.09 5.92 3.70 3.75 19.49 1.57 1.92 3.24 5.17 5.09 13.62 17.50 20.97 15.49
pEPs 0.06 0.04 0.04 0.00 0.03 0.14 0.00 0.00 0.00 0.02 0.03 0.10 0.18 0.29 0.28

pCEPs 0.00 0.02 0.02 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.02 0.01 0.13 0.24 0.22
IMBS [8] MS-SSIM 0.66 0.92 0.90 0.98 0.90 0.80 0.99 0.98 0.98 0.92 0.91 0.97 0.95 0.69 0.87

PSNR 21.66 25.93 22.14 34.32 24.29 18.17 38.86 39.56 35.12 25.45 26.86 23.90 21.01 16.91 22.29
CQM 32.96 36.27 34.68 45.20 38.93 31.90 48.36 54.89 38.31 37.13 37.33 31.85 41.60 24.21 40.16

AGE 3.39 0.43 0.00 0.00 0.00 12.02 0.00 1.21 0.00 2.36 1.57 4.29 7.00 4.71 2.85
pEPs 0.01 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.04 0.12 0.04 0.02

pCEPs 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00
SLMC MS-SSIM 0.87 0.98 0.99 0.99 0.99 0.94 0.99 0.99 0.95 0.96 0.97 0.94 0.76 0.91 0.94

PSNR 28.45 44.57 88.76 68.89 50.68 25.63 70.69 66.78 61.44 28.63 52.13 29.42 20.29 24.33 47.19
CQM 47.27 61.33 68.99 61.23 68.36 33.36 80.33 71.42 66.55 42.36 66.55 39.68 27.89 41.05 54.24

algorithm with existing methods using six different criteria
as suggested by the authors of SBMI [16]. These criteria are
summarized as follows:
• Average of the Gray-level Error (AGE) is `1 norm of the

difference of ground truth image G and the estimated
background.

• pEPs is the percentage of error pixels with respect to the
total number of pixels in the image.

• pCEPs is the percentage of clustered error pixels with
respect to the total number of pixels in the image.

• MS-SSIM is the multi-scale structural similarity index
measure which estimates the perceived visual distortion.

• PSNR is the peak signal-to-noise ratio is

PSNR = 10log10
(g − 1)2

MSE
, (22)

where MSE is the Mean Squared Error between G and
B, and g is number of gray levels.

• CQM is the color image quality measure which estimates
the quality of a color between the G and B.

The goal is to minimize the AGE, pEPs, and pCEPs values
for more accurate recovery of B while MS-SSIM, PSNR, and
CQM should be maximized. For fair comparison, we used
the optimal set of parameters for each method as suggested
by the original authors. Table II presents the results of the
performance of SLMC using the above mentioned criteria
and comparison with other existing approaches. For sequences

that belong to the intermittent object motion category, the
majority of the methods failed to compensate for persistent
clutter. For instance, in the beginning of the frames in the
CaVignal sequence. In contrast, some methods such as SOBS
and GoDec, were unable to effectively process the slowly
moving person in CaVignal, as well as the remaining subject
who stay in the scene longer for the next 20% of video
frames. Similarly, this situation is also observed in the case
of the Candela sequence. Indeed, no method could effectively
process persistent outliers (in the form of a man and a small
bag) in the final estimation of B. These methods follow a
less frequent update strategy that does not enable them to
process these cases appropriately. In contrast, SLMC gives
the most promising results for the Candela and CaVignal
sequences, and a comparable performance for the Hall &
Monitor video. The qualitative analysis of the accuracy results
in terms of the values of pEPs and pCEPs are presented in
Table II. In addition, the AGE values were quite low in the
case of reduced objects F as compared to the region containing
the entire image in Candela and Hall & Monitor, whereas,
this figure inclines in the CaVignal sequence. Overall, SLMC
provides the most accurate and stable model of B, as opposed
to RMAMR, SOBS, and IMBS in this category, all of which
were found to show noticeable outliers.

