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Abstract Background/foreground separation is the first step in video surveillance
system to detect moving objects. Recent research on problem formulations based
on decomposition into low-rank plus sparse matrices shows a suitable framework
to separate moving objects from the background. The most representative problem
formulation is the Robust Principal Component Analysis (RPCA) solved via Prin-
cipal Component Pursuit (PCP) which decomposes a data matrix in a low-rank
matrix and a sparse matrix. However, similar robust implicit or explicit decompo-
sitions can be made in the following problem formulations: Robust Non-negative
Matrix Factorization (RNMF), Robust Matrix Completion (RMC), Robust Sub-
space Recovery (RSR), Robust Subspace Tracking (RST) and Robust Low-Rank
Minimization (RLRM). The main goal of these similar problem formulations is
to obtain explicitly or implicitly a decomposition into low-rank matrix plus ad-
ditive matrices. These formulation problems differ from the implicit or explicit
decomposition, the loss function, the optimization problem and the solvers. As
the problem formulation can be NP-hard in its original formulation, and it can
be convex or not following the constraints and the loss functions used, the key
challenges concern the design of efficient relaxed models and solvers which have to
be with iterations as few as possible, and as efficient as possible. In the application
of background/foreground separation, constrainst inherent to the specificities of
the background and the foreground as the temporal and spatial properties need
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to be taken into account in the design of the problem formulation. Practically, the
background sequence is then modeled by a low-rank subspace that can gradually
change over time, while the moving foreground objects constitute the correlated
sparse outliers. Although, many efforts have been made to develop methods for the
decomposition into low-rank plus additive matrices that perform visually well in
foreground detection with reducing their computational cost, no algorithm today
seems to emerge and to be able to simultaneously address all the key challenges
that accompany real-world videos. This is due, in part, to the absence of a rig-
orous quantitative evaluation with synthetic and realistic large-scale dataset with
accurate ground truth providing a balanced coverage of the range of challenges
present in the real world. In this context, this work aims to initiate a rigorous
and comprehensive review of the similar problem formulations in robust subspace
learning and tracking based on decomposition into low-rank plus additive matrices
for testing and ranking existing algorithms for background/foreground separation.
For this, we first provide a preliminary review of the recent developments in the dif-
ferent problem formulations which allows us to define a unified view that we called
Decomposition into Low-rank plus Additive Matrices (DLAM). Then, we exam-
ine carefully each method in each robust subspace learning/tracking frameworks
with their decomposition, their loss functions, their optimization problem and
their solvers. Furthermore, we investigate if incremental algorithms and real-time
implementations can be achieved for background/foreground separation. Finally,
experimental results on a large-scale dataset called Background Models Challenge
(BMC 2012) show the comparative performance of 32 different robust subspace
learning/tracking methods.

Keywords Background Subtraction · Foreground Detection · Robust Principal
Component Analysis · Robust Non-negative Matrix Factorization · Robust Matrix
Completion · Subspace Tracking · Low Rank Minimization

1 Introduction

The detection of moving objects is the basic low-level operation in video analysis.
This detection is usually done by using foreground detection. This basic opera-
tion consists of separating the moving objects called ”foreground” from the static
information called ”background”. Many foreground detection methods have been
developed [30][26][27][28][31][269], and several implementations are available in the
BGS Library [290]. Several foreground detection methods are based on subspace
learning models such as Principal Component Analysis (PCA) [26]. In 1999, Oliver
et al. [233] were the first authors to model the background by PCA. Foreground
detection is then achieved by thresholding the difference between the generated
background image and the current image. PCA provides a robust model of the
probability distribution function of the background, but not of the moving objects
while they do not have a significant contribution to the model. Although there are
several PCA improvements [310][311] that address the limitations of classical PCA
with respect to outlier and noise, yielding to the field of robust PCA via outliers
suppression, these methods do not possess the strong performance guarantees pro-
vided by the recent works on robust PCA via decomposition into low-rank plus
sparse matrices [40][335][48][2]. The idea of this recent RPCA approach is that the
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Fig. 1 RPCA via decomposition into low-rank plus sparse matrices in foreground/background
separation: Original image (309), low-rank matrix L (background), sparse matrix S (fore-
ground), foreground mask (Sequences from BMC 2012 dataset [315]).

data matrix A can be decomposed into two components such that A = L+S, where
L is a low-rank matrix and S is a matrix that can be sparse. The decomposition
into low-rank plus additive matrices are used in similar problem formulations such
as Robust Non-negative Matrix Factorization (RNMF), Robust Matrix Comple-
tion (RMC), Robust Subspace Recovery (RSR), Robust Subspace Tracking (RST)
and Robust Low-Rank Minimization (RLRM) [375]. RNMF assumes that the ma-
trix L is a non-negative matrix. Sparsity constraints are applied on S in RPCA
and not in LRM. Furthermore, changes can be tracked in the subspace, that is the
field of subspace tracking. Applying RPCA via decomposition into low-rank plus
sparse matrices in video-surveillance, the background sequence is modeled by the
low-rank subspace that can gradually change over time, while the moving fore-
ground objects constitute the correlated sparse outliers. For example, Fig. 1 shows
original frames of sequences from the BMC dataset [315] and its decomposition
into the low-rank matrix L and sparse matrix S. We can see that L corresponds to
the background whereas S corresponds to the foreground. The fourth image shows
the foreground mask obtained by thresholding the matrix S. So, the different ad-
vances in the different problem formulations of the decomposition into low-rank
plus additive matrices are fundamental and can be applied to background model-
ing and foreground detection in video surveillance [33][28].

The rest of this introduction is organized as follows. Firstly, we provide a pre-
liminary overview of the different problem formulations for the robust subspace
learning/tracking frameworks which used the decomposition into low-rank plus
additive matrices. Then, we present a unified view of decomposition into low-rank
plus additive matrices with a discussion about its adequation for the application
of background/foreground separation. Thus, we review quickly similar decompo-
sitions such as sparse and mixed decompositions. Finally, we introduce our moti-
vations to provide this review for a comparative evaluation in the application of
background/foreground separation.
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1.1 Problem Formulations based on Decomposition into Low-rank plus Additive
Matrices: A Preliminary Overview

The aim of this section is to allow the reader to have a quick preliminary overview
of the different robust problem formulations that are reviewed in details in the
different sections of this paper. These different problem formulations based on an
implicit or explicit decomposition into low-rank plus additive matrices are classified
in the following categories: robust PCA, robust non-negative matrix factorization,
robust subspace recovery, robust subspace tracking, robust matrix completion and
robust low-rank minimization.

1.1.1 Robust Principal Component Analysis (RPCA)

Recent research in robust PCA are based on the explicit decomposition into low-
rank plus sparse matrices which differs from the decomposition, the loss functions,
the optimization problem and the solvers used. These different approaches can be
classified as follows:

1. RPCA via Principal Component Pursuit (RPCA-PCP): The first work
on RPCA-PCP developed by Candes et al. [40][335] and by Chandrasekharan
et al. [48] proposed the robust PCA problem as one of separating a low-rank
matrix L (true data matrix) and a sparse matrix S (outliers’ matrix) from their
sum A (observed data matrix). Thus, a convex optimization allowed them to
address the robust PCA problem. Under minimal assumptions, this approach
called Principal Component Pursuit (PCP) perfectly recovers the low-rank and
the sparse matrices. The background sequence is then modeled by a low-rank
subspace that can gradually change over time, while the moving foreground
objects constitute the correlated sparse outliers. Therefore, Candes et al. [40]
showed visual results on foreground detection that demonstrated encouraging
performance but PCP presents several limitations for foreground detection.
The first limitation is that it required algorithms to be solved that are com-
putational expensive. The second limitation is that PCP is a batch method
that stacked a number of training frames in the input observation matrix.
In real-time application such as foreground detection, it would be more use-
ful to estimate the low-rank matrix and the sparse matrix in an incremental
way quickly when a new frame comes rather than in a batch way. The third
limitation is that the spatial and temporal features are lost as each frame is
considered as a column vector. The fourth limitation is that PCP imposed the
low-rank component being exactly low-rank and the sparse component being
exactly sparse but the observations such as in video surveillance are often cor-
rupted by noise affecting every entry of the data matrix. The fifth limitation
is that PCP assumed that all entries of the matrix to be recovered are exactly
known via the observation and that the distribution of corruption should be
sparse and random enough without noise. These assumptions are rarely ver-
ified in the case of real applications because of the following main reasons:
(1) only a fraction of entries of the matrix can be observed in some environ-
ments, (2) the observation can be corrupted by both impulsive and Gaussian
noise, and (3) the outliers i.e moving objects are spatially localized. Many
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efforts have been recently concentrated to develop low-computational algo-
rithms for solving PCP [188][189][38][368][352][281][335][221][194][190][205][90].
Other authors investigated incremental algorithms of PCP to update the low-
rank and sparse matrix when a new data arrives [242][244][243][245]. Real-time
implementations [8][9][306] have been developed too. Moreover, other efforts
have addressed problems that appear specifically in real applications as back-
ground/foreground separation:

(a) Presence of noise: Noise in image is due to a poor quality image source
such as images acquired by a web cam or images after compression.

(b) Quantization of the pixels: The quantization can induce at most an error
of 0.5 in the pixel value.

(c) Spatial and temporal constraints of the foreground pixels: Low-rank
and sparse decomposition is based on the condition that the outlier/noise
can be considered as sparsity patterns and are uniformly located at the
scene, which is not realistic in realworld applications as foreground moving
objects are located in a connexed area. Furthermore, foreground moving
objects present a continuous motion through the sequence. These two points
need to introduce spatial and temporal constraints on the detection.

(d) Local variations in the background: Variations in the background may
be due to a camera jitter or dynamic backgrounds.

To address (a), Zhou et al. [393] proposed a stable PCP (SPCP) that guar-
antees accurate recovery in the presence of entry-wise noise. Becker et al. [20]
proposed a inequality constrained version of PCP to take into account the quan-
tization error of the pixel’s value (b). To address (c), Tang and Nehorai [306]
proposed a PCP method via a decomposition that enforces the low-rankness of
one part and the block sparsity of the other part. Wohlberg et al. [333] used a
decomposition corresponding to a more general underlying model consisting of
a union of low-dimensional subspaces for local variation in the background (d).
Furthermore, RPCA is generally applied in the pixel domain by using intensity
or color features but other features can be used such as depth [141] and mo-
tion (optical flow [266]) features. Furthermore, RPCA can been extended to the
measurement domain, rather than the pixel domain, for use in conjunction with
compressive sensing [329][330][169][152][153][350][395][181][180][156][155][252].
Although experiments show that moving objects can be reliably extracted by
using a small amount of measurements, we have limited the investigation and
the comparative evaluation in this paper to the pixel domain to compare with
the classical background subtraction methods.

2. RPCA via Outlier Pursuit (RPCA-OP): Xu et al. [342] proposed a robust
PCA via Outlier Pursuit to obtain a robust decomposition when the outliers
corrupted entire columns, that is every entry is corrupted in some columns.
Moreover, Xu et al. [342] proposed a stable OP (SOP) that guarantee stable
and accurate recovery in the presence of entry-wise noise.

3. RPCA via Sparsity Control (RPCA-SpaCtrl): Mateos and Giannakis [213][214]
proposed a robust PCA where a tunable parameter controls the sparsity of the
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estimated matrix, and the number of outliers as a by-product.

4. RPCA via Sparse Corruptions (RPCA-SpaCorr): Even if the matrix A

is exactly the sum of a sparse matrix S and a low-rank matrix L, it may be
impossible to identify these components from the sum. For example, the sparse
matrix S may be low-rank, or the low-rank matrix L may be sparse. To ad-
dress this issue, Hsu et al. [130] imposed conditions on the sparse and low-rank
components in order to guarantee their identifiability from A.

5. RPCA via Log-sum heuristic Recovery (RPCA-LHR): When the matrix
has high intrinsic rank structure or the corrupted errors become dense, the
convex approaches may not achieve good performances. Then, Deng et al. [66]
used the log-sum heuristic recovery to learn the low-rank structure.

6. RPCA via Iteratively Reweighted Least Squares (IRLS): Guyon et al.
[113] proposed to solve the RPCA problem by using an Iteratively Reweighted
Least Squares (IRLS) alternating scheme for matrix low-rank decomposition.
Furthermore, spatial constraint can be added in the minimization process to
take into account the spatial connexity of pixels [112]. The advantage of IRLS
over the classical solvers is its fast convergence and its low computational cost.
Furthermore, Guyon et al. [111] improved this scheme by addressing in the
minimization the spatial constraints and the temporal sparseness of moving
objects.

7. RPCA via Stochastic Optimization (RPCA-SO): Goes et al. [89] proposed
a robust PCA via a stochastic optimization. Feng et al. [83] developed an on-
line Robust PCA (OR-PCA) that processes one sample per time instance and
hence its memory cost is independent of the number of samples, significantly
enhancing the computation and storage efficiency. The algorithm is equivalent
to a reformulation of the batch RPCA [89]. Therefore, Javed et. al [144] modi-
fied OR-PCA via stochastic optimization method to perform it on background
subtraction. An initialization scheme is adopted which converges the algorithm
very fastly as compared to original OR-PCA. Therefore, OR-PCA was further
improved to enhance the foreground segmentation using the continuous con-
straints such as Markov Random Filed (MRF) [147] and using dynamic feature
selection [146].

8. RPCA with Dynamic Mode Decomposition (RPCA-DMD): Grosek et al.
[96] introduced the use of dynamic mode decomposition (DMD) for robustly
separating videoframes into background and foreground components in real-
time. DMD [94] is a technique used for characterizing nonlinear dynamical sys-
tems in an equation-free manner by decomposing the state of the system into
low-rank terms whose Fourier components in time are known. DMD terms with
Fourier frequencies near the origin (zero-modes) are interpreted as background
portions of the given video frames, and the terms with Fourier frequencies
bounded away from the origin are their sparse counterparts. An approximate
low-rank/sparse separation is achieved at the computational cost of one singu-
lar value decomposition and one linear equation solve, thus producing results
orders of magnitude faster than RPCA. Kutz et al. [167][166][95] improved this
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approach for robustly separating background and foreground component into
a hierarchy of multi-resolution time-scaled component.

9. Bayesian RPCA (BRPCA): Ding et al. [71] proposed a Bayesian framework
which infers an approximate representation for the noise statistics while simul-
taneously inferring the low-rank and sparse components. Furthermore, Markov
dependency is introduced spatially and temporarily between consecutive rows
or columns corresponding to image frames. This method has been improved
in a variational Bayesian framework [17] and a factorized variational Bayesian
framework [5]. In a similar manner, Zhao et al. [385] developed a generative
RPCA model under the Bayesian framework by modeling data noise as a mix-
ture of Gaussians (MoG).

10. Approximated RPCA: Zhou and Tao [389] proposed an approximated low-
rank and sparse matrix decomposition. This method called Go Decomposition
(GoDec) produces an approximated decomposition of the data matrix whose
RPCA exact decomposition does not exist due to the additive noise, the prede-
fined rank on the low-rank matrix and the predefined cardinality of the sparse
matrix. GoDec is significantly accelerated by using bilateral random projec-
tion. Furthermore, Zhou and Tao [389] proposed a Semi-Soft GoDec which
adopts soft thresholding to the entries of S, instead of GoDec which imposes
hard thresholding to both the singular values of the low-rank part L and the
entries of the sparse part S.

11. Sparse Additive Matrix Factorization: Nakajima et al. [222] [223] developed
a framework called Sparse Additive Matrix Factorization (SAMF). The aim of
SAMF is to handle various types of sparse noise such as row-wise and column-
wise sparsity, in addition to element-wise sparsity (spiky noise) and low-rank
sparsity (low-dimensional). Furthermore, their arbitrary additive combination
is also allowed. In the original robust PCA [40], row-wise and column-wise
sparsity can capture noise observed only in the case when some sensors are
broken or their outputs are unreliable. SAMF due to its flexibility in sparsity
design incorporate side information more efficiently. In background/foreground
separation, Nakajima et al. [222] [223] induced the sparsity in SAMF using im-
age segmentation.

12. Variational Bayesian Sparse Estimator: Chen et al. [57] proposed a varia-
tional Bayesian Sparse Estimator (VBSE) based algorithm for the estimation
of the sparse component of an outlier corrupted low-rank matrix, when linearly
transformed composite data are observed. It is a generalization of the origi-
nal robust PCA [40]. VBSE can achieved background/foreground separation
in blurred and noisy video sequences.

1.1.2 Robust Non-negative Matrix Factorization (RNMF)

Non-negative matrix factorization (NMF) approximates a non-negative matrix A

by a product of two non-negative low-rank factor matrices W and H. Classical
NMF methods minimize either the Euclidean distance or the Kullback-Leibler di-
vergence between X and WTH to model the Gaussian noise or the Poisson noise.
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Practically, these methods do not perform well when the noise distribution is
heavy tailed as in the background/foreground separation. To address this prob-
lem, Guan et al. [99] proposed to minimize the Manhattan distance between X

and WTH. This method called Manhattan NMF (MahNMF) robustly estimates
the low-rank part and the sparse part of a non-negative matrix and performs
effectively when data are contaminated by outliers. MahNMF shows similar qual-
itative performance as the RPCA solved via IALM [40]. In another way, Kumar
et al. [164] proposed a family of conical hull finding procedures called Xray for
Near-separable NMF (NS-NMF) problems with Frobenius norm loss. However, in
the presence of outliers or different noise characteristics, the use of Frobenius norm
approximations is not optimal. Then, Kumar and Sindhwani [163] improved Xray
to provide robust factorizations with respect to the 11-loss function, and approx-
imations with respect to the family of Bregman divergences. This algorithm is
called RobustXray. Quantitative results [163] show that RobustXray outperforms
the RPCA solved via IALM [40] in presence of noise. Another approach developed
by Woo and Park [334] used a formulation called l∞-norm based robust asymmet-
ric nonnegative matrix factorization (RANMF) for the grouped outliers and low
nonnegative rank separation problems. The main advantage of RANMF is that
the denseness of the low nonnegative rank factor matrices can be controlled. Fur-
thermore, RANMF is not sensitive to the nonnegative rank constraint parameter
due to the soft regularization method.

1.1.3 Robust Matrix Completion (RMC)

The matrix completion aims at recovering a low-rank matrix from partial obser-
vations of its entries. Robust matrix completion RMC, also called RPCA plus
matrix completion problem can also be used for background/foreground separa-
tion. RPCA via principal component pursuit [40] can be considered as RMC using
l1-norm loss function. Following this idea, Yang et al. [360] proposed a noncon-
vex relaxation approach to the matrix completion problems when the entries are
contaminated by non-Gaussian noise or outliers. A nonconvex loss function based
on the lσ-norm instead of the l1-norm is used with a rank constrained as well as
a nuclear norm regularized model. This method can be solved via two algorithms
based on iterative soft thresholding (IST) and iterative hard thresholding (IHT). A
nonconvex loss function used in robust statistics is used with a rank constrained as
well as a nuclear norm regularized model. This method called RMC-lσ-IHT is also
faster than RPCA solved via IALM [40]. In another way, Shang et al. [275][273]
proposed a scalable, provable structured low-rank matrix factorization method to
recover low-rank plus sparse matrices from missing and grossly corrupted data. A
scalable robust bilinear structured factorization (RBF) method recovered low-rank
plus sparse matrices from incomplete, corrupted data or a small set of linear mea-
surements. In a similar way, Shang et al. [274] proposed a scalable convex model
(RMC with convex formulation) and a non-convex model solved with matrix fac-
torization (RMC-MF) in which the desired low-rank matrix L is factorized into
two much smaller matrices. In another way, Mansour and Vetro [212] proposed a
factorized robust matrix completion (FRMC) algorithm with global motion com-
pensation. The algorithm decomposes a sequence of video frames into the sum of a
low-rank background component and a sparse motion component. The algorithm
alternates between the solution of each component following a Pareto curve tra-
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jectory for each subproblem. For videos with moving background, Mansour and
Vetro [212] used the motion vectors extracted from the coded video bitstream
to compensate for the change in the camera perspective. This approach is faster
than state-of-the-art solvers and results in highly accurate motion segmentation.
In a similar way, Yang et al. [351] proposed a Motion-Assisted Matrix Completion
(MAMC) which used a dense motion field for each frame. This field is then mapped
into a weighting matrix to assign the reliability of pixels that belong to the back-
ground. This method is robust to slowly moving objects and camouflage. Yang et
al. [351] extended MAMC to a robust MAMC model (RMAMC) which is robust
to noise. Sobral et al. [291] provided a comparison of several matrix completion
algorithms on the SBMI dataset [210].

1.1.4 Robust Subpace Recovery (RSR)

This category contains the robust decompositions other than RPCA and RNMF
decompositions. First, Wang et al. [325] studied the problem of discovering a sub-
space in the presence of outliers and corruptions. In this context, additional knowl-
edge is added to relax this problem as a convex programming problem. Thus, Wang
et al. [325] provided a Robust Subspace Discovery (RSD) method solved via an
efficient and effective algorithm based on the Augmented Lagrangian Multiplier.
Since high dimensional data is supposed to be distributed in a union of low dimen-
sional subspaces, Bian and Krim [24] proposed a bi-sparse model as a framework
to take into account that the underlying structure may be affected by sparse errors
and/or outlier. So, Bian and Krim [24] provided an algorithm called Robust Sub-
space Recovery via bi-sparsity pursuit (RoSuRe) to recover the union of subspaces
in presence of sparse corruptions. Experimental results [24] show robustness in
the case of camera jitter. Conventional robust subspace recovery models address
the decomposition problem by iterating between nuclear norm and sparsity mini-
mization. However, this scheme is computationally prohibitive to achieve real time
requirements. To solve this problem, Shu et al. [287] proposed a Robust Orthog-
onal Subspace Learning (ROSL) method to achieve efficient low-rank recovery. A
rank measure on the low-rank matrix is introduced that imposes the group spar-
sity of its coefficients under orthonormal subspace. Furthermore, an efficient sparse
coding algorithm minimizes this rank measure and recovers the low-rank matrix
at quadratic complexity of the matrix size. Finally, Shu et al. [287] developed a
random sampling algorithm to further speed up ROSL such that its accelerated
version (ROSL+) has linear complexity with respect to the matrix size. Exper-
iments [287] demonstrate that both ROSL and ROSL+ provide more efficiency
against RPCA solved via IALM [40] with the same detection accuracy. In a differ-
ent manner, She et al. [277] proposed a robust orthogonal complement principal
component analysis (ROC-PCA). The aim is to deal with orthogonal outliers that
are not necessarily apparent in the original observation space but could affect
the principal subspace estimation. For this, She et al. [277] introduced a projected
mean-shift decomposition and developed a fast alternating optimization algorithm
on the basis of Stiefel manifold optimization and iterative nonlinear thresholdings.
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1.1.5 Robust Subspace Tracking (RST)

Subspace tracking aims to address the problem when new observations come in
asynchronously in the case of online streaming application. The algorithm can-
not store in general all the input data in memory. The incoming observations
must be immediate processed and then discarded. Furthermore, since the sub-
space can be identified from incomplete vectors, it can be subsampled in order
to improve on computational efficiency, and it still retain subspace estimation ac-
curacy. The involved subspaces can have low-rank and/or sparse structures as in
the previous decomposition problem formulations. In this idea, He et al. [119][120]
proposed an incremental gradient descent on the Grassmannian, the manifold of
all d-dimensional subspaces for fixed d. This algorithm called Grassmannian Ro-
bust Adaptive Subspace Tracking Algorithm (GRASTA) uses a robust l1-norm
cost function in order to estimate and track non-stationary subspaces when the
streaming data vectors, that are image frames in foreground detection, are cor-
rupted with outliers, that are foreground objects. This algorithm allows to separate
background and foreground online. GRASTA shows high-quality visual separa-
tion of foreground from background. Following the idea of GRASTA, He et al.
[122][123] proposed (transformed-GRASTA) which iteratively performs incremen-
tal gradient descent constrained to the Grassmannian manifold of subspaces in
order to simultaneously estimate a decomposition of a collection of images into
a low-rank subspace, a sparse part of occlusions and foreground objects, and a
transformation such as rotation or translation of the image. t-GRASTA is four
times faster than state-of-the-art algorithms, has half of the memory requirement,
and can achieve alignment in the case of camera jitter. Although the l1-norm in
GRASTA leads to favorably conditioned optimization problems it is well known
that penalizing with non-convex l0-surrogates allows reconstruction even in the
case when l1-based methods fail. Therefore, Hage and Kleinsteuber [115][268] pro-
posed an improved GRASTA using l0-surrogates solving it by a Conjugate Gra-
dient method. This method called pROST [268] outperforms GRASTA in the
case of multi-modal backgrounds. Another approach developed by Xu et al. [343]
consists of a Grassmannian Online Subspace Updates with Structured-sparsity
(GOSUS), which exploits a meaningful structured sparsity term to significantly
improve the accuracy of online subspace updates. Their solution is based on Al-
ternating Direction Method of Multipliers (ADMM), where most key steps in the
update procedure are reduced to simple matrix operations yielding to real-time
performance. Finally, Ahn [4] proposed a fast adapted subspace tracking algorithm
which shares the procedure of separating frames into background and foreground
with GRASTA, but it uses a recursive least square algorithm for subspace tracking,
which makes it fast adapted to dynamic backgrounds.

1.1.6 Robust Low Rank Minimization (RLRM)

Low-rank minimization (approximation or representation) is a minimization prob-
lem, in which the cost function measures the fit between a given data matrix A

and an approximating matrix L, subject to a constraint that the approximating
matrix L has reduced rank. In the application of background/foreground separa-
tion, Zhou et al. [391] proposed a framework called Detecting Contiguous Outliers
in the Low-Rank Representation (DECOLOR) and formulated outlier detection in
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the robust low-rank representation, in which the outlier support and the low-rank
matrix are estimated. This approach integrates object detection and background
learning into a single process of optimization solved by an alternating algorithm. In
a different manner, Xiong et al. [341] proposed a direct robust matrix factorization
(DRMF) assuming that a small portion of the matrix A has been corrupted by
some arbitrary outliers. The aim is to get a reliable estimation of the true low-rank
structure of this matrix and to identify the outliers. To achieve this, the outliers
are excluded from the model estimation. Furthermore, Xiong et al. [341] proposed
an extension of DRMF to deal with the presence of outliers in entire columns.
This method is called DRMF-Row (DRMF-R). In another way, Wang et al. [321]
proposed a probabilistic method for robust matrix factorization (PRMF) based
on the l1-norm loss and l2-regularizer, which bear duality with the Laplace error
and Gaussian prior, respectively. But, PRMF treats each pixel independently with
no clustering effect but the moving objects in the foreground usually form groups
with high within-group spatial or temporal proximity. Furthermore, the loss func-
tion is defined based on the l1-norm, and its results are not robust enough when
the number of outliers is large. To address these limitations, Wang et al. [366]
proposed a full Bayesian formulation called Bayesian Robust Matrix Factorization
(BRMF). BRMF used a Laplace mixture with the generalized inverse Gaussian
distribution as the noise model to further enhance model robustness. Further-
more, BRMF contained a Markov extension (MBRMF) which assumes that the
outliers exhibit spatial or temporal proximity. In a different manner, Zheng et al.
[386] added a convex nuclear-norm regularization term to improve convergence
of LRM, without introducing too much heterogenous information. This method is
called Practical Low-Rank Matrix Factorization (PLRMF). The previous low-rank
factorization used loss functions such as the l2-norm and l1-norm losses. l2-norm is
optimal for Gaussian noise, while l1-norm is for Laplacian distributed noise. Since
videos are often corrupted by an unknown noise distribution, which is unlikely to
be purely Gaussian or Laplacian, Meng et al. [216] used a low-rank matrix fac-
torization problem with a Mixture of Gaussians (LRMF-MoG) noise model. Since
the MoG model is a suitable approximator for any continuous distribution, it is
able to model a wider range of noise.

Table 1 and Table 2 show an overview of the different problem formulations
based on decomposition into low-rank plus additive matrices. The first column
indicates the name of the different problem formulations and the second column
shows the different categories of each problem formulations. The third column in-
dicates the different methods of each category with their corresponding acronym.
The fourth column gives the name of the authors and the date of the related pub-
lication. The previous surveys in the field are indicated in bold and the reader can
refer to them for more references on the corresponding category or sub-category.
Furthermore, we present in different tables some quick comparisons on the dif-
ferent key characteristics of these different problem formulations based on the
decomposition into low-rank plus additive matrices. Thus, Table 3, Table 4, Table
5 and Table 6 show an overview of the different decompositions into low-rank plus
additive matrices in terms of minimization, constraints and convexity to allow us
to define a unified view that we called Decomposition into Low-rank plus Additive
Matrices (DLAM).
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Robust Problem Formulations Categories Sub-categories Authors - Dates

Robust Principal Components Analysis (RPCA) Principal Component Pursuit PCP Candes et al. (2009) [40]

(Survey Guyon et al. [114]) (Survey Bouwmans and Zahzah[33]) Stable PCP Zhou et al. (2010) [393]

Quantized PCP Becker et al. (2011) [20]

Block based PCP Tang and Nehorai (2011) [306]

Local PCP Wohlberg et al. (2012) [333]

Outlier Pursuit OP Xu et al. (2010) [342]

SOP Xu et al. (2010) [342]

Sparsity Control SpaCtrl Mateos et al. (2010) [213]

SpaCorr Hsu et al. (2011) [130]

Non Convex Heuristic Recovery lp HR (pHR) Deng et al. (2012) [65]

Log-sum HR (LHR) Deng et al. (2012) [66]

Iteratively Reweighted Least Square IRLS Guyon et al. (2012) [113]

Spatial IRLS Guyon et al. (2012) [112]

Spatio-temporal IRLS Guyon et al. (2012) [111]

Stochastic Optimization RPCA-SO Goes et al. (2014) [89]

OR-RPCA Feng et al. (2013) [83]

OR-RPCA with MRF Javed et al. (2014) [147]

OR-RPCA with dynamic feature selection Javed et al. (2015) [146]

Depth extended OR-RPCA Javed et al. (2015) [141]

ARF based OR-RPCA Javed et al. (2015) [140]

Max-norm Regularized Matrix Decomposition (MRMD) Shen et al. (2014) [280]

RPCA with Dynamic Mode Decomposition DMD Grosek et al. (2014) [96]

Multi-Resolution Time-Scale DMD Kutz et al. (2015) [167]

Multi-Resolution DMD Kutz et al. (2015) [166]

Bayesian RPCA Bayesian RPCA (BRPCA) Ding et al. (2011) [71]

Variational Bayesian RPCA (VBRPCA) Babacan et al. (2012) [17]

Factorized Variational Bayesian RPCA (FVBRPCA) Aicher (2013) [5]

Bayesian RPCA with MoG noise(MoG-BRPCA) Zhao et al. (2014) [385]

Approximated RPCA GoDec Zhou and Tao (2011) [389]

Semi-Soft GoDec Zhou and Tao (2011) [389]

Sparse Additive Matrix Factorization SAMF Nakajima et al. (2012) [222]

Variational Bayesian Sparse Estimator VBSE Chen et al. (2014) [57]

Robust Non-negative Matrix Factorization (RNMF) Manhattan Non-negative Matrix Factorization MahNMF Guan et al. (2012) [99]

Near-separable Non-negative Matrix Factorization NS-NMF (Xray-l2) Kumar et al. (2013) [164]

NS-NMF (RobustXray) Kumar et al. (2013) [163]

Robust Asymmetric Non-negative Matrix Factorization RANMF Woo and Park (2013) [334]

Table 1 Robust problem formulations based on decomposition into low-rank plus additive matrices: A complete overview (Part 1).
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Robust Problem Formulations Categories Sub-categories Authors - Dates

Robust Matrix Completion (RMC) Robust Matrix Completion with lσ norm loss function RMC-l1-ADM Candes et al. (2009) [40]

RMC-lσ-IST Yang et al. (2014) [360]

RMC-lσ-IHT Yang et al. (2014) [360]

Robust Matrix Completion with Robust Bilateral Factorization RMC-RBF Shang et al. (2014) [273]

Robust Matrix Completion with Convex Formulation RMC (convex formulation) Shang et al. (2014) [274]

Robust Matrix Completion with Matrix Factorization RMC-MF (non-convex formulation) Shang et al. (2014) [274]

Factorized Robust Matrix Completion FRMC Mansour and Vetro (2014) [212]

Motion-Assisted Matrix Completion MAMC Yang et al. (2014) [351]

Robust MAMC (RMAMC) Yang et al. (2014) [351]

Robust Subspace Recovery (RSR) Robust Subspace Discovery RSD Wang et al. (2013) [325]

Robust Subspace Recovery via Bi-Sparsity RoSuRe Bian and Krim (2014) [24]

Robust Orthonomal Subspace Learning ROSL Xu et al. (2014) [287]

ROSL+ Xu et al. (2014) [287]

Robust Orthogonal Complement Principal Component Analysis ROC-PCA She et al. (2014) [277]

Sparse Latent Low-rank representation SLL Li et al. (2015) [179]

Robust Subspace Tracking (RST) Grassmannian Robust Adaptive Subspace Tracking Algorithm GRASTA He et al. (2011) [119]

t-GRASTA He et al. (2013) [122]

GASG21 He et Zhang (2014) [124]

lp-norm Robust Online Subspace Tracking pROST Hage and Kleinsteuber [115]

Real Time pROST Hage and Kleinsteuber [268]

Grassmannian Online Subspace Updates with Structured-sparsity GOSUS Xu et al. (2013) [343]

Fast Adaptive Robust Subspace Tracking FARST Ahn (2014) [4]

Robust Online Subspace Estimation and Tracking Algorithm ROSETA Mansour and Jiang (2015) [211]

Adaptive Projected Subgradient Method APSM Chouvardas et al. (2015) [59]

Robust Low Rank Minimization (RLRM) Contiguous Outlier Detection DECOLOR Zhou et al. (2011) [391]

Direct Robust Matrix Factorization DRMF Xiong et al. (2011) [341]

DRMF-R Xiong et al. (2011) [341]

Probabilistic Robust Matrix Factorization PRMF Wang et al. (2012) [321]

Bayesian Robust Matrix Factorization BRMF Wang et al. (2013) [366]

MBRMF Wang et al. (2013) [366]

Practical Low-Rank Matrix Factorization PLRMF (RegL1-ALM) Zheng et al. (2012) [386]

Low Rank Matrix Factorization with MoG noise LRMF-MoG Meng et al. (2013) [216]

Unifying Nuclear Norm and Bilinear Factorization UNN-BF Cabral et al. (2013) [37]

Low Rank Matrix Factorization with General Mixture noise LRMF-GM Cao et al. (2015) [42]

Robust Rank Factorization RRF (LOIRE) Sheng et al. (2014) [282]

Variational Bayesian Method VBMF-l1 Zhao et al. (2015) [384]

Robust Orthogonal Matrix Factorization ROMF Kim and Oh (2015) [160]

Contiguous Outliers Representation via Online Low-Rank Approximation COROLA Shakeri and Zhang (2015) [272]

Online Low Rank Matrix Completion ORLRMR Guo (2015) [104]

Matrix Factorization - Elastic-net Regularization FactEN Kim et al. (2015) [159]

Incremental Learning Low Rank Representation - Spatial Constraint LSVD-LRR Dou et al. (2015) [73]

Online Robust Low Rank Matrix Recovery ORLRMR Guo (2015) [105]

Table 2 Robust problem formulations based on decomposition into low-rank plus additive matrices: A complete overview (Part 2).
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Methods Decomposition Minimization Constraints Convexity

PCP A = L + S min
L,S

||L||∗ + λ||S||l1 A − L− S = 0 Yes

Candes et al. [40]

Modified PCP (Fixed Rank) A = L + S min
L,S

||L||∗ + λ||S||l1 rank(L) = known r Yes

Leow et al. [174]

Modified PCP (Nuclear Norm Free) A = u1T + S min
u

||A − u1T ||l1 rank(u1T ) = 1 Yes

Yuan et al. [367]

Modified PCP (Capped Norm) A = L + S min
L,S

rank(L) + λ||S||l0 ||A− L − S||2F ≤ σ2 No

Sun et al. [299]

Modified PCP (Inductive) A = PA + S min
P,S

||P ||∗ + λ||S||l1 A − PA − S = 0 Yes

Bao et al. [18]

Modified PCP (Partial Subspace Knowledge) A = L + S min
L,S

||L||∗ + λ||S||l1 L+ P
Γ⊥S = P

Γ⊥A Yes

Zhan and Vaswani [369]

p,q-PCP (Schatten-p norm, lq norm) A = L + S min
L,S

||L||pSp
+ λ||S||lq A = L + S No

Wang et al.[320]

Modified p,q-PCP (Schatten-p norm, Lq seminorm) A = L + S min
L,S

||L||p
Sp

+ λ||S||q
Lq

A = L + S No

Shao et al.[276]

Modified PCP (2D-PCA) A = L + S min
U,V

1
T

∑T
i=1 ||Ai − UΣiV

T ||2F UTU = Ir×r , V TV = Ic×c No

Sun et al.[301]

Modified PCP (Rank-N Soft Constraint) A = L + S min
L,S

∑min(m,n)
i=N+1 |σi(L)|+ λ||S||l1 A = L + S Yes

Oh [231]

Modified PCP (JVFSD-RPCA) A = L + S min
L,S

||L||∗ + λ||S||l1 A = L + S Yes

Wen et al. [332]

Modified PCP (NSMP) A = L + S min
L,S

λ||L||∗ + µ||S||2 A = L + S Yes

Wang and Feng [322]

Modified PCP (WNSMP) A = L + S min
L,S

λ||ω(L)||∗ + µ||ω−1(S)||2 A = L + S Yes

Wang and Feng [322]

Modified PCP (Implicit Regularizers) A = L + S min
L,S

λ||L||∗ + ϕ(S) A = L + S

He et al. [126] Yes

Table 3 Decompositions in low-rank plus additive matrices: An homogeneous overview (Part 1)
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Categories Methods Decomposition Minimization Constraints Convexity

RPCA-PCP SPCP A = L + S + E min
L,S

||L||∗ + λ||S||l1 ||A− L − S||F < δ Yes

Zhou et al. [393]

Modified SPCP (Bilateral Projection) A = UV + S + E min
U,V,S

λ||S||l1 + ||A− UV − S||2F rank(U) = rank(S) ≤ r Yes

Zhou and Tao [390]

Modified SPCP (Nuclear Norm Free) A = U1T + S + E min
S∈Rm×n,u∈Rm

||S||l1 + µ
2 ||A − u1T − S||2F rank(U1T ) = 1 Yes

Yuan et al. [367]

Modified SPCP (Nuclear Norm Free for blur in video) A = U1T + S + E min
S∈Rm×n,u∈Rm

||S||l1 + µ
2 ||A − H(u1T + S)||2F rank(U1T ) = 1 Yes

Yuan et al. [367]

Modified SPCP (Undercomplete Dictionary) A = UT + S + E min
U,T,S

λ||S||l1 +
λ1
2 (||U||2F + ||T ||2F ) + 1

2 ||A − UT − S)||2F rank(UT ) ≤ r Yes

Sprechman et al. [295]

Variational SPCP (Huber penalty) A = L + S + E min Φ(L, S) ρ(L + S − Y ) < ǫ Yes

Aravkin et al. [10]

Modified SPCP (Three Term Low-rank Optimization) A = L + S + E min
A,L,S

λ||L||∗ + λ1||fπ(S)||+ λ2||E||2F A = L + S + E Yes

Oreifej et al. [236]