We now consider the more challenging sequences, in which
B is less visible than objects F, although moving leaves
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(a)           (b)           (c)           (d)           (e)           (f)           (g)           (h)           (i)           (j)           (k)           
Fig. 7. Visual results of the proposed method. From left to right: (a) 10 input images, (b) estimated images of B by SRPCA, (c) ground truth images, and
the segmentation results of objects F obtained by (d) DECOLOR [1], (e) GoDec [6], (f) GRASTA [19], (g) TVRPCA [5], (h) SOBS [7], (i) RMAMR [17],
(j) SLMC, and (k) SRPCA. From top to bottom: input images of 10 sequences, i.e., (1) lobby, (2) boats, (3) canoe, (4) fall, (5) fountain1, (6) fountain2, (7)
overpass, (8) watersurface, (9) fountain, (10) waving trees.

or artificial plants occupy almost the entire region of B in
more than half of the video frames in the Foliage, People
& Foliage, and Snellen sequences. Only SLMC, RMAMR,
and SOBS show an encouraging performance, as evident from
the comparatively low values of AGE, pEPs, and pCEPs.
However, a significant discrepancy is seen in the PSNR, MS-
SSIM, and CQM values. Indeed, the remaining algorithms,
for example, IMBS, GRASTA, and DECOLOR, produce a
greenish halo clutter as an outlier of F in the final model of
B. Thus, these methods achieve poor accuracy. For the Board
sequence, a large variation is seen in the values of AGE and
pCEPs among the top performers. Only SLMC and IMBS
produce a good model B in the presence of the dancing man.
This observation is clearly shown in the noteworthy values of
AGE, pEPs, and pCEPs obtained for these methods. All the
other methods produce a large outlier in terms of AGE and
other values for this sequence, and hence, the quality of B
produced by these methods is poor. The dancing man, who
occupies a large portion of B scene, leads every strategy to
include the contribution of the isolated man in the final model
of B. In addition, for a cluttered scene, such as Toscana,
only SLMC is capable of achieving noteworthy statistics.
Indeed, all the methods fail to appropriately process a crowded
scene followed by the weak update mechanism. Table II
demonstrates that SLMC outperformed the other approaches.

Improved accuracy of SLMC is because of the spatiotemporal
consistency constraints.

For the bootstrapping cases, Table II shows that SLMC
provides promising performance for these videos. In addition,
most of the compared methods provided a good estimation
of the model of B. This is because B scene is either more
dominant than F or some training data is available at some
location in the sequence.

B. Evaluations of the Proposed SRPCA Algorithm on Dy-
namic Sequences

The proposed SRPCA algorithm is tested on ten challenging
videos selected from three different datasets (see Table III
for details). Ground truth for B for these sequences is not
available. However, ground truth G of foreground objects
is available which we compare with the estimated F. Table
III indicates that the size of D is equal to the size of X
(entire video sequence), because the pixel values are changing
continuously except for the lobby sequence.

In this experiment, we compared SRPCA with seven algo-
rithms including DECOLOR [1], GoDec [6], RMAMR [17],
GRASTA [19], SOBS [7], and Total Variation regularized
RPCA (TVRPCA) [5]. In addition, SRPCA is also compared
with the proposed SLMC whose F mask is obtained by taking
the absolute difference between input image and estimated
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TABLE III
DESCRIPTION OF THE 10 SEQUENCES TAKEN FROM THE 3

DATASETS.

Seq. Name Size×No. of frames Challenges Size of D

Lobby (I2R [21]) [160, 128]× 1, 415 Light being switched on/off in a lobby [160, 128]× 843
Boats (CDnet14 [20]) [320, 240]× 3, 000 Shimmering water [320, 240]× 7, 999
Canoe (CDnet14 [20]) [320, 240]× 1, 190 Slowly moving canoe and rippling water [320, 240]× 1, 190