QPCP A = L + S min
L,S

||L||∗ + λ||S||l1 ||A− L − S||∞ < 0.5 Yes

Becker et al. [20]

BPCP A = L + S min
L,S

||L||∗ + κ(1 − λ)||L||l2,1 + κλ||S||l2,1 A − L − S = 0 Yes

Tang and Nehorai [306]

LPCP A = AU + S min
U,S

α||U||l1 + β||U||l2,1 + β||S||l1 A − AU + S = 0 Yes

Wohlberg et al. [333]

RPCA-OP OP A = L + S min
L,S

||L||∗ + λ||S||l1,2 A − L − S = 0 Yes

Xu et al. [342]

SOP A = L + S + E min
L,S

||L||∗ + λ||S||l1,2 ||A− L − S||F < δ Yes

Xu et al. [342]

RPCA-SpaCtrl Sparsity Control A = M + UTP + S + E min
U,S

||X + 1NMT − PUT − S||2F + λ||S||l2(r) UUT = Iq Yes

Mateos et Giannakis [213][214]

RPCA-SpaCorr Sparse Corruptions (case 1) A = L + S min
L,S

||L||∗ + λ||S||l1 ||A− L − S||l1 ≤ ǫ1 Yes

Hsu et al. [130] ||A− L − S||∗ ≤ ǫ∗
||L||∞ ≤ b

Sparse Corruptions (case 2) A = L + S min
L,S

||L||∗ + λ||S||l1 + 1
2µ ||A − L− S||2F ||A− L − S||l1 ≤ ǫ1 Yes

Hsu et al. [130] ||A− L − S||∗ ≤ ǫ∗
||A− S||∞ ≤ b

RPCA-LHR LHR A = L + S min
X̂∈D̂

1
2 (||Diag(Y )||L + ||Diag(Z)||L) + λ||S||L X̂ = {Y,Z, L, S} No

Deng et al. [66] D̂ =

{

(Y,Z, L, S) :

(

Y L

LT Z

)

≥ 0, (L, S) ∈ C

}

RPCA-IRLS IRLS A = UV + S min
U∈Rn×p,V ∈Rp×m

µ||UV ||∗ + ||(A− UV ) ◦ W1||lα,β
A − UV − S = 0 Yes

Guyon et al.[113]

RPCA-SO OR-RCPA A = LR + S + E min
L∈Rn×p,R∈Rn×r

1
2 ||A− LRT − S||2F +

λ1
2 (||L||2F + ||R||2F ) + λ2||S||l1 A − LR − S = 0 Yes

Feng et al. [83]

Table 4 Decompositions in low-rank plus additive matrices: An homogeneous overview (Part 2)
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Categories Methods Decomposition Minimization Constraints Convexity

Bayesian RPCA BRPCA A = D(ZG)W2 + BX + E −log (p(Θ|A,H)) Distribution constraints -

Ding et al. [71]

VBRPCA A = DBT + S + E p(A,D,B, S) Distribution constraints -

Babacan et al. [17]

MoG-RPCA A = L + S min KL divergence MOG distribution constraints for S -

Zhao et al.[385]

Approximated RPCA GoDec A = L + S + E min
L,S

||A − L− S||2F rank(L) ≤ e, card(S) ≤ k No

Zhou and Tao [389]

Semi-Soft GoDec A = L + S + E min
L,S

||A − L− S||2F rank(L) ≤ e, card(S) ≤ τ No

Zhou and Tao [389] τ is a soft threshold

Sparse Additive Matrix Factorization SAMF A =
∑K

k=0 S + E r(Θ) Distribution constraints

Nakajima et al. [222]

Variational Bayesian Sparse Estimator VBSE A = UV T + RS + E ρ(A, U, V, S, γ, α, β) Distribution constraints -

Chen et al. [223]

Robust Non-negative Matrix Factorization Manhattan NMF A = WT H + S min
W≥0,H≥0

f(W,H) = ||A − WTH||M r ≪ min(m, n) No

(MahNMF) Guan et al.[99]

NS-NMF (Xray-l2) A = WH = ABH + S min
AB≥0,H≥0

||A− ABH||2F W = AB ≥ 0, H ≥ 0 Yes

(Xray-l2) Kumar et al. [164]

NS-NMF (RobustXray) A = WH + E = ABH + S + E min
AB≥0,H≥0

||A− ABH||l1 W = AB ≥ 0, H ≥ 0 Yes

Kumar and Sindhwani [163]

RANMF A = L + S = WΛH + S min
L,S,Φ

Φ(S) + alpha
2 ||A− L − S||2F+ R(L) ≤ τ, 0 < L < BL Yes

Woo and Park [334] β(Ψ(S,Φ) + γTV (Q(Φ))

Robust Matrix Completion RMC-lσ-IHT A = L + S min
S∈Rm×n

lσ(L) + λ||L||∗ rank(L) ≤ r No

Yang et al.[360]

RMC-RBF A = L + S = UV T + S min
U,V,S

||PΩ(S)||1 + λ||V ||∗ PΩ(A) = PΩ(UV T + S), UT U = I Yes

Shang et al. [273]

RMC (convex formulation) A = L + S min
L,S

||L||∗ + λ||PΩ(S)||l1 PΩ(L + S) = PΩ(A), E
ΩC = 0 Yes

Shang et al. [274]

RMC-MF (non-convex formulation) A = L + S = UV T + S min
U,V,S

||V ||∗ + λ||PΩ(S)||l1 A = UV T + S,UTU = I No

Shang et al. [274]

Factorized Robust Matrix Completion A = L + S = LLLT
R + S ||L||∗ = min

LL∈Rm,r,LR∈Rn,r

1
2 (||LL||2F + ||LR||2F ) LLLT

R = L Yes

(FRMC) Mansour and Vetro (2014) [212]

Motion-Assisted Matrix Completion A = L + S min
L,S

||L||∗ + λ||S||l1 W3 ◦ A = W3 ◦ (L+ S) Yes

(MAMC) Yang et al. [351]

Table 5 Decompositions in low-rank plus additive matrices: An homogeneous overview (Part 3)
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Categories Methods Decomposition Minimization Constraints Convexity

Robust Subspace Recovery RoSuRe A = L + S = LW + S min
W,S

||W ||l1 + λ||S||l1 A = L + S,L = LW,Wii = 0, ∀i No

Bian and Krim [24]

ROSL A = Dα + S min
S,D,α

||α||row−1 + λ||S||l1 Dα + S = A,DTD = Ik, ∀i No

Xu et al. [287]

ROC-PCA AV⊥ = L + S + E min
V⊥,µ,S

1
2 ||AV⊥ − L − S||2F +

∑

ij P (||sij ||l2 ;λi) V T
⊥ V⊥ = I No

She et al. [277]

Subspace Tracking GRASTA A = UW + S + E min
U,w,S

||S||l1 AΩt = UΩtw + S , U ∈ G(d, n) No

He et al. [119][120]

t-GRASTA A = UW + S min
U,w,S,τ

||S||l1 AΩt ◦ τ = UΩtw + S , U ∈ G(d, n) No

He et al. [122][123]

GASG21 A = UW + S min
w

||Uw − A||l2,1 −
∑m

j=1 ||Ujwj − Aj ||l2 A = Uw + S , U ∈ G(d, n) No

He and Zhang [124]

pROST A = UW + S + E min
Rank(L)≤k

||UW − A||Lp A − UW − S = 0 No

Hage and Kleinsteuber [115][268]

GOSUS A = UW + S + E min
UT U=Id,W,S

∑l
i=1 µi||DiS||l2 + λ

2 ||UW + S − A||2l2 A − UW − S = 0 No

Xu et al. [343]

FARST A = UW + S + E min
W

||UW − A||l1 A − UW − S = 0 No

Ahn [4]

Robust Low-Rank Minimization Contiguous Outlier Detection A = L + S + E min
L,S

α||L||∗ + β||F ||l1 + γ||Cvec(F )||l1 rank(L) ≤ K No

(DECOLOR) Zhou et al. [391] + 1
2 ||PF̄ (A − L)||2F

Direct Robust Matrix Factorization A = L + S min
L,S

||A − S − L||F rank(L) ≤ r, ||S||0 ≤ p No

(DRMF) Xiong et al. [341] Original formulation PCP [40]

Direct Robust Matrix Factorization-Row A = L + S min
L,S

||A − S − L||F rank(L) ≤ r, ||S||2,0 ≤ p No

(DRMF-R) Xiong et al. [341] Original formulation OP [342]

Probabilistic Robust Matrix Factorization A = UV ′ + S log (p(U, V |A, λ, λU , λV )) Distribution constraints No

(PRMF) Wang et al. [321]

Bayesian Robust Matrix Factorization A = UV ′ + S log (p(U, V |A, λ, λU , λV )) Bayesian distribution constraints No

(BRMF) Wang et al. [366]

Practical Low-Rank Matrix Factorization A = UV + S min
U,V

||W5 ⊙ (A − UV )||l1 + λ||V ||∗ UT U = Ir Yes

(PLMR) Zheng et al. [386]

Low Rank Matrix Factorization with MoG noise A = UV T + S max
U,V,Π,Σ

∑

i,j∈Ω

∑K
k=1 πkN(xij |(ui)T vj , σ2

k) MoG distribution constraints on S No

(LRMF-MOG) Meng et al. [216]

Unifying Nuclear Norm and Bilinear Factorization A = UV T + S min
L,U,V

||W5 ⊙ (A − L)||l1 + λ
2 (||U||2F + λ||V ||2F ) L = UV T Yes

(UNN-BF) Cabral et al. [37]

Robust Rank Factorization A = BX + S + E min
B

min
S,X

||A− BX − S||2l2 + λ
2 ||S||l1 λ > 0, A = BX + S + E Yes

(RRF) Sheng et al. [282]

Table 6 Decompositions in low-rank plus additive matrices: An homogeneous overview (Part 4)
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1.2 A Unified View of Decomposition into Low-rank plus Additive Matrices

1.2.1 Notations

To provide to the readers an easy comparison, we homogenized all the different
notations found on all the papers as follows:

1. Matrices: For the common matrices, A stands for the observation matrix, L is
the low-rank matrix, S is the unconstrained (residual) matrix or sparse matrix,
and E is the noise matrix. I is the identity matrix. For the specific matrices,
the notations are given in the section of the corresponding method.

2. Indices : m and n are the number of columns and rows of the observed data
matrix A. In the case of background/foreground separation, m corresponds to
the number of pixels in a frame, and n corresponds to the number of frames in
the sequence. n is taken usually to 200 due to computational and memory lim-
itations. i and j stand for the current indices of the matrix. r is the estimated
or fixed rank of the matrix L. p stands for the pth largest value in truncated
matrix.

3. Norms: The different norms used in the paper for vectors and matrices can be
classified as follows:

– Vector lα-norm with 0 ≤ α ≤ 2 : ||V ||l0 is the l0-norm of the vector V ,
and it corresponds to the number of non-zero entries. ||V ||l1 =

∑

i vi is
the l1-norm of the vector V , and it corresponds to the sum of the entries.
||V ||l2 =

√∑

i(vi)
2 is the l2-norm of the vector V , and it corresponds to

the Euclidean distance [375].

– Matrix lα-norm with 0 ≤ α ≤ 2 : ||M ||l0 is the l0-norm of the matrix
M , and it corresponds to the number of non-zero entries [375]. ||M ||l1 =
∑

i,j |Mij | is the l1-norm of the matrix M [375], and its corresponds to the

Manhattan distance [99]. ||M ||l2 =
√∑

i,j M
2
i,j is the l2-norm of the matrix

M also known as the Frobenius norm.

– Matrix l∞-norm: ||M ||l∞ = m
ij
ax |Mij | [374] is the l∞-norm of the matrix

M . It can be used to capture the quantization error of the observed value
of the pixel as in Becker et al. [20]. It is equivalent to the max-norm [280].

– Matrix lα,β-norm with 0 ≤ α, β ≤ 2: ||M ||lα,β
is the lα,β-mixed norm of

the matrix M , and it corresponds to the lβ-norm of the vector formed by
taking the lα-norms of the columns of the underlying matrix. α and β are
in the interval [0,2]. For example, ||M ||l2,0 corresponds to the number of
non-zero columns of the matrix M [375]. ||M ||l2,1 forces spatial homoge-
neous fitting in the matrix M [111], and it is suitable in presence of column
outliers or noise [306][111][124]. ||M ||l2,1 is equal to

∑

j ||M:j ||l2 [375]. The
influence of α and β on the matrices L and S was studied in [111]. This
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norm is also called structured norm.

– Matrix Lα-seminorm with 0 < α ≤ 2: ||M ||Lα
= (

∑

i,j |Mij |α)1/α is the
Lα-seminorm of the matrix M [276]. The L1-seminorm is equivalent to the
l1-norm .

– Matrix Lα-quasi-norm with 0 < α < 1: Lα-quasi-norm is defined by
Lα(M) =

∑m
i=1(M

2
i + µ)

1
α [115][268].

– Matrix Frobenius norm: ||M ||F =
√∑

i,j M
2
i,j is the Frobenius norm

[375]. The Frobenius norm is sometimes also called the Euclidean norm
which may cause confusion with the vector l2-norm which is also some-
times known as the Euclidean norm too.

– Matrix nuclear norm: ||M ||∗ is the nuclear norm of the matrix M , and
it corresponds to the sum of its singular values [375]. The nuclear norm is
the l1-norm applied on the vector composed with the singular values of the
matrix [66]. It is equivalen to the Ky Fan n-norm and the Schatten-1-norm
[280].

– Matrix dual norm: ||.||d is the d dual norm of any norm ||.||norm previously
defined, that is norm ∈

{
lα, l∞, lα,β , Lα, F, ∗

}
. For example, the dual norm

of the nuclear norm is ||.||2 called spectral norm which corresponds to the
largest singular value of the matrix [322].

– Matrix Schatten-α norm with 0 < α ≤ 2: The Schatten-α norm ||M ||Sα
=

(
∑min(m,n)

k=1
(σk(M))α)1/α where σk(M), denotes the kth singular values of

M , can also be used as a surrogate of the nuclear norm as in [320][276].
The Schatten-1-norm is equivalent to the nuclear norm [280].

– Matrix Log-sum norm: The Log-sum norm ||M ||L is defined as
∑

ij log (|Mij|+
δ) with δ > 0 is a small regularization constant [66].

– Matrix max-norm: The max-norm ||M ||max is defined as m
ij
ax |Mij |. The

max-norm is equivalent to the l∞-norm [280].
4. Loss functions: Several loss functions can be used to enforce the low-rank,

sparse and noise constraints on L, S, and E respectively. These functions are
respectively noted flow(), fsparse() and fnoise(). Most of the time, loss func-
tions are defined on the previous defined norms such as: l0-loss function (||.||l0),
l1-loss function (||.||l1 ), l2-loss function (||.||l2 ), nuclear norm function, Frobe-
nius loss function and Log-sum heuristic function [66]. Other loss functions
can be used such as lσ-loss function [360], Least Squares (LS) loss function
(||.||2F ), Huber loss function [10], M-estimator based loss functions [126] and
the generalized fused Lasso loss function [340]. Lipschitz loss function can also
be used in a two-stage convex relaxation approach [116] by the majorization for
a class of locally Lipschitz continuous surrogates of Equation 21, which solves
the nuclear norm plus l1-norm minimization problem in the first stage and a
nuclear semi-norm plus weighted l1-norm minimization problem in the second
stage with theoretical guarantee.



20 Thierry Bouwmans et al.

Functions/Constraints Original loss function Surrogate loss functions

flow() rank(.) [40] PCP/SPCP/QPCP/BPCP/LPCP/OP

Low-rank L Nuclear norm [40]

Truncated nuclear norm [128]

Modified PCP

Capped nuclear norm [299]

Schatten-α norm [320][276], Rank-N [231]

Heuristic Recovery

Log-sum heuristic (LHR) [66]

Stochastic Optimization

Max-norm (MRMD) [280]

fsparse() l0-norm [40] PCP/Modified PCP

Sparsity S l1-norm [40], capped l1-norm [299]

lα-norm [320], Lα-seminorm [276]

dual norm [322], M-estimator [126]

SPCP

Generalized fused Lasso [340]

BPCP/LPCP

l2,1-norm [306][333]

OP

l1,2-norm [205]

LHR

Log-sum heuristic [66]

pROST

Lp-quasi-norm [268]

fnoise() PCP Modified PCP

Error E Frobenius norm [40] Inequality (||A− L − S||2F ≤ σ2)

Equality (||A− L − S||F = 0) Frobenius norm [299]

Modified SPCP

Inequality (ρ(A − L − S) ≤ ǫ):

Huber penalty [10]

QPCP

Inequality (|||A− L− S||l∞ ≤ 0.5)

l∞-norm [20]

SPCP SPCP

Inequality (||A − L− S||F < δ) Equality (||A− L − S − E||F = 0)

Frobenius norm [393] + Frobenius norm [236] on E

Table 7 Loss functions flow(), fsparse() and fnoise() used for the low-rank, sparse and noise
constraints in the different problem formulations.

Most of the time, proxy loss functions are used as surrogate of the original loss
function (rank(.)) loss function for the low-rank constraint and l0-loss function
for the sparsity constraint) to obtain a solvable problem. Table 7 shows an
overview of the different loss functions used in the different problem formula-
tions. The nuclear norm loss function is the most tightest convex surrogate of
the rank function over the unit spectral norm ball, but it presents a big differ-
ence over a general closed convex set since the former is convex whereas the
latter is nonconvex even concave [116]. The Frobenius norm loss function is a
valid proxy for nuclear norm loss function, but it fails to recover the low-rank
matrix without rank estimate [287]. The l1-loss function may be suboptimal,
since the l1-norm is a loose approximation of the l0-norm and often leads to an
over-penalized problem. The l2-loss function is sensitive to outliers and missing
data. The Least Squares (LS) loss function is known to be very sensitive to
outliers too [214].
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1.2.2 Decomposition into Low-rank plus Additive Matrices

From the homogenized overview, we can see that all the decompositions in the
different problem formulations can be grouped in a unified view that we called
Decomposition into Low-rank plus Additive Matrices (DLAM).

1.2.3 Decomposition Problem

All the decompositions can be written in a general formulation as follows:

A =
K∑

k=1

Mk = M1 +M2 +M3 = L+ S + E (1)

with K ∈ {1,2, 3}. The matrix A can be corrupted by element-wise outliers/noise,
column or row wise outliers/noise or missing data [208] as shown in Figure 2. The
characteristics of the matrices Mk are as follows:

– The first matrix M1 = L is a low-rank matrix. In some decompositions, L is
decomposed as follows: (1) a product of two matrices UV obtained by bilat-
eral projection [390] or by matrix factorization [383] in the RPCA framework,
(2) a product of two matrices UV T [275][273][274] obtained by robust matrix
factorization in the RMC framework, and (3) a product of two matrices WH

[99][164][163] or three matrices WΛH [334] with the constraints to be positive
in the RNMF framework.

– The second matrix M2 is an unconstrained (residual) matrix in implicit de-
composition (LRM, RMC). M2 is a sparse matrix S in explicit decomposition
(RPCA, RNMF, RSR, RST). This second matrix can be decomposed as fol-
lows: (1) a sum of two matrices S1 and S2 which correspond to the foreground
and the dynamic backgrounds [43], and (2) a product of two matrices RT

where R is an unconstrained matrix and T is a sparse matrix [57][58][56] in the
framework of RPCA.

– The third matrix M3 is generally the noise matrix E. The noise can be modeled
by a Gaussian, a mixture of Gaussians (MoG) or a Laplacian distribution. M3

can capture turbulences in the case of background/foreground separation [236].

Practically, the decomposition is A ≈ L when K = 1. This decomposition
is called implicit as the second matrix S is not explicitly used in the problem
formulation but it can be obtained by the difference A− L. It corresponds to ba-
sic formulations (LRM, MC, PCA and NMF). The decomposition is A = L + S

when K = 2. It is called explicit because S is explicitly determined and used in the
problem formulation. It corresponds to robust formulations (RLRM, RMC, RPCA,
RNMF,RSR and RST). In the case of K = 3, the decomposition is A = L+S+E.
This decomposition is called ”stable” explicit decomposition as it separates the
outliers in S and the noise in E. It corresponds to stabble robust formulations.
Table 8 shows an overview of the matrix Mk in the different problem formulations.
Thus, we can see that the decomposition is implicit in LRM and MC because the
decomposition is made implicitly, i.e A ≈ L. S is the residual matrix in RLRM
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Fig. 2 Illustration of different types of corruption fo the matrix A: a) A without noise b) A
with element-wise outliers/noise and c) A with both element-wise outliers/noise and missing
data (Illustration from the slides of Ma et al. [208]

).

and RMC whereas S is a sparse matrix in RPCA, RNMF, RSR and RST with
constraints on E for the stable versions.

Problem Formulations Matrix M1 = L Matrix M2 = S Matrix M3 = E

Implicit Decomposition (K = 1) -

LRM L Low-rank Not used -

MC L Low-rank Not used -

Explicit Decomposition (K = 2) -

RLRM L Low-rank S Residual matrix -

RMC L Low-rank S Residual matrix -

RPCA L Low-rank S Sparse (outlier+noise) -

RNMF L = WHT Low-rank (positive) S Sparse (outlier+noise) -

RSR L Low-rank S Sparse -

RST L Low-rank S Sparse -

Stable Explicit Decomposition (K = 3) -

Stable RPCA L Low-rank S Sparse (outlier) E Noise

Stable RNMF L = WHT Low-rank (positive) S Sparse (outlier) E Noise

Stable RSR L Low-rank S Sparse E Noise

Stable RST L Low-rank S Sparse E Noise

Table 8 Decomposition into Low-rank plus Additive Matrices (DLAM): The different matri-
ces in the different problem formulations.

1.2.4 Minimization problem

The corresponding minimization problem of Equation 1 can be formulated in a
general way as follows:

min
Mi

K∑

k=1

λifi(Mi) subj Ci (2)

where the λi are the regularization parameters. fi() are the loss functions with
f1() = flow(), f2() = fsparse() and f3() = fnoise. Ci is a constraint on L, S and E

with A which varies following the value of K, that is C1 is ||A − L||2 = 0, C2 is
||A−L−S||2 = 0, C3 is ||A−L−S−E||2 = 0. Ci can be expressed in an inequality
form too.
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Case K = 1: It is the degenerated case for the implicit decompositions (LRM,
MC) which are not robust because there are no constraints on the matrix S = A−L.
In this case, Equation 2 with K = 1 can be written as follows:

min
L

λ1flow(L) subj C1 (3)

Case K = 2: Equation 2 with K = 2 for the explicit decompositions becomes
as follows:

min
L,S

λ1flow(L) + λ2fsparse(S) subj C2 (4)

where λ1 and λ2 are the regularization parameters. C2 is a constraint on A, L

and S. flow(L) is a loss function which constrains the matrix L to be low-rank
as the following ones: rank(.), or the surrogated norm ||.||∗. fsparse(S) is a loss
function which constrains the matrix S to be sparse as the following ones: ||.||l0 , or
the surrogated norm ||.||l1 . An overview of the different loss functions flow(.) and
fsparse() which are used in the literature are shown in Table 7. This minimization
problem can be NP -hard, and convex or not following the constraints and the loss
functions used. Practically, when the problem is NP -hard and/or not convex, the
constraints are relaxed and the loss functions are changed to obtain a tractable
and convex problem. For example, the original formulation in RPCA [40] used
the rank(.) and the l0-norm as loss functions for L and S, respectively as shown
in Equation 21. As this problem is NP -hard, this formulation is relaxed with the
nuclear norm and the l1-norm as shown in Equation 22. To minimize confusion,
the models that minimize rank functions and nuclear norms are named the original
model and the relaxed model, respectively.

Thus, the corresponding minimization problem of Equation 4 can be formu-
lated with norms to be convex and solvable as follows:

min
L,S

λ1||L||p1
norm1

+ λ2||S||p2
norm2

subj C2 (5)

where λ1 and λ2 are the regularization parameters. p1 and p2 are taken in the set
{1, 2}. ||.||norm1 and ||.||norm2 could be any norm of the following set of norms:
lα-norm, l∞, lα,β mixed norm, Lα-seminorm, Frobenius norm, nuclear norm, dual
norm and Schatten norm. ||.||norm1 and ||.||norm2 are taken to enforce the low-rank
and sparsity constraints of L and S, respectively. The constraint C1 is generally
based on (1) an equality such as ||A − L − S||p0

norm0
= 0 or rank(L) = r, or (2)

an inequality such as ||A − L − S||p0
norm0

≤ q or rank(L) ≤ r. ||.||norm0 is a norm
taken in the set of norms previously defined. Moreover, the minimization problem
formulated in Equation 5 can be written in its Lagrangian form as follows:

min
L,S

λ0

2
||A− L− S||p0

norm0
+ λ1||L||p1

norm1
+ λ2||S||p2

norm2
subj CL2 (6)

where λ0 is regularization parameter. CL2 is the constraint similar to the con-
straint C2.

Case K = 3: Equation 2 with K = 3 for the stable explicit decomposition is
written as follows:

min
L,S

λ1flow(L) + λ2fsparse(S) + λ3fnoise(E) subj C3 (7)
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where the λi are the regularization parameters. C3 is a constraint on A, L, S and
E. fnoise(E) is a function that contrains E. Thus, the corresponding minimization
problem of Equation 7 can be formulated with norms to be convex and solvable
as follows:

min
L,S

λ1||L||p1
norm1

+ λ2||S||p2
norm2

+ λ3||E||p3
norm3

subj C3 (8)

where p3 is taken in the set {1, 2}. ||.||norm3 could be any previous norms. Then, the
minimization problem formulated in Equation 8 can be written in its Lagrangian
form as follows:

min
L,S

λ0

2
||A−L−S−E||p0

norm0
+λ1||L||p1

norm1
+λ2||S||p2

norm2
λ3||E||p3

norm3
subj CL3

(9)
where λ0 is regularization parameter. CL3 is the constraint similar to the constraint
C3. Finally, the minimization problem seeks to the following optimization problem:
F (X) = f(x) + g(x) where we have:

f(x) =
λ0

2
||A− L− S − E||p0

norm0
(10)

g(x) = λ1||L||p1
norm1

+ λ2||S||p2
norm2

+ λ3||E||p3
norm3

(11)

where we have:

– f(x) is smooth, convex, and has Lipschitz continuous gradients [349].
– g(x) can be a nonsmooth, nonconvex function [349].

In general, solving a nonsmooth, nonconvex objective function is difficult with
weak convergence guarantees [349].

1.2.5 Algorithms for solving the optimization problem

Algorithms which are called solvers are then used to solve the minimization prob-
lem in its original form or in its Lagrangian form. Furthermore, instead of directly
solving the original convex optimizations, some authors use their strongly convex
approximations in order to design efficient algorithms. Zhang et al. [373] proved
that these strongly convex programmings guarantee the exact low-rank matrix
recovery as well. Moreover, solvers have different characteristics in terms of com-
plexities: complexity per iteration, complexity to reach an accuracy of ǫ precision
(ǫ-optimal solution), and convergence rate complexity following the number of
iterations. The key challenges related to the solvers are the following ones [207]:

1. Choice of the solver to make the iterations as few as possible.
2. Choice of the SVD algorithm to make the iterations as efficient as possible.

The solvers can be broadly classified into two categories as developed by Chen [56]:

– Regularization based approaches: The decomposition is formulated as regu-
larized fitting, where the regularizers are convex surrogates for rank and spar-
sity. Examples of algorithms in this category include the following solvers:
Singular Value Thresholding (SVT) [38], the Accelerated Proximal Gradient
(APG) [189], and the Augmented Lagrange Multiplier (ALM) [188]. All the
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Solvers for PCP Complexity

Basic solvers

Singular Value Threshold (SVT1) Oiter(mnmin(mn)), Opre=unknown, Oconv=unknown

Cai et al. [38]

Iterative Thresholding (IT) Oiter(mnmin(mn)), Opre(
√

L/ǫ), Oconv = 1/T 2

Wright et al. [335]

Accelerated Proximal Gradient (APG1) Oiter(mnmin(mn)), Opre(
√

1/ǫ), Oconv(1/T
2)

Lin et al.[189] Full SVD

Dual Method (DM1) Oiter(rmn), Opre(
√

1/ǫ), Oconv(1/T
2)

Lin et al.[189] Partial SVD

Exacted Augmented Lagrangian Method (EALM) Oiter(mnmin(mn)), Opre=unknown, Oconv(1/µT )

(EALM1) Lin et al.[188] Full SVD

Inexact Augmented Lagrangian Method (IALM) Oiter(rmn), Opre=unknown, Oconv(1/µT )

(IALM1) Lin et al. [188] Partial SVD, Linear Time SVD [357]

Limited Memory SVD (LMSVD2) [195]

Symmetric Low-Rank Product-Gauss-Newton [196]

Alternating Direction Method (ADM) Oiter(mnmin(mn)), Opre=unknown, Oconv=unknown

(LRSD3) Yuan and Yang [368]

Symmetric Alternating Direction Method (SADM4) Oiter=Unknown, Opre(1/ǫ), Oconv=Unknown

(SADAL) Ma [205], Goldfarb et al. [90]

Non Convex Splitting ADM (NCSADM) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Chartrand [50]

Variant of Douglas-Rachford Splitting Method (VDRSM) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Zhang and Liu [376]

Proximity Point Algorithm (PPA) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Zhu et al. [394]

Proximal Iteratively Reweighted Algorithm (PIRA) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Wang et al. [320] (5)

Alternating Rectified Gradient Method (ARGM) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

(l1-ARG) Kim et al. [158]

Parallel Direction Method of Multipliers (PDMM) Oiter=Unknown, Opre=Unknown, Oconv(1/T )

Wang et al. [319]

Generalized Accelerated Proximal Gradient (GAPG) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

He et al. [126]

Improved alternating direction method (IADM) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Chai et al. [46]

Table 9 Solvers for RPCA-PCP: An overview of their complexity per iteration at running
time Oiter , their complexity Opre to reach an accuracy of ǫ precision and their convergence
rate Oconv for T iterations. ”Unknown” stands for not indicated by the authors.

solvers for the different problem formulations are grouped in Table 9, Table
11, Table 12, and Table 13.

– Statistical inference based approaches: Hierarchical statistical models are
used to model the data generation process and prior distributions are selected
to capture the low-rank and sparse properties of the respective terms. The
joint distribution involving the observations, unknown variables and hyper-
parameters can be determined from the priors and conditional distributions.
Posterior distributions of the unknowns are approximated using Bayesian in-
ference approaches. Representative algorithms in this category can be found in
[71][17][5][385].

For the SVD algorithms, approximated SVD solutions exist to avoid full SVD
such as partial SVD [188], linear time SVD [357], limited memory SVD [195],
symmetric low-rank product-Gauss-Newton [196], and Block Lanczos with Warm
Start (BLWS) [191].

1http://perception.csl.uiuc.edu/matrix-rank/samplecode.html
2http://www.caam.rice.edu/ yzhang/LMSVD/lmsvd.html
3http://math.nju.edu.cn/ jfyang/LRSD/index.html
4Available on request by email to the corresponding author
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Solvers for PCP Complexity

Linearized solvers

Linearized Augmented Lagrangian Method (LALM) Oiter(mnmin(mn)), Opre=Unknown, Oconv=Unknown

Yang and Yuan [352]

Linearized Alternating Direction Method (LADM) Oiter(mnmin(mn)), Opre=Unknown, Oconv=Unknown

Yang and Yuan [352]

LADM with Adaptive Penalty (LADMAP5) Oiter(rmn), Opre(1/ǫ), Oconv=Unknown

Lin et al. 2011 [190] Accelerated version

Linearized Symmetric Alternating Direction Method (LSADM5) Oiter=Unknown, Opre(1/ǫ), Oconv=Unknown

(ALM) Ma [205], Goldfarb et al. [90]

Fast Linearized Symmetric Alternating Direction Method (Fast-LSADM5) Oiter=Unknown, Opre(
√

1/ǫ), Oconv=Unknown

(FALM) Ma [205], Goldfarb et al. [90]

Linearized Alternating Direction Method (LADM) Oiter(rmn), Opre(1/ǫ), Oconv=Unknown

(LMaFit6) Shen et al. [281]

Fast solvers

Randomized Projection for ALM (RPALM) Oiter(pmn), Opre=Unknown, Oconv=Unknown

Mu et al. [221]

l1-filtering (LF5) Oiter(r
2(m + n)), Opre=Unknown, Oconv=Unknown

Liu et al. [194][193]

Block Lanczos with Warm Start less than Oiter(pmn), Opre=Unknown, Oconv=Unknown

Lin and Wei [191] Partial SVD

Exact Fast Robust Principal Component Analysis (EFRPCA) Oiter(mk2) with k ≪ n, Opre=Unknown, Oconv=Unknown

Abdel-Hakim and El-Saban [1] Full SVD

Inexact Fast Robust Principal Component Analysis (IFRPCA) Oiter(mk2) with k ≪ n, Opre=Unknown, Oconv=Unknown

Abdel-Hakim and El-Saban [1] Partial SVD

Matrix Tri-Factorization (MTF) Oiter(n
3 + (r3 + r2n + mn2 + rn2))

Liu et al. [199] Opre=Unknown, Oconv=Unknown

Fast Tri-Factorization(FTF) Oiter(r
3 + r2(m + n) + r2m + rmn)

Liu et al. [198] Opre=Unknown, Oconv=Unknown

PRoximal Iterative SMoothing Algorithm (PRISMA) Oiter(nm), Opre(log(ǫ)/ǫ), Oconv=Unknown

Orabona et al. [235]

Fast Alterning Minimization (FAM)7 Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Rodriguez and Wohlberg [259]

Fast Alternating Direction Method of Multipliers (FADMM) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Yang and Wang [358]

Fast Alternating Direction Method with Smoothing Technique (FADM-ST) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Yang [356]

Online solvers

Online Alternating Direction Method (OADM)

Wang and Banerjee [318] Oiter=Unknown, Opre=Unknown, Oconv(1/T )

Non convex solvers

Difference of Convex (DC) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Sun et al. [299]

Fast Alternating Difference of Convex (FADC) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Sun et al. [299]

Non-convex Alternating Projections(AltProj) Oiter(r
2mn), Opre(log(1/ǫ)), Oconv=Unknown

Netrapalli et al. [227]

2D solvers

Iterative method for Bi-directional Decomposition (IMBD) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Sun et al. [301]

Table 10 Solvers for RPCA-PCP: An overview of their complexity per iteration at running
time Oiter , their complexity Opre to reach an accuracy of ǫ precision and their convergence
rate Oconv for T iterations. ”Unknown” stands for not indicated by the authors.

5Available on request by email to the corresponding author
6http://lmafit.blogs.rice.edu/
7https://sites.google.com/a/istec.net/prodrig/Home/en/pubs
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Solvers Complexity

RPCA via SPCP (RPCA-SPCP) Zhou et al. [393]

Alternating Splitting Augmented Lagrangian method (ASALM8) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Tao and Yuan [307]

Variational ASALM (VASALM8) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Tao and Yuan [307]

Parallel ASALM (PSALM8) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Tao and Yuan [307]

Non Smooth Augmented Lagrangian Algorithm (NSA9) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Aybat et al. [12]

First-order Augmented Lagrangian algorithm for Composite norms (FALC9) Oiter=Unknown, Oconv=Unknown, Opre(1/ǫ)

Aybat et al. [14]

Augmented Lagragian method for Conic Convex (ALCC9) Oiter=Unknown, Oconv=Unknown, Opre(log(1/ǫ))

Aybat et al. [15]

Partially Smooth Proximal Gradient (PSPG9) Oiter=Unknown, Oconv=Unknown, Opre(1/ǫ)

Aybat et al. [13]

Alternating Direction Method - Increasing Penalty (ADMIP9) Oiter=Unknown, Oconv=Unknown, Opre=Unknown

Aybat et al.[16]

Inexact Alternating Minimization - Matrix Manifolds (IAM-MM) Oiter(rmn),Oconv=Unknown, Opre=Unknown

(R2PCP10) Hintermüller and Wu [127]

Partially Parallel Splitting - Multiple Block (PPS-MB) Oiter(rmn),Oconv = 1/t, Opre=Unknown

(NEW, NEW-R) Hou et al. (2015) [129]

RPCA via SPCP (RPCA-SPCP)(2) Zhou and Tao [390]

Greedy Bilateral Smoothing (GreBsmo11) Oiter(max(|Ω| r2,mnr3), Oconv=Unknown, Opre=Unknown

Zhou and Tao [390]

Bilinear Generalized Approximate Message Passing (BiG-AMP12) Oiter(mn + nl + ml), Oconv=Unknown, Opre=Unknown

Parker and Schniter [238]

RPCA via Quantized PCP (RPCA-QPCP) Becker et al. [20]

Templates for First-Order Conic Solvers (TFOCS13) Oiter(mlogn), Oconv=Unknown, Opre(1/ǫ)

Becker et al. [20]

RPCA via Block based PCP (RPCA-BPCP) Tang and Nehorai [306]

Augmented Lagrangian Method (ALM) Oiter(mnmin(mn)), Oconv=Unknown, Opre=Unknown

RPCA-LBD8)Tang and Nehorai [306]

RPCA via Local PCP (RPCA-LPCP) Wohlberg et al. [333]

Split Bregman Algorithm (SBA) Oiter=Unknown, Oconv=Unknown, Opre=Unknown

Goldstein and Osher [91]

RPCA via Outlier Pursuit (RPCA-OP14) Xu et al. [342]

Singular Value Threshold (SVT) Oiter(mnmin(mn)), Oconv=Unknown, Opre=Unknown

Cai et al. [38]

RPCA with Sparsity Control (RPCA-SpaCtrl) Mateos and Giannakis [213][214]

Alternating Minimization (AM) Oiter=Unknown, Oconv=Unknown, Opre=Unknown

Zhou et al. [396]

RPCA via Sparse Corruptions (RPCA-SpaCorr) Hsu et al. [130]

- Oiter=Unknown, Oconv=Unknown, Opre=Unknown

-

RPCA via Log-sum Heuristic Recovery (RPCA-LHR) Deng et al. [66]

Majorization-Minimization (MM) Oiter=Unknown, Oconv=Unknown, Opre=Unknown

Fazel [82], Lange et al. [171]

Bayesian RPCA (B-RPCA15) Ding et al. [71]

Markov chain Monte Carlo (MCMC) Oiter(r(m+ n) + mn)

Robert and Cassela [256] Oconv=Unknown, Opre=Unknown

Variational Bayesian Inference (VB) Oiter=Unknown, Oconv=Unknow, Opre=Unknow

Beal [19]

Variational Bayesian RPCA (VB-RPCA16) Babacan et al. [17]

Approximate Bayesian Inference (AB) Oiter(min(n3, r3) + min(m3, r3))

Beal [19] Oconv=Unknown, Opre=Unknown

Approximated RPCA (A-RPCA) (GoDec17) Zhou and Tao [389]

Naive GoDec Linear convergence

Zhou and Tao [389]

Fast Godec via Bilateral Random Projection Linear convergence

Zhou and Tao [389]

Table 11 Solvers for RPCA (excepted PCP): An overview of their complexity per iteration
at running time Oiter , their complexity Opre to reach an accuracy of ǫ precision and their
convergence rate Oconv for T iterations. ”Unknown” stands for not indicated by the authors.