Fall (CDnet14 [20]) [720, 480]× 4, 000 Dynamic B with swaying trees [720, 480]× 4, 000
Fountain1 (CDnet14 [20]) [432, 288]× 1, 184 Fountains with fast moving car [432, 288]× 1, 184
Fountain2 (CDnet14 [20]) [432, 288]× 1, 499 Fountain with water fall [432, 288]× 1, 499
Overpass (CDnet14 [20]) [320, 240]× 3, 000 Waving trees with slowly moving person [320, 240]× 3, 000
Water Surface (I2R [21]) [160, 128]× 633 Rippling water and F lingering object [160, 128]× 633

Fountain (I2R [21]) [160, 128]× 524 Fountain [160, 128]× 524
Waving Trees (Wallflower [22]) [160, 120]× 286 Swaying of tree [160, 120]× 286

model of background computed by Alg. 1. A best threshold is
also selected empirically for estimated F segment in case of
SLMC. Fig. 7 displays the binary masks of objects F obtained
for some of the relevant frames relating to the ten sequences
and their comparison with other methods. In addition, the
quantitative performance of the discrimination between F and
B is evaluated in terms of the F1 score.

F1 =
2 · Precision ·Recall
Precision+Recall

, F1 ∈ R(0, 1). (23)

Results are shown in Table IV for all 7 algorithms that were
compared. In this table we show average Precision, Recall,
and F1 score over 10 video clips.

For complex dynamics as presented by the lobby sequence,
in which B scene undergoes an illumination change midway
through the sequence of frames, GRASTA, SLMC, and pro-
posed SRPCA approaches produce good results in terms of the
average F1 score. A closer visual inspection of F for the lobby
video (see Fig. 7 (1st row) from (d) to (j)) shows that all 7 of
the compared algorithms fail to discriminate the segmentation
of B-F while the light is being switched off in the lobby. For
instance, the DECOLOR, GoDec, TVRPCA, and RMAMR
algorithms generate very noisy segments of F as seen in Fig.
7 (d), (e), (g), and (i), respectively. In contrast, the proposed
SRPCA scheme accurately adjusts the dynamic illumination
changes into the estimated model of B. The spatiotemporal
constraints that are incorporated into the proposed method
improve the segmentation of F as seen in the obtained values
of Precision, Recall, and F1 score.

In the case of most complex dynamic scenarios of B, the
results in Table IV show that the SRPCA algorithm attains,
on average, the highest Precision, Recall, and F1 scores, out-
performing all comparative algorithms. The first challenging
aspect to consider is the detection of F objects under variations
in B if objects F remain in front of an extremely dynamical
region of B. As a result, a noisy mask of F appears inside the
regions being detected. This effect was thoroughly inspected
in the fall, overpass, and waving trees videos mentioned in
Fig. 7 (4th, 7th, and last row) (d) to (i). Only the SRPCA
method succeeded in achieving performance of more than 90%
in terms of F1 score.

Another important point is if B contains highly dynam-
ical regions that may be detected as elements of F, as is
the case with Fountain1, Fountain2, and Fountain videos.
As shown in Fig. 7 (d) to (j), 7 of the methods that are
compared all mistakenly detect the fountains as F objects in
these sequences. In contrast, SRPCA and RMAMR methods
can successfully detect objects under these circumstances to

discriminate between F and B because these schemes include
motion assistance for pixel variability (see Fig. 7 (i) and (k)).
Furthermore, the spatiotemporal continuity introduced in the
proposed algorithm allows the inclusion of highly dynamical
information of B.

The third challenging situation arises when object F moves
slowly within a highly dynamical region of B as in the case
of the Boats, Canoe, and Water Surface sequences (see Fig. 7
(d) to (k) (2nd, 3rd, and 8th row)). Here, all 7 of the compared
methods perform the worst discrimination since the pixels of
object F are also encoded into the model B as shown in
Fig. 7 (d) to (j). Likewise, DECOLOR, GRASTA, and SOBS
algorithms are unable to correctly discriminate the slowly
changing scene involving the moving canoe in the model of B,
leading to false segmentations. Because of motion assistance in
RMAMR, it outperforms all the other methods except SRPCA.
However, in the case of Water Surface, some regions of F
object are not detected and are persistently miss-classified as
B by all the methods that were compared. In contrast, SR-
PCA correctly identifies these slowly moving objects. Unlike
SLMC, the first important aspect in SRPCA is that both B
and F components are optimized simultaneously. Secondly,
the availability of spatiotemporal information and the ability
to detect dynamic video frames enables SRPCA to adapt the
model to dynamic changes in B scene, thereby improving the
segmentation task. Overall, the results we attained demonstrate
that SRPCA allows for improved discrimination between F
and B compared to all other methods.