8Available on request by email to the corresponding author
9http://www2.ie.psu.edu/aybat/codes.html

10http://www.uni-graz.at/imawww/ifb/r2pcp/index.html
11https://sites.google.com/site/godecomposition/GreBsmo.zip
12http://www2.ece.ohio-state.edu/ schniter/BiGAMP/BiGAMP.html
13http://cvxr.com/tfocs/
14http://guppy.mpe.nus.edu.sg/ mpexuh/publication.html
15http://people.ee.duke.edu/ lcarin/BCS.html
16http://www.dbabacan.info/software.html
17http://sites.google.com/site/godecomposition/code
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Methods Solvers Complexity

Robust Non-negative Matrix Factorization (RNMF)

Manhattan Non-negative Matrix Factorization (MahNMF17) Rank-one Residual Iteration (RRI) Oiter(mnr(log(m) + 1)), Opre=Unknown, Oconv=Unknown

Guan et al. [99] Guan et al. [99]

Nesterovs smoothing method (OGM) Oiter=Unknown, Opre(1/ǫ), Oconv=Unknown

Nesterov [226]

Near-separable Non-negative Matrix Factorization (RobustXray) Alternating Direction Method of Multipliers (ADMM) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Kumar and Sindhwani [163] Boyd et al. [34]

Robust Asymmetric Non-negative Matrix Factorization (RANMF) Soft Regularized Asymmetric Alternating Minimization (SRAM) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Woo and Park [334] Woo and Park [334]

Robust Matrix Completion (RMC)

RMC-lσ norm loss function Gradient Descent Iterative Hard Thresholding (IHT) Linear convergence rate

Yang et al. [360] Yang et al. [360]

Gradient Descent Iterative Soft Thresholding (IST) Linear convergence rate

Yang et al. [360] Yang et al. [360]

RMC-Robust Bilateral Factorization (RBF) Alternating direction Method of Multipliers (ADMM)) Oiter(d
2n + d2m + mnd), Opre=unknown, Oconv=unknown

Shang et al. [273] Shang et al. [273] d ≪ n < m

RMC (Convex Formulation Convex Alternating Direction Augmented Lagrangian (Convex ADAL) Oiter(mn2), Opre=unknown, Oconv(1/T )

Shang et al. [274] Shang et al. [274]

RMC-Matrix Factorization (MF) Non-Convex Alternating Direction Augmented Lagrangian (Non-convex ADAL) Oiter(d
2m + mnd), Opre=unknown, Oconv(1/T ), d ≪ n < m

Shang et al. [274] Shang et al. [274]

Factorized Robust Matrix Completion (FRMC) Spectral Projected Gradient Iterations (SPG) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Mansour and Vetro [212] Berg and Friedlander [21]

Motion-Assisted Matrix Completion (MAMC19) ALM-ADM Framework Oiter(mnmin(m, n)), Opre=unknown, Oconv(1/µT )

Yang et al. [351] Lin et al. [188]

Robust Subspace Recovery (RSR)

Robust Subspace Recovery via Bi-Sparsity (RoSuRe) Linearized ADMM Oiter(rmn), Opre(1/ǫ), Oconv=Unknown

Bian and Krim [24] Lin et a. [190]

Robust Orthonomal Subspace Learning (ROSL20) inexact ADM/BCD Oiter(rmn), Opre=unknown, Oconv=unknown

Xu et al. [287] Xu et al. [287]

ROSL+ Random Sampling Oiter(r
2(m + n)), Opre=unknown, Oconv=unknown

Xu et al. [287] Xu et al. [287]

Robust Orthogonal Complement PCA (ROCPCA) M-estimators Oiter=Unknown, Opre=Unknown, Oconv=Unknown

She et al. [277] She and Owen [278]

Table 12 Solvers for RNMF, RMC, and RSR: An overview of their complexity per iteration at running time Oiter , their complexity Opre to reach an
accuracy of ǫ precision and their convergence rate Oconv for T iterations. ”Unknown” stands for not indicated by the authors.

18https://sites.google.com/site/nmfsolvers/
19http://cs.tju.edu.cn/faculty/likun/projects/bf-separation/index.htm
20https://sites.google.com/site/xianbiaoshu/
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Methods Solvers Complexity

Robust Subspace Tracking (RST)

GRASTA21 Augmented Lagrangian algorithm Oiter(|Ω| d3 + d |Ω| + nd2), Opre=unknown, Oconv=unknown

with the Grassmannian geodesic gradient descent

He et al. [119][120] Boyd et al. [34], Edelman et al. [78]

pROST22 Conjugate Gradient Oiter=unknown, Opre=unknown, Oconv=unknown

Hage and Kleinstauber [115] Hage and Kleinstauber [115]

GOSUS23 ADMM Oiter=unknown, Opre=unknown, Oconv=unknown

Xu et al. [343] Xu et al. [343]

FARST ADMM Oiter(|Ω| d3 + d |Ω| + nd2), Opre=unknown, Oconv=unknown

Ahn [4] Ahn [4]

Robust Low Rank Minimization (RLRM)

LRM with Contiguous Outliers Detection Alternating Algorithm (SOFT-IMPUTE) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

(DECOLOR24) Zhou et al. [391] Mazumder et al. [215]

LRM with DRMF Block Coordinate Descent strategy Oiter(mn(r + log(p)))

(DRMF25) Xiong et al. [341] Xiong et al. [341] K partial SVD at each iteration

LRM with DRMF-R Block Coordinate Descent strategy Oiter(mn(r + log(p)))

(DRMF-R25) Xiong et al. [341] Xiong et al. [341] K partial SVD at each iteration

PRMF Conditional EM Algorithm (CEM) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

(PRMF26) Wang et al. [321] Jebara and Pentland [148]

BRMF Conditional EM Algorithm (CEM) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

(BRMF27) Wang and Yeung [366] Jebara and Pentland [148]

PLRMF Inexact ALM with Gauss-Seidel iteration Oiter = r(max(m,n))2, Opre=Unknown, Oconv=Unknown

(RegL1-ALM28) Zheng et al. [386] Zheng et al. [386]

LRMF-MOG EM algorithm Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Meng et al. [216] Meng et al. [216]

UNN-BF ALM Oiter(mnr + nr2), Opre=Unknown, Oconv=Unknown

Cabral et al.[37] Cabral et al.[37]

RRF Alternative Direction Descent Algorithm (ADDA) Oiter=Unknown, Opre=Unknown, Oconv=Unknown

Sheng et al. [282] Sheng et al. [282]

Table 13 Solvers for ST and LRM: An overview of their complexity per iteration at running time Oiter, their complexity Opre to reach an accuracy of
ǫ precision and their convergence rate Oconv for T iterations. ”Unknown” stands for not indicated by the authors.

21http://sites.google.com/site/hejunzz/grasta
22http://www.gol.ei.tum.de/index.php?id=37 L=1
23http://pages.cs.wisc.edu/ jiaxu/projects/gosus/
24http://bioinformatics.ust.hk/decolor/decolor.html
25http://www.autonlab.org/autonweb/downloads/software.html
26http://winsty.net/prmf.html
27http://winsty.net/brmf.html
28https://sites.google.com/site/yinqiangzheng/
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1.2.6 Adequation for the background/foreground separation

For each problem formulations, we investigated its adequation with the applica-
tion of background/foreground separation in their corresponding section in terms
of following criteria: (1) its robustness to noise, (2) its spatial and temporal con-
straints, (3) the existence of an incremental version, and (4) the existence of a
real-time implementation. The following observations can be made:

1. Robustness to noise: Noise is due to a poor quality image source such as im-
ages acquired by a web cam or images after compression. It affects the entries
of the matrix A. In each problem formulation, assumptions are made to assure
the exact recovery of the decomposition. PCP assumed that all entries of the
matrix to be recovered are exactly known via the observation and that the
distribution of corruption should be sparse and random enough without noise.
These assumptions are rarely verified in the case in real applications because
only a fraction of entries of the matrix can be observed and the observation can
be corrupted by both impulsive and Gaussian noise. The robustness of PCP
can improved by taking into account entry-wise noise in SPCP, quantization
error in QPCP and the presence of outliers in entire columns in BPCP. The
other methods address sparsity control, recovery guarantees or the entry-wise
noise too.

2. Spatial and temporal constraints: Spatial constraints of the foreground ob-
ject are addressed by (1) BPCP [306][109], LBPCP [333], BRPCA [71], IRLS
[113][112][111] in RPCA framework, (2) RANMF [334] in RNMF, and (3)

DECOLOR [391] and MBRMF [366] in LRM framework. Temporal constraints

are addressed by (1) RPCA with dense optical flow [87], RPCA with consis-
tent optical flow [138], RPCA with smoothness and arbitrariness constraints
[108], BRPCA [71] in RPCA framework, (2) MAMC [351] and RMAMC [351]
in RMC framework, and (3) DECOLOR [391] and MBRMF [366] in LRM
framework. Only, RPCA with smoothness and arbitrariness constraints [108],
BRPCA [71], spatio-temporal IRLS [111], DECOLOR [391] and MBRMF [366]
address both the spatial and temporal constraints. The different strategies used
to take into account the spatial and/or temporal coherence can be classified as
follows:

– For the regularization based approaches, the main strategies to take into
account the spatial coherence consist of using a mixed norm (||.||2,1 [306][109][113][112]
[111]) on the matrices L and/or S, using a structured sparsity norm [197] on
the matrix S, and adding a term in the minimization problem such as a To-
tal Variation penalty [112][111][334][108][43] or a gradient [113][112][111][333]
on the matrix S. For the temporal coherence, optical flow is used as in
the RPCA framework ([87][138]) and in RMC framework (MAMC [351],
RMAMC [351]). Thus, the motion information can be used in several ways
as follows : (1) an adaptive λ [87][197] which is a function of the motion
consistency to ensure that all the changes caused by the foreground motion
will be entirely transfered to the matrix S, and (2) a weighting matrix W

[351] which is constructed from the optical flow to suppress slowly-moving
objects, to enforce the recovery of the background that appears at only a
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few frames and to eliminate the influence of light conditions, camouflages,
and dynamic backgrounds. Thus, the minimization problem expressed in
Equation 2 can be extended for stable explicit decomposition to:

min
L,S,E

λ1flow(L) + λ2fsparse(Π(S)) + λ3fnoise(E)
︸ ︷︷ ︸

Decomposition

+λ4fback(L) + λ5ffore(S)
︸ ︷︷ ︸

Application

subj C3

(12)

where λ4 and λ5 are regularization parameters. fback(L) and ffore(S) are
loss functions that allow the minimization to take into account the char-
acteristics of the background and the foreground, respectively. fback(L)
can be a mixed norm. ffore(S) can be the gradient or the Total Varia-
tion on S. The function Π() allows to add a confidence map [236][292]
on S. C3 contains the constraints which are only on the recovery such as
A = L+S+E,or both on the recovery and the spatial/temporal aspects such
as A= W ◦ (L+ S +E) [351][365][292]. Note that the first part of Equation
12 with flow(L), fsparse(S) and fnoise(E) concerns mainly the decomposi-
tion into low-rank plus additive matrices, and the second part with fback(L)
and ffore(S) concerns mainly the application to background/foreground
separation. Thus, the minimization problem can be formulated as follows:

min
L,S,E

λ1||L||p1
norm1

+ λ2||Π(S)||p2
norm2

+ λ3||E||p3
norm3

︸ ︷︷ ︸

Decomposition

+λ4||L||l2,1 + δ1||grad(S)||l1 + δ2TV (S) + δ3Ω(S)
︸ ︷︷ ︸

Application

subj ||A− L−W ◦ S − E|| = 0

(13)

where δ1, δ2 and δ3 are regularization parameters. norm2 is usually taken
to force spatial homogeneous fitting in the matrix S, that is for example
the norm l2,1 with p2 = 1 [306][109][113][112][111]. ||grad(S)||1, TV (S) and
Ω(S) are a gradient [113][112][111][333], a total variation [112][111][334][108][43]
and a structured norm [197] applied on the matrix S, respectively. Further-
more, S can be processed with a linear operator Π() that weights its entries
according to their confidence of corresponding to a moving object such that
the most probable elements are unchanged and the least are set to zero
[236][292]. Note that the term λ4||L||l2,1 ensures the recovered L has exact
zero columns corresponding to the outliers. Morevover, a weighting matrix
W [351][365][292] can be used in the constraints C3 to enforce the recovery
of the background that appears at only a few frames and to eliminate the
influence of light conditions, camouflages, and dynamic backgrounds.

– For the statistical inference based approaches, Markov Random Fields
(MRF) are used to extract temporally and spatially localized moving ob-
jects as in BRPCA [71], DECOLOR [391] and MBRMF [366]. Statistical
total variations can also be used as in the approach based on smoothness
and arbitrariness constraints [108].
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3. Incremental algorithms: Incremental algorithms are needed to update the
low-rank and additive matrices when a new data arrives. Several incremental
algorithms can be found in the literature as follows: 1) in the RPCA framework
(PCP [242][244]
[243][245][100][331][261][345], SPCP [295], RPCA-SpaCtrl [213][214], Approx-
imated RPCA [52]), and 2) in the subspace tracking framework (GRASTA
[119][120], t-GRASTA [122][123], pROST [115][268], GOSUS [343] and FARST
[4]). Thus, the decomposition can be written as follows:

At = Lt + St + Et (14)

where t is the indice for the time. Lt, St, Et are determined from Lt−1, St−1,
Et−1 and the current observation.

4. Real-time implementations: As background/foreground separation needs to
be achieved in real-time, several strategies have been developed and are gen-
eraly based on submatrices computation [240] or GPU implementations [8][9].
Real-time implementations can be found for PCP [8][9][240][106] and for SPCP
[209]

5. Strategies:Differents strategies can be used to applied DLAM for background/foreground
separation. For example, Gao et al.[87] developed a two-pass RPCA process
for consistent foreground detection. For objects or people which remain immo-
bile for a certain period of time. Tepper et al. [308] proposed a method which
detects foreground objects at different timescales, by exploiting the theoretical
and practical properties of RPCA.

All these key challenges need to be addressed in the different problem formuma-
tions based on the decomposition into low-rank plus sparse matrices to be applied
adequately to background modeling and foreground detection in video taken by a
static camera.

1.2.7 Sparse decompositions

Sparse decompositions are similar to low-rank decompositions except that the first
matrix is considered to be sparse instead of low-rank. Sparse decompositions are
achieved in the different following problem formulations:

– Sparse Dictionary learning: Sparse dictionary learning (DL) builds data rep-
resentation by decomposing each datum into a linear combination of a few com-
ponents selected from a dictionary of basic elements, called atoms [54]. Sparse
dictionary learning is also called sparse coding in the literature [297][230]. Thus,
the observation matrix is decomposed as follows:

A = X +N = Dα+N (15)

where A is the matrix which contains the observations, X is a sparse noiseless
matrix and N is the noise matrix. X is the product between D which is a
dictionary, and α which is a sparse vector. Thus, the assumption of the sparse
decomposition is that the observed image is an approximated linear combina-
tion over a dictionary D and a vector coefficients α. In order to recover the
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noiseless image (background), the decomposition problem seeks to the follow-
ing minimization problems:

min
D,α

||A−X||2l2 + ||Dα −X||2l2 + ||α||0 (16)

The first term minimizes the error between the recovered image and the ob-
served version. The second term ensures that the denoised image is an approx-
imated linear combination over the dictionary D and coefficients α. Finally,
the third term determines the degree of sparsity of the coefficients, in fact
0 counts the null coefficients. Thus, the recovered image is represented with
the smallest possible number of vectors from the dictionary. The minimization
problem is solved iteratively in three steps. First, a solver such as a matching
pursuit type algorithm is used to estimate the coefficients of the linear de-
composition of the denoised image over the dictionary Second, the dictionary
is updated. And finally, the last step updates the denoised image X. Applied
to background/foreground separation, a dictionary learning method considers
that 1) The background has a sparse linear representation over a learned dic-
tionary, and 2) the foreground is sparse in the sense that majority pixels of
the frame belong to the background. Learning the dictionary is a key step to
the success of background modeling. The different approaches developed in the
literature differs from 1) the algorithm used to learn the dictionary (K-SVD
[3][63][61][62][288][139][267], RDL [380], MOD [388]), BPFA [388]), 2) the de-
composition (Two terms [63][61][380], three terms [62]), 3) the minimization
problem with a different norm on the sparse error (l−1 norm [380][288][203]) or
with a different norm on the degree of sparsity (l1-norm [380][296][297], Frobe-
nius norm [288], l1,2-norm [150][151]), and 4) the solvers. Examples of solvers
include matching pursuit type algorithm such as Matching Pursuit [63], Or-
thogonal Matching Pursuit [314][61][62][388], Lasso [309][288], Group Lasso
[288], IRLS [203] and Least Angle Regression (LARS) [79][339]. Furthermore,
online dictionary learning algorithms are developed as in Lu et al. [203], and
Zhang et al. [377] with Symmetric Positive Definite (SPD) matrices.

– Sparse Linear Approximation/Regression:This formulation problem is sim-
ilar to sparse dictionnary learning and leads to the same decomposition. First,
Dikmen et al. [68][69][67] refer to linear approximation of the sparse error
estimation, and basis selection (i.e the dictionary). This method viewed fore-
ground objects as sparse corruption signals and estimated them by the sparse
recovering method. Second, other authors [347][346][131] refer to sparse outlier
estimation in a linear regression model regarding foreground objects as outliers
and consider that the observation error is composed of foreground outlier and
background noise. Thus, the foreground detection task has been converted into
a outlier estimation problem.

– Compressive sensing: The CS theory states that a signal can be reconstructed
from a small number of measurements with high probability, provided that the
signal is sparse in the spatial domain or some transform domains [54]. Assume
that a signal X can be represented as X = ΨΘ , where Ψ denotes a basis and Θ

is the coefficients corresponding to the basis. The signal is said to be k-sparse if
all other elements in Θ vanish except for nonzero coefficients. According to CS,
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for a sparse signal, compressive measurements can be collected by the following
random projections:

A = ΦX +N (17)

where Φ ∈ Rm×n is the measurement matrix with m ≤ n, A contains m mea-
surements, and N is the measurement noise. Specifically, a high dimensional
X vector is converted into a much lower dimensional measurement vector A.
Moreover, the compressive measurements in contain almost all the information
of the sparse vector X. This means that CS works with data of significantly
lower dimension so as to achieve computation efficiency as well as accuracy. In
order to recover the noiseless signal, the decomposition problem seeks to the
following minimization problems:

min
D,α

||Θ||l0 +
1

2
||A− ΦX||2 (18)

Because Equation 18 is an NP hard problem, the sparse solution can be ob-
tained by replacing the nom l0 by the norm l1 as done in [45] [44][121][176][323][327].
Thus, the background/foreground separation problem can be viewed as a sparse
approximation problem where convex optimization and greedy methods can be
applied. It is not necessary to learn the background itself to detect the changes
and the foreground objects which can be directly detected on the compres-
sive samples. Hence, no foreground reconstruction is done until a detection is
made to save computation. The different approaches developed in the litera-
ture differs mainly by the minimization problem (l1-l1 minimization [219][218])
and the solvers. Examples of solvers include Basis Pursuit (BP) [55][64], Ba-
sis Pursuit Denoising (BPDN) [39][45], Orthogonal Matching Pursuit (OMP)
[64], Stagewise OMP (StOMP)[72][344], LatticeMatching Pursuit (LaMP) [44],
Compressive sampling matching pursuit (CoSaMP) [225][121], and Gradient
Projection for Sparse Reconstruction (GPSR) [323]. Furthermore, structured
sparsity [135][136][133][44] can be used to exploit a priori spatial information
on coefficient structure in addition to signal sparsity as the foreground objects
are usually not only sparse but also clustered in a distinct way. Dynamic Group
Sparsity (DGS) [134][338][255][327] can also be used to exploit both temporal
and spatial information. In another way, an adaptive algorithms called Adap-
tive Rate Compressive Sensing (ARCS) [328] [328] allow to choose the number
of measurements so as to limit the data rate of the sensor while simultaneously
maintaining enough information such that to be able to robustly detect the
foreground objects.

As we defined the unified view DLAM, it is possible to define a unified view of
the sparse decompositions called Decomposition in sparse plus additive matrices
(DSAM) but it is out of the scope of this paper.

1.2.8 Mixed decompositions

Mixed decompositions stand at the intersection of the previous problem formula-
tions. There are two main approaches in the literature:

– RPCA-CS: Waters et al. [329][330] proposed to recover the entries of a matrix
A in terms of a low-rank matrix L and sparse matrix S from a small set of
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compressive measurements y = A(L+S) where A is an underdetermined linear
operator. The optimization problem that unites the above two problem classes
above is:

min ||y −A(L+ S)||l2 subj rank(L) < r, ||vec(S)||l0 < K (19)

Waters et al. [329][330] developed an algorithm for solving Equation 19, called
SPArse and low Rank decomposition via Compressive Sensing. SpaRCS com-
bines CoSaMP [225] for sparse vector recovery and ADMiRA [173] for low-rank
matrix recovery. To accelerate the convergence speed of SpaRCS, Kyrillidis
and Cevher proposed an algorithm called Matrix ALPS and based on accelera-
tion techniques from convex analysis and exploited well-known memory-based
acceleration technique. As incorporating priori knowledge into the basic com-
pressive sensing results in significant improvement of its performance, Zoonobi
and Kassim [395] extended SpaRCS with partial known support. Jiang et al.
[152] reformulated the problem 19) into an equivalent problem by introduc-
ing some splitting variables, and applied the ADM framework. Furthermore,
Jiang et al. [152] extented this model to deal with the joint reconstruction of
multiple color components. Jiang et al. [153] improved this model by adding
low latency. In another way, Yang et al. [350] developed an online algorithm in
which the background is learned adaptively as the compressive measurements
are processed.

– Sparse Dictionary Learning-CS: Huang et al. [139] proposed an algorithm
of moving object detection via the sparse representation and learned dictio-
nary. First, compress image in order to reduce data redundancy and band-
width. Then, data dictionary with CS measurement values and sparse basis
is initialized, trained and updated through the K-SVD. Finaly, moving ob-
ject detection is achieved via PCP. In another approach, Jiang et. [154] used
a spatial-temporal image patch (bricks) as atomic unit for sparse dictionary
representation. Furthermore, Random Projection emerged from Compressive
Sensing theory is used to reduce the dimension of the bricks so as to speed up
the algorithm.

1.3 Motivations and Contributions

Since the works of Candes et al. [40] and Chandrasekaran et al. [48], the last five
years witnessed very significant publications on problem formulations based on the
decomposition into low-rank plus additive matrices, and applications in computer
vision generate new developments as developed in the handbook [29]. Furthermore,
the different robust problem formulations based on the decomposition into low-
rank plus additive matrices often outperform state-of-the-art methods in several
computer vision applications [41]. Indeed, as this decomposition is nonparametric
and does not make many assumptions, it is widely applicable to a large scale of
problems ranging from:

– Latent variable model selection: Chandrasekaran et al. [47] proposed to dis-
cover the number of latent components, and to learn a statistical model over
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the entire collection of variables by only observing samples of a subset of a col-
lection of random variables. The geometric properties of the decompostion of
low-rank plus sparse matrices play an important role in this approach [47][206].

– Image processing: Sometimes, it is needed to separate information from noise
or outliers in image processing. RPCA framework was applied with success in
image analysis [392] such as image denoising [98], image composition [22], image
colorization [361], image alignment and rectification [239], multi-focus image
[316] and face recognition [336].

– Video processing: This application of DLAM is the most investigated one.
Indeed, numerous authors used the RPCA and RLRM problem formulations in
applications such as action recognition [137], motion estimation [264], motion
saliency detection [348][382], video coding [381][107][51][52], key frame extrac-
tion [60], hyperspectral video processing [88], video restoration [149], video
stabilization [74], and in background and foreground separation [6][236][241].

– 3D Computer Vision: Structure from Motion (SfM) refers to the process of
automatically generate a 3D structure of an object by its tracked 2D image
frames. Practically, the goal is to recover both 3D structure, namely 3D co-
ordinates of scene points, and motion parameters, namely attitude (rotation)
and position of the cameras, starting from image point correspondences. Then,
finding the full 3D reconstruction of this object can be posed as a low-rank
matrix recovery problem [192][11][337].

In this context, the aim of this survey is then to provide a first complete
overview of all the decomposition in low-rank plus additive matrices for (1) novices
who could be students or engineers beginning in the field of computer vision, (2)
experts as we put forward the recent advances that need to be improved, and
(3) reviewers to evaluate papers in journals, conferences, and workshop such as
RSL-CV 201529. So, this survey is intended to be a reference for researchers and
developers in industries, as well as graduate students, interested in robust decom-
position applied to computer vision.

Here, we decide to focus on the application of background and foreground
separation due to the following reasons:

1. This application witnessed very numerous papers (more than 190) since 2009.
2. Background/foreground separation is the most representative and demanding

application as it needs to take into account both spatial and temporal con-
straints with incremental and real-time constraints [33][32].

However, no algorithm today seems to emerge and to be able to simultane-
ously address all the key challenges that accompany real-world videos. This is
due, in part, to the absence of a rigorous quantitative evaluation with large-scale
datasets with accurate ground truth providing a balanced coverage of the range of
challenges present in the real world. Indeed, in the first publications, the authors
usually compared qualitatively their method to RSL [310] or PCP [40]. Recent
quantitative evaluations in foreground detection using the performance metrics
have been made but they are limited to one algorithm [326][355][110][109]. In a
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more recent work, Guyon et al. [114] compared five algorithms RSL [310], RPCA-
PCP solved via EALM [188], RPCA-PCP solved via IALM [188], QPCP [20] and
BRPCA [71] with the Wallflower dataset [312], the I2R dataset [177] and Shah
dataset [279]. Experimental results show that BRPCA that address spatial and
temporal constraints outperforms the other methods. However, this evaluation is
limited to five methods and it is not made on large datasets that present a coverage
of the range of challenges. A similar study made by Rueda et al. [265] compared
RPCA-PCP solved via EALM, BRPCA and GoDec. The authors also concluded
that the BRPCA offers the best results in dynamic and static scenes by exploit-
ing the existing correlation between frames of the video sequence using Markov
dependencies. In a more complete survey, Bouwmans and Zahzah [33] evaluated
ten RPCA-PCP algorithms on the BMC dataset but this evaluation is limited to
the framework of RPCA solved via PCP.

Moreover, we believe that we are living in a key transition in the field of back-
ground subtraction as we are progressively migrating from the conventional statis-
tical models as MOG [298][30], KDE [80][27] and naive subspace learning models
[26] to models based on robust decomposition into low-rank plus additive matrices
(RPCA, RNMF, RMC, RSR, RST, LRM) which can achieve at least the same
performance in terms of precision than the conventional statistical models [33].
Thus, the aim of this survey is to review and evaluate the robust decomposition
into low-rank plus additive matrices for the application of background/foreground
separation. For this, it reviews all the models since the first works of Candes et al.
[40] and Chandrasekaran et al. [48] to the recent ones. By reviewing both exist-
ing and new ideas, this survey gives a complete overview of the decompositions,
solvers, and applications related to background/foreground separation. Moreover,
an accompanying website called the DLAM Website30 is provided. It allows the
reader to have a quick access to the main resources, and codes in the field. Finally,
with this survey, we aim to bring a one-stop solution, i.e., access to a number of
different decompositions, solvers, implementations and benchmarking techniques
in a single paper. Considering all of this, we present a comprehensive review of
different methods based on decomposition into low-rank plus additive matrices for
testing and ranking existing algorithms for foreground detection. Contributions of
this paper can be summarized as follows:

– A unified view of the decomposition into low-rank plus additive matri-

ces: After a preliminary overview on the different robust problem formulations
in Section 1.1, we provided in Section 1.2 a unified view of the different de-
compositions into low-rank plus additive matrices. Figure 3 shows an overview
of this unified view.

– A review regarding different decomposition methods in low-rank plus

additive matrices: RPCA models are reviewed in Section 2. For each method,
we investigate how they are solved, and if incremental and real-time versions
are available for foreground detection. Furthermore, their advantages and draw-
backs are discussed in the case of outliers due to dynamic backgrounds or
illumination changes. In the same manner, we review the RNMF models in
Section 3, RMC models in Section 4, RSR models in Section 5, and the robust

29http://rsl-cv2015.univ-lr.fr/workshop/
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Fig. 3 Unified View of the Different Decomposition into Low-rank plus Additive Matrices
(DLAM).

subspace tracking models in Section 6. Finally, robust low-rank minimization
models are reviewed in Section 7.

– A systematic evaluation and comparative analysis: We compare and eval-
uate different decomposition methods in low-rank and additive matrices on a
large-scale dataset in Section 8. This dataset is the Background Models Chal-
lenge (BMC 2012) dataset31 [315] and we used the provided quantitative eval-
uation framework which allows us to do a fair and complete comparison.

The rest of this paper is organized as follows. Firstly, we review each original
method in its section (Section 2 to Section 7). For each method, we investigate
how they are solved, and if incremental and real-time versions are available for
background/foreground separation. Then, the performance evaluation using quan-
titative metrics over the BMC dataset is given in Section 8. Finally, we conclude
with promising research directions in Section 10.

2 Robust Principal Component Analysis

2.1 RPCA via Principal Component Pursuit

RPCA via PCP proposed by Candes et al. [40] in 2009 is currently the most
investigated method. In the following sub-sections, we reviewed this method and
all these modifications in terms of decomposition, solvers, incremental algorithms
and real time implementations. Table 14 and Table 15 show an overview of the
Principal Component Pursuit methods and their key characteristics.

30https://sites.google.com/site/robustdlam/
31http://bmc.iut-auvergne.com/
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Categories Authors - Dates

Decomposition

1) original PCP Candes et al. (2009) [40]

2) modified-PCP (Fixed Rank) Leow et al. (2013) [174]

3) modified-PCP (Nuclear Norm Free) Yuan et al. (2013) [367]

4) modified-PCP (Capped Norms) Sun et al. (2013) [299]

5) modified-PCP (Inductive) Bao et al. (2012) [18]

6) modified-PCP (Partial Subspace Knowledge) Zhan and Vaswani (2014) [369]

7) p,q-PCP (Schatten-p norm, lq norm) Wang et al. (2014) [320]

8) modified p,q-PCP (Schatten-p norm, Lq seminorm) Shao et al. (2014) [276]

9) modified PCP (2D-PCA) Sun et al. (2013) [301]

10) modified PCP (Rank-N Soft Constraint) Oh (2012) [231]

11) Joint Video Frame Set Division RPCA (JVFSD-RPCA) Wen (2014) [332]

12) Nuclear norm and Spectral norm Minimization Problem (NSMP) Wang and Feng [322]

13) Weighted function NSMP (WNSMP) Wang and Feng [322]

14) Implicit Regularizers (IR) He et al. (2013) [126]

15) Random Learning (RL) Rahmani and Atia (2015) [251]

16) Shape Constraint (SC) Yang et al. (2015) [359]

17) Generalized Fused Lasso regularization (GFL) Xin et al. (2015) [340]

18) Double Nuclear Norm-Based Matrix Decomposition (DNMD) Zhang et al. (2015) [372]

19) Self-paced Matrix Factorization (SPMF) Zhao et al. (2015) [383]

20) K-Sparsity Prior (K-SP) Karl and Osendorfer (2015) [157]

21) Multi-scale Low Rank Matrix Decomposition (MLR) Ong and Lustig (2015) [234]

Solvers

1) Basic solvers

Singular Values Decomposition (SVT) Cai et al. (2008) [38]

Iterative Thresholding (IT) Wright et al. (2009) [335]

Accelerated Proximal Gradient (APG) Lin et al.(2009) [189]

Dual Method (DM) Lin et al.(2009) [189]

Exacted Augmented Lagrangian Method (EALM) Lin et al. (2009) [188]

Inexact Augmented Lagrangian Method (IALM) Lin et al. (2009) [188]

Alternating Direction Method (ADM) Yuan and Yang (2009) [368]

Symmetric Alternating Direction Method (SADM) Goldfarb et al. (2010) [90]

Non Convex Splitting ADM (NCSADM) Chartrand (2012) [50]

Douglas-Rachford Splitting Method (DRSM) Gandy and Yamada (2010] [86]

Variant of Douglas-Rachford Splitting Method (VDRSM) Zhang and Liu (2013) [376]

Proximity Point Algorithm (PPA) Zhu et al. (2014) [394]

Proximal Iteratively Reweighted Algorithm (PIRA) Wang et al. (2014) [320]

Alternating Rectified Gradient Method (ARGM) Kim et al. (2014) [158]

Parallel Direction Method of Multipliers (PDMM) Wang et al. (2014) [319]

Generalized Singular Value Thresholding (GSVT) Lu et al. (2014) [204]

Generalized Accelerated Proximal Gradient (GAPG) He et al. (2013) [126]

Improved alternating direction method (IADM) Chai et al. (2013) [46]

Optimal Singular Values Shrinkage (OptShrink) Moore et al. (2014) [217]

Iterative Thresholding with Primal-Dual Method (IT-PDM) Fan et al. (2014) [81]

2) Linearized solvers

Linearized ADM (LADM) Yang and Yuan (2011) [352]

Linearized ADM with Adaptive Penalty (LADMAP) Lin et al. (2011) [190]

Linearized Symmetric ADM (LSADM) Goldfarb et al. (2010) [90]

Fast Linearized Symmetric ADM (Fast-LSADM) Goldfarb et al. (2010) [90]

Linearized IAD Contraction Methods (LIADCM) Gu et al. (2013) [97]

3) Fast solvers

Randomized Projection for ALM (RPALM) Mu et al. (2011) [221]

l1-filtering (LF) Liu et al. (2011) [194]

Block Lanczos with Warm Start Lin and Wei(2010) [191]

Exact Fast Robust Principal Component Analysis (EFRPCA) Abdel-Hakim and El-Saban (2012) [1]

Inexact Fast Robust Principal Component Analysis (IFRPCA) Abdel-Hakim and El-Saban (2012) [1]

Matrix Tri-Factorization (MTF) Liu et al. (2013) [199]

Fast Tri-Factorization(FTF) Liu et al. (2013) [198]

PRoximal Iterative SMoothing Algorithm (PRISMA) Orabona et al. (2012) [235]

Fast Alterning Minimization (FAM) Rodriguez and Wohlberg (2013) [259]

Fast Alternating Direction Method of Multipliers (FADMM) Yang and Wang (2014) [358]

Fast Alternating Direction Method with Smoothing Technique (FADM-ST) Yang (2014)[356]

Fast Randomized Singular Value Thresholding (FRSVT) Oh et al. (2015)[232]

4) Online solvers

Online Alternating Direction Method (OADM) Wang and Banerjee (2013) [318]

5) Non convex solvers

Difference of Convex (DC) Sun et al. (2013) [299]

Fast Alternating Difference of Convex (FADC) Sun et al. (2013) [299]

Non-convex Alternating Projections(AltProj) Netrapalli et al. (2014) [227]

Iterative Shrinkage-Thresholding/Reweighted Algorithm (ISTRA) Zhong et al. (2015) [387]

6) 2D solvers

Iterative method for Bi-directional Decomposition (IMBD) Sun et al. (2013) [301]

Table 14 Principal Component Pursuit: A Complete Overview (Part 1). The first column
indicates the concerned category and the second column the name of each method. Their
corresponding acronym is indicated in the first parenthesis. The third column gives the name
of the authors and the date of the related publication.
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Categories Methods Authors - Dates

Incremental Algorithms Recursive Robust PCP (RR-PCP) Qiu and N. Vaswani (2010) [242]

Recursive Project Compressive Sensing (ReProCS) Qiu and Vaswani (2011 [243]

Support-Predicted Modified-CS RR-PCP) Qiu and Vaswani (2011) [244]

Support-Predicted Modified-CS) Qiu and Vaswani (2011) [243]

Automated ReProCS Qiu and Vaswani (2012) [245]

Practical ReProCS (Prac-ReProCS) Guo et al. (2013) [100]

Incremental Low-Rank (iLR) Algorithm Wei et al. (2014) [331]

Incremental PCP (incPCP) Rodriguez and Wohlberg (2014) [261]

Online RPCA (ORPCA) Xu (2014) [345]

Online RPCA via Stochastic Gradient Descent (ORPCA-SGD) Song et al. (2015) [322]

Projection based RPCA (ProjectionRPCA) Lee and Lee (2015) [172]

Online RPCA with Truncated Nuclear Norm Regularization (OTNNR) Hong et al. (2015) [128]

Real time Implementations CAQR Anderson et al. (2010) [8]

Real-Time PCP Pope et al. (2011) [240]

LR Submatrix Recovery/Reconstruction (LRSRR) Guo et al. (2014) [106]

Multi-Features Algorithms Multi-Features Algorithm (MFA) Gan et al. (2013) [85]

Multi-Task RPCA (MTRPCA) Wang and Wan (2014) [324]

Spatial-Temporal Algorithms Dense Optical Flow Gao et al. (2012) [87]

Consistent Optical Flow Huang et al. (2013) [138]

Smoothness and Arbitrariness Constraints (RFDSA) Guo et al. (2014) [108]

Total Variation (TV) Regularizer Gao et al. (2015) [43]

Piece-wise Low-rank Model Newson et al. (2015) [228]

Graphs Model Shahid et al. (2015) [270]

Fast Graphs Model Shahid et al. (2015) [271]

Shape and Confidence Map-based (SCM-RPCA) Sobral et al. (2015) [292]

Connectivity and Saliency Map (MODSM) Pang et al. (2015) [237]

Salient Motion Detection Chen et al. (2015) [53]

Compressive Sensing Algorithms Sparsity Reconstruction for Compressive Sensing (SpaRCS) Waters et al. (2011) [329]

SpaRCS with Partial Support Knowledge (SpaRCS-PSK) Zonoobi and Kassim (2013) [395]

Adaptive Reconstruction Compressive Sensing (ARCS) Yang et al. (2013) [350]

LRSD for Compressive Sensing (LRSDCS) Jiang et al. (2014) [169]

Recursive Low-rank and Sparse decomposition (rLSDR) Li and Qi (2014) [181]

Optimal PCP Solutions Minimum Description Length (MDL) Ramirez and Shapiro (2012) [254]

Saliency Measure Gao et al. (2012) [87]

SVD Algorithms Full SVD -

Partial SVD -

Linear Time SVD Yang and An (2013) [357]

smaller-scale SVD Zhang and Tian (2013) [378]

block-SVD Chai et al. (2013) [46]

Limited Memory SVD (LMSVD) Liu et al. (2013) [195]

Symmetric Low-Rank Product-Gauss-Newton (SLRPGN) Liu et al. (2014) [196]

Table 15 Principal Component Pursuit: A Complete Overview (Part 2). The first column
indicates the concerned category and the second column the name of each method. Their
corresponding acronym is indicated in the first parenthesis. The third column gives the name
of the authors and the date of the related publication.

2.1.1 Principal Component Pursuit

Candes et al. [40][335] proposed a convex optimization to address the robust PCA
problem. The observation matrix A is assumed represented as:

A = L+ S (20)

where L is a low-rank matrix and S must be sparse matrix with a small fraction
of nonzero entries. The straightforward formulation is to use l0-norm to minimize
the energy function:

min
L,S

rank(L) + λ||S||l0 subj A− L− S = 0 (21)

where λ > 0 is an arbitrary balanced parameter. But this problem is NP -hard, typ-
ical solution might involve a search with combinatorial complexity. This research
seeks to solve for L with the following optimization problem:

min
L,S

||L||∗ + λ||S||l1 subj A− L− S = 0 (22)

where ||.||∗ and ||.||l1 are the nuclear norm (which is the l1-norm of singular value)
and l1-norm, respectively, and λ > 0 is an arbitrary balanced parameter. Usually,
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λ = 1√
max(m,n)

. Under these minimal assumptions, this approach called Principal

Component Pursuit (PCP) solution perfectly recovers the low-rank and the sparse
matrices.