C. Implementation Details and Computational Time

Execution time of all algorithms was compared on a ma-
chine with 3.0 GHz Intel core i5 processor and 4GB RAM.
Solution of the proposed models (3) and (19) require a set of
11 parameters including r, τ, λ1, λ2, α, γ1, γ2, η, σ, u

2, and s.
The rank r was set to 10 in order to rapidly update the model
of B and this was followed by a block-coordinate descent
method. τ is a threshold for redundant frame decision, which
is estimated automatically as discussed in Section III (D).
λ1, λ2, and α are regularization parameters, which were all
set according to 1/

√
max(p, c) as suggested by Candés et

al. [13]. After setting λ1, the parameters γ1 and γ2 are set to
10 as used by [30], [31]. The purpose is to make the manifold
terms dominate in the objective function. The constant η was
used as stopping criterion to enable Alg. 1 to converge and it
was set to 10−6. The remaining three parameters were related
to the construction of Gt and Gs. The parameter σ controls
the smoothness on the graphs and was set to 0.05, which was
effective in all the experiments; it can also be adapted as the
average distance of the connected samples. Provided that σ is
not large, the parameter does not affect the final quality of B.
For the construction of Gs on image patches, we used u2 = 25.
The number of nearest neighbors s is set 10 for both graphs. In
addition, we used the FLANN [39] libraries for more efficient
computation of the graphs. Both graphs were constructed using
the open source toolbox called GSPBox2 [42]. More tuned
values of these parameters may have generated even better

2Available for public use: https://lts2.epfl.ch/gsp/
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TABLE IV
COMPARISON OF RECALL, PRECISION, AND F1 SCORE ON DYNAMIC VIDEOS ( SEE FIG. 7 AND TABLE III.)

Methods lobby boats canoe fall fountain1 fountain2 overpass watersurface fountain waving trees
Re Pre F1 Re Pre F1 Re Pre F1 Re Pre F1 Re Pre F1 Re Pre F1 Re Pre F1 Re Pre F1 Re Pre F1 Re Pre F1

DECOLOR [1] 0.17 0.99 0.29 0.36 0.12 0.19 0.70 0.85 0.73 0.76 0.53 0.61 0.96 0.01 0.02 1.00 0.47 0.64 0.82 0.72 0.81 0.72 0.98 0.83 0.20 0.95 0.33 0.87 0.89 0.88
GoDec [6] 0.07 0.72 0.12 0.34 0.13 0.18 0.64 0.65 0.42 0.37 0.45 0.60 0.60 0.01 0.11 0.72 0.55 0.38 0.66 0.73 0.66 0.85 0.62 0.72 0.68 0.28 0.40 0.98 0.53 0.68

RMAMR [17] 0.15 0.99 0.27 0.38 0.23 0.78 0.78 0.87 0.81 0.72 0.80 0.75 0.74 0.42 0.51 0.97 0.95 0.96 0.78 0.87 0.82 0.62 0.99 0.76 0.81 0.74 0.77 0.79 0.87 0.83
GRASTA [19] 0.80 0.81 0.80 0.94 0.50 0.66 0.30 0.95 0.46 0.27 0.87 0.42 0.40 0.18 0.24 0.75 0.77 0.75 0.81 0.93 0.87 0.85 0.86 0.85 0.8 0.48 0.60 0.97 0.59 0.74
TVRPCA [5] 0.91 0.30 0.45 0.51 0.53 0.52 0.54 0.99 0.70 0.82 0.33 0.48 0.40 0.01 0.12 0.56 0.98 0.72 0.65 0.95 0.77 0.86 0.84 0.84 0.70 0.76 0.73 0.94 0.52 0.67