Candes et al. [393] showed results on face images and background modeling that
demonstrated encouraging performance. The low-rank minimization concerning L

offers a suitable framework for backgroundmodeling due to the correlation between
frames. So, minimizing L and S implies that the background is approximated by
a low-rank subspace that can gradually change over time, while the moving fore-
ground objects constitute the correlated sparse outliers which are contained in S.
To obtain the foreground mask, S needs to be thresholded. The threshold is deter-
mined experimentally. rank(L) influences the number of modes of the background
that can be represented by L: If rank(L) is to high, the model will incorporate the
moving objects in its representation; if the rank(L) is to low, the model tends to
be uni-modal and then the multi-modality which appears in dynamic backgrounds
will be not captured. The quality of the background/foreground separation is di-
rectly related to the assumption of the low-rank and sparsity of the background
and foreground, respectively. In this case, the best separation is then obtained only
when the optimization algorithm has converged.

Essentially, the nuclear-norm term corresponds to low-frequency components
along the temporal while the l1 norm describes the high-frequency components.
However, the low-frequency components can leak into extracted background im-
ages for areas that are dominated by moving objects. The leakage as ghost arti-
facts which appear in extracted background cannot be well handled by adjusting
the weights between the two regularization parameters. Practically, RPCA-PCP
present other several limitations developed in the Section 1.1.1 and an overview
of their solutions is given in the following sections.

2.1.2 Algorithms for solving PCP

Several algorithms called solvers have been proposed for solving PCP. An overview
of these solvers as well as their complexity (when they are available) are grouped
in Table 9 and Table 10. For an m× n input matrix A with estimated rank r, the
complexity per iteration at running time is formulated as Oiter(fiter(m,n, r, ..))
where fiter() is a function. The complexity to reach an accuracy of ǫ precision
(ǫ-optimal solution) is formulated as Opre(fpre(ǫ)) where fpre() is a function. The
convergence rate is formulated as Oconv(fconv(T )), where fconv() is a function of T
which is the number of iterations. All these algorithms require solving the following
type of subproblem in each iteration:

min
L,S

η||L||p1
norm1

+ λ||S||p2
norm2

(23)

The above problem can have a closed form solution or not following the applica-
tion. So, several solvers can be found in the the litterature:

– Basic solvers: When the problem is supposed to have a closed form solution,
PCP can be reformulated as a semidefinite program and then be solved by
standard interior point methods [49]. However, interior point methods have
difficulty in handling large matrices because the complexity of computing the
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step direction is O((mnmin(m,n))2), where m×n is the size of the data matrix.
If m = n, then the complexity is O(n6). So the generic interior point solvers are
too limited for many real applications where the number of data are very large.
To overcome the scalability issue, only the first-order information can be used.
Cai et al. [38] showed that this technique, called Singular Value Thresholding
(SVT), can be used to minimize the nuclear norm for matrix completion. As
the matrix recovery problem in Equation (22) needs minimizing a combination
of both the l1-norm and the nuclear norm, Wright et al. [335] adopted a iter-
ative thresholding technique (IT) to solve it and obtained similar convergence
and scalability properties than interior point methods. However, the iterative
thresholding scheme converges extremely slowly with Opre =

√

L/ǫ where L is
the Lipschitz constant of the gradient of the objective function. To alleviate
this slow convergence, Lin et al. [189] proposed two algorithms: the accelerated
proximal gradient (APG) algorithm and the gradient-ascent algorithm applied
to the dual of the problem in Equation (22). However, these algorithms are all
the same to slow for real application. More recently, Lin et al. [188] proposed
two algorithms based on augmented Lagrange multipliers (ALM). The first
algorithm is called Exact ALM (EALM) method that has a Q-linear conver-
gence speed, while the APG is in theory only sub-linear. The second algorithm
is an improvement of the EALM that is called Inexact ALM (IALM) method,
which converges practically as fast as the EALM, but the required number of
partial SVDs is significantly less. The IALM is at least five times faster than
APG, and its precision is also higher [188]. However, the direct application
of ALM treats the Equation (22) as a generic minimization problem and ig-
nores its separable structure emerging in both the objective function and the
constraint [188]. Hence, the variables S and L are minimized simultaneously.
Yuan and Yang [368] proposed to alleviate this ignorance by the Alternating
Direction Method of Multipliers (ADMM) which minimizes the variables L

and S serially. The convergence of ADMM for convex objective functions has
been proved [229][300][317][183][186][185]. The iteration complexity was ana-
lyzed for Multi-Block ADMM [184]. ADMM achieves it with less computation
cost than ALM. Recently, Chartrand [50] proposed a non convex splitting ver-
sion of the ADMM [368] called NCSADM. This non convex generalization of
[188] produces a sparser model that is better able to separate moving objects
and stationary objects. Furthermore, this splitting algorithm maintains the
background model while removing substantial noise, more so than the convex
regularization does. The ALM neglects the separable structure in both the
objective function and the constraint. Thus, Zhang and Liu [376] proposed a
variant of the Douglas-Rachford splitting method (VDRSM) for accomplish-
ing recovery in the case of illumination changes and dynamic backgrounds. In
a similar way, Zhu et al. [394] proposed a Proximity Point Algorithm (PPA)
based on the Douglas-Rachford splitting method. The convex optimization
problem is solved by canceling the constraint of the variables, and the prox-
imity operators of the objective function are computed alternately. The new
algorithm can exactly recover the low-rank and sparse simultaneously, and it is
proved to be convergent. Another approach developed by Chai et al. [46] is an
improved alternating direction method (IADM) algorithm with a block based
SVD approach. Experimental results [46] on the I2R dataset [177] show that
IADM outperforms SVT [38], APG [189], IALM [188] and ADM [368] with less
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computation time.

– Linearized solvers: When the resulting subproblems do not have closed-form
solutions, Yang and Yuan [352] proposed to linearize these subproblems such
that closed-form solutions of these linearized subproblems can be easily derived.
Global convergence of these Linearized ALM (LALM) and ADM (LADM) algo-
rithms are established under standard assumptions. Recently, Lin et al. [190]
improved the convergence for the Linearized Alternating Direction Method
with an Adaptive Penalty (LADMAP). They proved the global convergence of
LADM and applied it to solve Low-Rank Representation (LRR). Furthermore,
the fast version of LADMAP reduces the complexity O(mnmin(m,n)) of the
original LADM based method to O(rmn), where r is the rank of the matrix to
recover, which is supposed to be smaller than m and n. In a similar way, Ma
[205] and Goldfarb et al. [90] proposed a Linearized Symmetric Alternating
Direction Method (LSADM) for minimizing the sum of two convex functions.
This method requires at most O(1/ǫ) iterations to obtain an ǫ-optimal solution,
and its fast version called Fast-LSADM requires at most O(1/

√
ǫ) with little

change in the computational effort required at each iteration.

– Fast solvers: All the previous solvers require computing SVDs for some matri-
ces, resulting in O(mnmin(m,n)) complexity. Although partial SVDs are used
to reduce the complexity to O(rmn) such a complexity is still high for large
data sets. Therefore, recent researches focus on the reduction of the complexity
by avoiding computation of SVD. Shen et al. [281] presented a method where
the low-rank matrix is decomposed in a product of two low-rank matrices and
then minimized over the two matrices alternatively. Although, they do not
require nuclear norm minimization and so the computation of SVD, the con-
vergence of the algorithm is not guaranteed as the problem is non-convex. Fur-
thermore, both the matrix-matrix multiplication and QR decomposition based
rank estimation technique require O(rmn) complexity. So, this method does
not essentially reduce the complexity. In another way, Mu et al. [221] reduced
the problem scale by random projections (linear or bilinear projection) but
different random projections may lead to radically different results. Further-
more, additional constraints to the problem slow down the convergence. The
complexity of this method is O(pmn) where p×m is the size of the random pro-
jection matrix with p ≪ m, p ≪ n and p > r. So, this method is still nor linear
complexity with respect to the matrix size. Its convergence needs more itera-
tions than IALM but it requires less computation time. In another way, Liu et
al. [194][193] proposed an algorithm, called l1-filtering for exactly solving PCP
with an O(r2(m + n)) complexity. This method is a truly linear cost method
to solve PCP problem when the date size is very large while the target rank
is small. Moreover, l1-filtering is highly parallelizable. It is the first algorithm
that can exactly solve a nuclear norm minimization problem in linear time.
Numerical experiments [194][193] show the great performance of l1-filtering in
speed compared to the previous algorithms for solving PCP. In another way,
Orabona et al. [235] proposed an optimization algorithm called PRoximal Iter-
ative SMoothing Algorithm (PRISMA) which is decomposed into three parts:
a smooth part, a simple non-smooth Lipschitz part, and a simple non-smooth
non-Lipschitz part. Furthermore, a time variant smoothing strategy is used
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to obtain a guarantee that does not depend on knowing in advance the total
number of iterations nor a bound on the domain. Numerical experiments [235]
show that PRISMA required less iterations than Fast-LSADM [90]. Another
approach developed by Rodriguez and Wohlberg [259] is able to compute a
sparse approximation even after the first outer loop, (taking approximately 12
seconds for a 640×480×400 color test video) which is approximately an order
of magnitude faster than IALM [188] with the same accuracy. Yang and Wang
[358] proposed a Fast Alternating Direction Method of Multipliers (FADMM)
algorithms which outperforms slightly IALM [188] and ADM [368] in term of
computation times. Yang [356] improved FADMM by using a smoothing tech-
nique which is used to smooth the non-smooth terms in the objective function.

– Online solvers: The previous solvers are mainly bacth ones but online al-
gorithms are better adapted for real-time application. So, Wang and Baner-
jee [318] proposed an efficient online learning algorithm named online ADM
(OADM) which can solve online convex optimization under linear constraints
where the objective could be nonsmooth.

– Non convex solvers: Sun et al. [299] developed for the non-convex RPCA
formulation of RPCA with capped norms two algorithms called Difference of
Convex (DC) and Fast Alternating Difference of Convex (FADC), respectively.
DC programming treats a non-convex function as the difference of two convex
functions, and then iteratively solves it on the basis of the combination of the
first convex part and the linear approximation of the second convex part. Nu-
merical measurements [299] demonstrate that DC approach performs better
than both IALM [188] and NSA [12] in terms of the low-rank and sparsity. In
another way, Netrapalli et al. [227] proposed a Non-convex Alternating Pro-
jections algorithm (AltProj) to solve a non-convex formulation of RPCA. The
overall complexity of AltProj is O(r2mnlog(1/ǫ)). This is drastically lower than
the best known bound of O(m2n/ǫ) on the number of iterations required by
convex methods, and just a factor r away from the complexity of naive PCA.
AltProj is around 19 times faster than IALM [188]. Moreover, visually, the
background extraction seems to be of better accuracy.

– 2D solvers: Sun et al. [301][303] developed an iterative algorithm for robust
2D-PCA via alternating optimization which learns the projection matrices by
bi-directional decomposition. To further speed up the iteration, Sun et al.
[301][303] proposed an alternating greedy approach or l0-norm regularization,
minimizing over the low-dimensional feature matrix and the sparse error ma-
trix.

2.1.3 Algorithms for incremental PCP

PCP is an offline method which treats each image frame as a column vector of the
matrix A. In real-time application such as foreground detection, it would be more
useful to estimate the sparse matrix in an incremental way quickly as new frame
comes rather than in batch way. Furthermore, the sparsity structure may change
slowly or in a correlated way, which may result in a low-rank sparse matrix. In
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this case, PCP assumption will not get satisfied and S can’t be separated from
L. Moreover, the principal directions can change over time. So, the rank of the
matrix L will keep increasing over time thus making PCP infeasible to do after
time. This last issue can be solved by not using all frames of the sequences. So,
several algorithms for incremental algorithms are available in literature.

1. Recursive Projected Compressive Sensing (ReProCS): To address the two
first issues, Qiu and Vaswani [242] proposed an online approach called Recur-
sive Robust PCP (RR-PCP) in [242], and Recursive Projected Compressive
Sensing (ReProCS) in [243][246][249][248]. The aim of ReProCS is to causally
keep updating the sparse matrix St at each time, and keep updating the prin-
cipal directions. The t-th column of A, At, is the data acquired at time t and
can be decomposed as follows:

At = Lt + St = [UI] [xtSt]
t (24)

where xt = UTLt and the matrix U is an unknown m×m orthonormal matrix.
The support of St changes slowly over time. Let Nt denote the support of xt
which is assumed piecewise constant over time and given an initial estimate of
Pt = (U)Nt

= P̂t, Qiu and Vaswani [242] solved for the sparse component St by
finding the orthogonal complement matrix P̂t,⊥, and then using the projection

Mt onto P̂t,⊥, denoted by yt:

yt = P̂T
t,⊥Mt = P̂T

t,⊥Lt + P̂T
t,⊥St (25)

to solve St. The low-rank component is closed to zero if P̂t ≈ Pt, otherwise new
directions are added. Furthermore, recent estimates of Lt = At − St are stored
and used to update Pt. Confirming the first results obtained in [370][201], a
correctness result for ReProCS is given by Lois and Vawani [200]. However,
ReProCS requires the support xt to be fixed and quite small for a given sup-
port size St, but this does often not hold. So, ReProCS could not handle large
outliers support sizes.

2. Support-Predicted Modified-CS : Qiu and Vaswani [244] address the large
outliers support sizes by using time-correlation of the outliers. This method
called Support-Predicted Modified-CS RR-PCP [244] and Support-Predicted
Modified-CS [243] is also an incremental algorithm and outperforms the Re-
ProCS. However, this algorithm is only adapted for specific situation where
there are only one or two moving objects that remain in scene. But, this is not
applicable to real videos where multiple and time-varying number of objects
can enter of leave the scene. Moreover, it requires knowledge of foreground
motion.

3. Automated Recursive Projected CS (A-ReProCS): To address the limita-
tion of the Support-Predicted Modified-CS, Qiu and Vaswani [245] proposed
a method called automated Recursive Projected CS (A-ReProCS) that en-
sures robustness when there are many nonzero foreground pixels, that is, there
are many moving objects or large moving objects. Furthermore, A-ReProCS
outperforms the previous incremental algorithms when foreground pixels are
correlated spatially or temporally and when the foreground intensity is quite
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similar to the background one.

4. ReProCS with cluster-PCA (ReProCS-cPCA): To address the fact that
the structure that we require is that Lt is in a low dimensional subspace
and the eigenvalues of its covariance matrix are ”clustered”, Qiu and Vaswani
[247][249] introduced a Recursive Projected Compressive Sensing with cluster-
PCA (ReProCS-cPCA). Under mild assumptions, ReProCS-cPCA with high
probability can exactly recover the support set of St at all times. Furthermore,
the reconstruction errors of both St and Lt are upper bounded by a time-
invariant and small value.

5. Practical ReProCS (Prac-ReProCS) : Guo et al. [100][102][103][101] de-
signed a practically usable modification of the theoretical ReProCS algorithm.
This practical ReProCS (Prac-ReProCS) requires much fewer parameters which
can be set without any model knowledge and it exploits practically valid as-
sumptions such as denseness for Lt, slow subspace change for Lt, and correlated
support change of St.

6. Incremental Low-Rank (iLR) Algorithm: Wei et al. [331] proposed an in-
cremental low-rank matrix decomposition algorithm that maintains a clean
background matrix adaptive to dynamic changes with both effectiveness and
efficiency guarantees. Instead of a batch RPCA which requires a large number
of video frames (usually 200 frames) for each time period, 15 frames only are
required with iLR. iLR algorithm is about 9 times faster than a batch RPCA.

7. Incremental PCP (incPCP): Rodriguez and Wohlberg [261][262] proposed
an incremental PCP which processes one frame at a time. Obtaining similar
results to batch PCP algorithms, it has an extremely low memory footprint
and a computational complexity that allows real-time processing. Furthermore,
incPCP is also able to quickly adapt to changes in the background. A Matlab-
only implementation of this algorithm [260] running on a standard laptop (Intel
i7- 2670QM quad-core, 6GB RAM, 2.2 GHz) can process color videos of size
640 and 1920 at a rate of 8 and 1.5 frames per second respectively. On the same
hardware, an ANSI-C implementation [260] can deliver a rate of 49.6 and 7.2
frames per second for grayscale videos of size 640 and 1920 respectively. This
algorithm has real-time performance on GPU [258]. Furthermore, Rodriguez
and Wohlberg [263] developed a translational and rotational jitter invariant
incPCP which reach real-time performanc on GPU [257].

2.1.4 Methods for real time implementation of PCP

Despite the efforts to reduce the time complexity, the corresponding algorithms
have prohibitive computational time for real application such as foreground de-
tection. The main computation in PCP is the singular value decomposition of the
large matrix A. Instead of computing a large SVD on the CPU, Anderson et al.
[8][9] proposed an implementation of the communication-avoiding QR (CAQR)
factorization that runs entirely on the GPU. This implementation achieved 30×
speedup over the implementation on CPU using Intel Math Kernel Library (Intel
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MKL).
In another way, Pope et al. [240] proposed a variety of methods that significantly
reduce the computational time of the ALM algorithm. These methods can be
classified as follows:

– Reducing the computation time of SVD: The computation of the SVD is
reduced using the Power method [240] that enables to compute the singular
values in a sequential manner, and to stop the procedure when a singular value
is smaller than a threshold. The use of the Power method by itself results in
4.32× lower runtime. Furthermore, the gain is improved by a factor of 2.02×
speedup if the procedure is stopped when the singular value is smaller than
the threshold. If the rank of L is fixed and the Power SVD is stopped when the
number of singular value is equal to rank(L), the additional speedup is 17.35.

– Seeding the PCP algorithm: PCP operates on matrices consisting of blocks
of contiguous frames acquired with a fixed camera. So, the low-rank matrix
does not change significantly from one block to the next. Thus, Pope et al.
[240] use the low-rank component obtained by the ALM algorithm from the
previous block as a starting point for the next block. This method allows an
additional speedup of 7.73.

– Partioning into subproblems: Pope et al. [240] proposed to partition the
matrix A into P smaller submatrices. The idea is to combine the solutions
of the P corresponding PCP subproblems to recover the solution of the full
matrix A at lower computational complexity.

In this way, Pope et al. [240] demonstrated that the PCP algorithm can be in fact
suitable for real-time foreground/background separation for video-surveillance ap-
plication using off-theshelf hardware.

In a similar manner, Guo et al. [106] proposed a low-rank matrix recovery
scheme, which splits the original RPCA into two small ones: a low-rank submatrix
recovery and a low-rank submatrix reconstruction problems. This method showed
a speedup of the ALM algorithm by more than 365 times compared to a C imple-
mentation with less requirement of both time and space. In addition, this method
significantly cuts the computational load for decomposing the remaining frames.