SOBS [7] 0.72 0.33 0.46 0.27 0.11 0.15 0.54 0.70 0.64 0.74 0.62 0.61 0.30 0.61 0.32 0.90 0.82 0.88 0.64 0.78 0.68 0.65 0.89 0.75 0.80 0.59 0.68 0.84 0.64 0.73
SLMC 0.79 0.76 0.77 0.44 0.47 0.46 0.40 0.28 0.33 0.91 0.34 0.50 0.52 0.52 0.52 0.72 0.57 0.64 0.61 0.69 0.64 0.90 0.52 0.66 0.73 0.39 0.51 0.75 0.85 0.79
SRPCA 0.86 0.80 0.83 0.72 0.95 0.82 0.89 0.99 0.94 0.85 0.99 0.92 0.86 0.78 0.82 0.84 0.97 0.90 0.87 0.97 0.92 0.89 0.97 0.93 0.78 0.75 0.76 0.99 0.95 0.97

results, however we have emphasized on generalization of the
proposed algorithm over unseen datasets.

The time complexities were also investigated during our
experiments. For fixed values of s = 10 and u2 = 25,
the complexity of Gt is O(pc(log(c))) and that of Gs is
O(cp log(p)) [31]. In addition, the proposed MC method is an
iterative approach and its complexity is O(pr2). In contrast
to earlier RPCA batch approaches, the proposed method
processes only one frame per time instance and updates B
when a new sample arrives. Taking its complexity as O(pr2),
SLMC is independent from the number of video samples, but
proportional to r. As the method hardly takes 5 iterations per
frame, it is linear to the sample size and almost linear to
the ambient dimensions; therefore, it is much more efficient
and outperforms earlier methods [1], [6], [17], [19]. Thus,
the overall time complexity, including graph constructions, of
Alg. 1 above is O(p(c log(c)+r2 +c log(p))) and the memory
required by SLMC is also reduced to O(pr), since it is not
dependent on video samples.

To compare the overall computational time including graphs
construction step of SLMC and SRPCA, we first selected
a very short sequence named IBMtest2 (see Table 1) from
SMBI dataset. We then created a batch of 90 frames with
image resolution of 240 × 320. For fair comparison with the
above mentioned approaches, the time is recorded in seconds.
Fig. 8 presents the performance in terms of computational time
and it is noticed that both SLMC and SRPCA achieve the
most promising results as compared to the previous algorithms.
Since both B and F components are simultaneously optimized,
the time is effected in case of SRPCA but it is still attractive
for a surveillance video processing. All these experimental
investigations reveal that the proposed SLMC and SRPCA
methods show a very nice potential for the robust estimation
of model B and detection of foreground objects in terms of a
very good accuracy and speed.

V. CONCLUSION

In this paper, two fast algorithms including SLMC and
SRPCA are presented for estimation of stationary as well as
dynamic background models. The proposed algorithms are
based on iterative processing and hence solve some of the
problems associated with traditional batch processing methods.
In SLMC, first redundant samples are removed from the
input matrix to alleviate the difficulty of supporting outliers.
SLMC provides an efficient and more reliable mechanism to
recover the background component, even in the presence of
missing entries, using matrix completion together with max-
norm constraints. Moreover, the model of matrix L is well
maintained by exploiting the idea of similarity in the form of
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Fig. 8. Comparison of computational time in seconds for SBMI sequence.

graph Laplacian regularizations. The key aspect of SLMC is
its capacity to generate an accurate model of B even if it is
occluded by F objects. Large-scale experimental evaluations
on different datasets using six different criteria demonstrated
that the proposed scheme achieved promising performance
as compared to the existing methods. Online construction of
graphs and background model for scenes recorded by moving
and pan tilt zoom cameras remain an open challenge. We
plan to investigate the possibility of extending the proposed
method to scenes that are more crowded and that are recorded
using a moving camera by further extending the notion of data
similarity using coarse to fine strategy.
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