2.1.5 Methods for finding the optimal PCP solution

PCP recovers the true underlying low-rank matrix when a large portion of the
measured matrix is either missing or arbitrarily corrupted. However, in the ab-
sence of a true underlying signal L and the deviation S, it is not clear how to
choose a value of λ that produces a good approximation of the given data A for
a given application.A typical approach would involve some cross-validation step
to select λ to maximize the final results of the application. The issue with cross-
validation in this situation is that the best model is selected indirectly in terms of
the final results, which can depend in unexpected ways on later stages in the data
processing chain of the application. Instead, Ramirez and Sapiro [253][254] ad-
dressed this issue via the Minimum Description Length (MDL) principle [117] and
so proposed a MDL-based low-rank model selection. The principle is to select the
best low-rank approximation by means of a direct measure on the intrinsic ability
of the resulting model to capture the desired regularity from the data. To obtain
the family of models M corresponding to all possible low-rank approximation of
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A, Ramirez and Sapiro [253][254] applied the RPCA decomposition for a decreas-
ing sequence of values of λ, {λt : t = 1,2, 3, ...} obtaining a corresponding sequence
of decomposition {(Lt, St), t = 1,2, 3, ...}. This sequence is obtained via a simple
modification of the ALM algorithm [188] to allow warm restarts, that is, where
the initial ALM iterate for computing (Lt, St) is (Lt−1, St−1). Finally, Ramirez
and Sapiro [253][254] select the pair (Lt̂, St̂),t̂ = arg min

t
{MDL(Lt) +MDL(St)}

where MDL(Lt)+MDL(St) = MDL(A|M) denoted the description length in bits
of A under the description provided by a given model M ∈ M. Experimental re-
sults show that the best λ is not the one determined by the theory in Candes et
al. [40].

Another approach developed by Gao et al. [87] consist of two-pass RPCA pro-
cess. The first-pass RPCA done on block resolution detect region with salient
motion. Then, a saliency measure in each area is computed and permits to adapt
the value of λ following the motion in the second-pass RPCA. Experimental re-
sults show that this block-sparse RPCA outperforms the original PCP [40] and
the ReProCS [243]. In a similar way using a block-based RPCA, Biao and Lin
[25] determined λ with the affiliation of block to the class of ”moving objects”.
Experimental results show that this approach gives better robustness on the I2R
dataset than the single Gaussian, the MOG and the KDE.

2.1.6 Modified-PCP

In the literature, there are several modifications which concern the improvements
of the original PCP and they can be classified as follows:

1. Fixed rank: Leow et al. [174] proposed a fixed rank algorithm for solving
background recovering problems because low-rank matrices have known ranks.
The decomposition involves the same model than PCP in Equation 20 but the
minimization problem differs by the constraint as follows:

min
L,S

||L||∗ + λ||S||l1 subj rank(L) = r (26)

with r is the rank of the matrix L and r is known. Lai et al. [170] developed
an incremental fixed rank algorithm.

2. Nuclear norm free: Another variant of PCP was formulated by Yuan et al.
[367] who proposed a nuclear-norm-free algorithm to avoid the SVD compu-
tation. The low-rank matrix is thus represented as u1T where u ∈ Rm and 1
denotes the vector Rn. Accordingly, a noiseless decomposition is formulated as
follows:

A = u1T + S (27)

Then, the corresponding minimization problem is the following one:

min
u

||A − u1T ||l1 (28)

Note the closed-form solution of Equation 28 is given by the median of the
entries of the matrix A. In other words, the background is extracted as the
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median at each pixel location of all frames of a surveillance video. As no itera-
tion is required at all to obtain the solution of 28, its computation for solving
should be significantly cheaper than any iterative schemes for solving Equation
22 numerically. Furthermore, this model extracts more accurately the back-
ground than the original PCP. Moreover, Yuan et al. [367] developed a noise
and a blur and noise nuclear-norm-free models SPCP which are detailed in
Section 2.2.4. In a similar way, Yang et al. [354] proposed a nonconvex model
for background/foreground separation, that can incorporate both the nuclear-
norm-free model and the use of nonconvex regularizers.

3. Capped norms: In another way, Sun et al. [299] presented a nonconvex for-
mulation using the capped norms for matrices and vectors, which are the sur-
rogates of the rank function and the l0-norm, and called capped nuclear norm
and the capped l1-norm, respectively. The minimization problem is formulated
as follows:

min
L,S

rank(L) + λ||S||l0 subj ||A− L− S||2F ≤ σ2 (29)

where σ2 is the level of Gaussian noise. The capped nuclear norm is then:

1

θ1

[

||L||∗ +

p
∑

i=1

max(σi(L)− θ1), 0)

]

(30)

and the capped l1-norm is formulated as follows:

1

θ2

[

||S||l1 +
p

∑

i=1

max(Sij)− θ2), 0)

]

(31)

for some small parameters θ1 and θ2. If all the singular values of L are greater
than θ1 and all the absolute values of elements in S are greater than θ2, then
the approximation will become equality. The smaller θ1 and θ2 are, the more
accurate the capped norm approximation would be. The recovery precision is
controled via θ1 and θ2. By carefully choosing θ1 and θ2, L and S are more
accurately determined than with the nuclear norm and the l1-norm approxima-
tion. This capped formulation can be solved via two algorithms. One is based
on the Difference of Convex functions (DC) framework and the other tries to
solve the sub-problems via a greedy approach. Experimental results [299] show
better performance for the capped formulation of PCP than the original PCP
[40] and SPCP [393] on the I2R dataset [177].

4. Inductive approach: Bao et al. [18] proposed the following decomposition:

A = PA+ S (32)

where P ∈ Rn×n is the low-rank projection matrix. The related optimization
problem is formulated as follows:

min
P,S

||P ||∗ + λ||S||l1 subj A− PA− S = 0 (33)

This is solved by IALM [188]. Furthermore, Bao et al. [18] developed an induc-
tive version which requires less computational cost in processing new samples.
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5. Partial Subspace Knowledge: Zhan and Vaswani [369] proposed a modified-
PCP with partial subspace knowledge. They supposed that a partial estimate
of the column subspace of the low-rank matrix L is available. This informa-
tion is used to improve the PCP solution, i.e. allow recovery under weaker
assumptions. So, the modified-PCP requires significantly weaker incoherence
assumptions than PCP, when the available subspace knowledge is accurate.
The corresponding optimization problem is written as follows:

min
L,S

||L||∗ + λ||S||l1 subj L+ PΓ⊥S = PΓ⊥A (34)

where PΓ⊥ is a projection matrix, Γ is a linear space of matrices with column
span equal to that of the columns of S, and Γ⊥ is the orthogonal comple-
ment. Zhan and Vaswani [369] applied with success their modified-PCP to the
background-foreground separation problem, in which the subspace spanned by
the background images is not fixed but changes over time and the changes are
gradual.

6. Schatten-p,lq-PCP (p,q-PCP): The introduced norms by Candes et al. [40]
are not tight approximations, which may deviate the solution from the au-
thentic one. Thus, Wang et al. [320] considered a non-convex relaxation which
consists of a Schatten-p norm and a lq-norm with 0 < p, q ≤ 1 that strengthen
the low-rank and sparsity, respectively. The Schatten-p norm (||.||Sp

) is a popu-
lar non-convex surrogate of the rank function. Thus, the miminization problem
is the following one:

min
L,S

||L||pSp
+ λ||S||lq subj A− L− S = 0 (35)

By replacing the Schatten-p norm and a lq-norm by their expression, the mi-
minization problem can be written as follows:

min
L,S

λ1

min(m,n)
∑

i=1

(σi(L))
p + λ2

m∑

i=1

n∑

j=1

|Sij |q (36)

where σi(L) denotes the ith singular values of L. When p = q = 1, p,q-PCP
degenerates into the original convex PCP. Smaller values of p and q help p,q-
PCP to well approximate the original formulation of RPCA. The solver used is
a Proximal Iteratively Reweighted Algorithm (PIRA) based on alternating di-
rection method of multipliers, where in each iteration the underlying objective
function is linearized to have a closed form solution. Experimental results [320]
on the I2R dataset [177] show better performance for p,q-PCP (in its stable
formulation) in comparison to the original SPCP [393] and SPCP solved via
NSA [12].

7. Modified Schatten-p,lq-PCP: Shao et al. [276] proposed a similar approach
than p,q-PCP [320] but they used the Lq-seminorm as a surrogate to the l1-
norm instead of the lq-norm. Thus, the miminization problem is the following
one:

min
L,S

||L||pSp
+ λ||S||qLq

subj A− L− S = 0 (37)
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Furthermore, Shao et al. [276] used two different solvers based on the ALM
and the APG methods as well as efficient root-finder strategies.

8. Robust 2D-PCA: To take into account the two-dimensional spatial infor-
mation, Sun et al. [301] extracted a distinguished feature matrix for image
representation, instead of matrix-to-vector conversion. Thus, the miminization
problem is the following one:

min
U,V,S

λ||S||l0 +
1

2
||A − UΣV T − S||2F subj UUT = I, V V T = I (38)

where UΣV T = L Different from l1-norm relaxation, Sun et al. [301] developed
an iterative method to solve Equation (37) efficiently via alternating optimiza-
tion, by specific greedy algorithm for the l0-norm regularization. So, a robust
2D-PCA model by sparse regularization is then solved via an alternating op-
timization algorithms. Results on dynamic backgrounds from the I2R dataset
[177] show the effectiveness of the Robust 2D-PCA (R2DPCA), compared with
the conventional 2D-PCA [162] and PCP solved via IALM [188].

9. Rank-N Soft Constraint: Oh [231] proposed a RPCA with Rank-N Soft Con-
straint (RNSC) based on the observation that the matrix A should be rank N

without corruption and noise. So, the decomposition is formulated as estimat-
ing sparse error matrix and minimizing rank of low-rank matrix consisting of
N principal components associated to the N largest singular largest values.
Thus, the miminization problem with rank-N soft constraint is the following
one:

min
L,S

min(m,n)
∑

i=N+1

||σi(L)||+ λ||S||l1 subj A− L− S = 0 (39)

where σi(L) represents the ith singular value of the low-rank matrix L, and
N is a constraint parameter for rank-N . Minimizing partial sum of singular
values can minimize the rank of the matrix L and satisfy rank-N constraint.
Then, Oh [231] applied the RPCA with Rank-1 Soft Constraint on the edge
images for moving objects detection under global illumination changes.In the
case of moving camera, Ebadi and Izquierdo [75][77] proposed a SVD-free al-
gorithm to solve Rank-1 RPCA that achieved more than double the amount
of speed-up in computation time for the same performance target compared to
its counterpart with SVD. This approach [76] can handle camera movement,
various foreground object sizes, and slow-moving foreground pixels as well as
sudden and gradual illumination changes.

10. JVFSD-RPCA:Wen et al. [332] reconstructed the input video data and aimed
to make the foreground pixels not only sparse in space but also sparse in ”time”
by using a Joint Video Frame Set Division and RPCA-based (JVFSD-RPCA)
method. In addition, they used the motion as a priori knowledge. The pro-
posed method consists of two phases. In the first phase, wa Lower Boundbased
Within-Class Maximum Division (LBWCMD) method divided the video frame
set into several subsets. In this way, the successive frames are assigned to differ-
ent subsets in which the foregrounds are located at the scene randomly. In the
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second phase, aach subset with the frames are increased with a small quantity
of motion. This method show robustness in the case of dynamic backgrounds.

11. NSMP/WNSMP: Wang and Feng [322] improved the RPCA method to find
a new model to separate the background and foreground and reflect the correla-
tion between them as well. For this, they proposed a ”low-rank + dual” model
and they use the reweighted dual function norm instead of the normal norms
so as to get a better and faster model. So, the original minimization problem is
improved by a nuclear norm and spectral norm minimization problem (NSMP).
Thus, the minimization problem with the dual norm is the following one:

min
L,S

λ||L||∗ + µ||S||2 subj A− L− S = 0 (40)

where the spectral norm ||.||2 is the dual norm of the nuclear norm, and it
corresponds to the largest singular value of the matrix [322]. As the nuclear
norm regularized is not a perfect approximation of the rank function, Wang
and Feng [322] proposed a weighted function nuclear norm and spectral norm
minimization problem (WNSMP) with the corresponding minimization prob-
lem:

min
L,S

λ||ω(L)||∗ + µ||ω−1(S)||2 subj A− L− S = 0 (41)

where ω() denotes the weighted function which directly adds the weights onto
the singular values of the matrix, and, for any matrix X, weighted function

norm is defined as follows: ||ω(X)||∗ =
∑min(m,n)

i=1 ωiσi(X) and ||ω−1(X)||2 =

max
i

1
ωi

σi(X)w where σi(X) represents the ith singular value of the matrix X.

Although this minimization problem with the weighted function nuclear norm
is nonconvex, fortunately it has a closed form solution due to the special choice
of the value of weights, and it is also a better approximation to the rank func-
tion. NSMP and WNSMP show more robustness on the I2R dataset [177] than
RPCA solved IALM [40] and GoDec [389].

12. Implicit Regularizers: He et al. [126] proposed a robust framework for low-
rank matrix recovery via implicit regularizers of robust M-estimators (Huber,
Welsch, l1-l2) and their minimizer functions. Based on the additive form of
halfquadratic optimization, proximity operators of implicit regularizers are de-
veloped such that both low-rank structure and corrupted errors can be alter-
nately recovered. Thus, the minimization problem with implicit regularizers is
formulated as follows:

min
L,S

λ||L||∗ + ϕ(S) subj A− L− S = 0 (42)

where the implicit regularizer ϕ(y) is defined as the dual potential function of
a robust loss function φ(x) where φ(x) = min

y

1
2 ||x − y||22 + ϕ(x). If φ(x) is Hu-

ber M-estimator, the implicit regularizer ϕ(y) becomes µλ||(L)||l1 . When the
M-estimator φ(x) is Welsch M-estimator, the minimization problem becomes
the sample based maximum correntropy problem. Compared with the mean
square error, the model in Equation (40) is more robust to outliers due to M-
estimation. Experimental results [126] on the I2R dataset [177] show that the
Welsch M-estimator outperforms the Huber-estimator and the l1-l2-estimator.
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Stable PCP Categories Authors - Dates

Decompositions 1) Original SPCP Zhou et al. (2010) [393]

2) Modified-SPCP (Bilateral Projection) Zhou and Tao (2013) [390]

3) Modified-SPCP (Nuclear-Norm Free) Yuan et al. (2013) [367]

4) Modified-SPCP (Nuclear-Norm Free for blur in noisy video) Yuan et al. (2013) [367]

5) Modified-SPCP (Undercomplete Dictionary) Sprechman et al. (2012) [295]

6) Variational SPCP (Huber Penalty) Aravkin et al. (2014) [10]

7) Three Term Low-rank Optimization (TTLO) Oreifej et al. (2012) [236]

Inequality-Constrained (RPCA) Li et al. (2015) [175]

Solvers Alternating Splitting Augmented Lagrangian method (ASALM) Tao and Yuan (2011) [307]

Variational ASALM (VASALM) Tao and Yuan (2011) [307]

Parallel ASALM (PSALM) Tao and Yuan (2011) [307]

Non Smooth Augmented Lagrangian Algorithm (NSA) Aybat et al. (2011) [12]

First-order Augmented Lagrangian algorithm for Composite norms (FALC) Aybat et al. (2012) [14]

Augmented Lagragian method for Conic Convext (ALCC) Aybat et al. (2012) [15]

Partially Smooth Proximal Gradient (PSPG) Aybat et al. (2012) [13]

Alternating Direction Method - Increasing Penalty (ADMIP) Aybat et al. (2012) [16]

Greedy Bilateral Smoothing (GreBsmo) Zhou and Tao (2013) [390]

Bilinear Generalized Approximate Message Passing (BiG-AMP) Parker and Schniter (2012) [238]

Inexact Alternating Minimization - Matrix Manifolds (IAM-MM) Hintermüller and Wu (2014) [127]

Customized Proximal Point Algorithm (CPPA) Huai et al. (2015) [132]

multi-block Bregman (BADMM) Wang et al. (2015) [317]

Partially Parallel Splitting - Multiple Block (PPS-MB) Hou et al. (2015) [129]

Compressive Sensing Algorithms Frank-Wolfe-Thresholding Mu et al. (2014) [220]

Incremental Algorithms Fast Trainable Encoders Sprechman et al. (2012) [295]

Real time Implementations DFC-PROJ Mackey et al. (2011) [209]

DFC-PROJ-ENS Mackey et al. (2011) [209]

DFC-NYS Mackey et al. (2011) [209]

DFC-NYS-ENS Mackey et al. (2011) [209]

Table 16 Stable Principal Component Pursuit: A Complete Overview. The first column in-
dicates the concerned category and the second column the name of each method. Their cor-
responding acronym is indicated in the first parenthesis. The third column gives the name of
the authors and the date of the related publication.

2.2 RPCA via Stable Principal Component Pursuit

PCP is limited to the low-rank component being exactly low-rank and the sparse
component being exactly sparse but the observations in real applications are often
corrupted by noise affecting every entry of the data matrix. Therefore, Zhou et al.
[393] proposed a stable PCP (SPCP) that guarantee stable and accurate recovery
in the presence of entry-wise noise. In the following sub-sections, we reviewed this
method and all these modifications in terms of decomposition, solvers, incremental
algorithms and real time implementations. Table 16 shows an overview of the
Stable Principal Component Pursuit methods and their key characteristics.

2.2.1 Stable Principal Component Pursuit

Zhou et al. [393] proposed a stable PCP (SPCP) which assumes that the observa-
tion matrix A is represented as follows:

A = L+ S + E (43)

where E is a noise term (say i.i.d. noise on each entry of the matrix) and ||E||F < δ

for some δ > 0. To recover L and S, Zhou et al. [393] proposed to solve the following
optimization problem, as a relaxed version to PCP:

min
L,S

||L||∗ + λ||S||l1 subj ||A− L− S||F < δ (44)

where ||.||F is the Frobenius norm and λ = 1√
n
.
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2.2.2 Algorithms for solving SPCP

Just as in Equation (21) for PCP, Tao and Yuan [307] showed that an easy reformu-
lation of the constrained convex programming for Equation (44) falls perfectly in
the applicable scope of the classical ALM. Moreover, the favorable separable struc-
ture emerging in both the objective function and the constraints entails the idea
of splitting the corresponding augmented Lagrangian function to derive efficient
numerical algorithms. So, Tao and Yuan [307] developed the alternating splitting
augmented Lagrangian method (ASALM) and its variant (VASALM), and the
parallel splitting augmented Lagrangian method (PSALM) for solving Equation
(44). ASALM and its variants converge to an optimal solution. However, ASALM
iterations are too slow for real time application and its complexity is not known.
To address this problem, Aybat et al. [12] studied how fast first-order methods can
be applied to SPCP with low complexity iterations and showed that the subprob-
lems that arise when applying optimal gradient methods of Nesterov, alternating
linearizationmethods and alternating direction augmented Lagrangian methods to
the SPCP problem either have closed-form solutions or have solutions that can be
obtained with very modest effort. Furthermore, Aybat et al. [12] developed a new
first order algorithm called Non Smooth augmented Lagrangian Algorithm (NSA),
based on partial variable splitting. All but one of the methods analyzed require at
least one of the non-smooth terms in the objective function to be smoothed and
obtain an ǫ-optimal solution to the SPCP problem in O(

√
ǫ) iterations. NSA, which

works directly with the fully non-smooth objective function, is proved to be conver-
gent under mild conditions on the sequence of parameters it uses. NSA, although
its complexity is not known, is the fastest among the optimal gradient methods,
alternating linearization methods and alternating direction augmented Lagrangian
methods algorithms and substantially outperforms ASALM. In a similar way, Ay-
bat et al. [13] proposed a proximal gradient algorithm called Partially Smooth
Proximal Gradient (PSPG). Experimental results show that both the number of
partial SVDs and the CPU time of PSPG are significantly less than those for NSA
and ASALM. An overview of these algorithms as well as their complexity can be
seen in Table 11.

2.2.3 Methods for real time implementation of SPCP

Mackey et al. [209] proposed a real time implementation framework, entitled
Divide-Factor-Combine (DFC). DFC randomly divides the original matrix factor-
ization task into cheaper subproblems, solves those subproblems in parallel using
any base matrix factorization (MF) algorithm, and combines the solutions to the
subproblem using an efficient technique from randomized matrix approximation.
The inherent parallelism of DFC allows for near-linear to superlinear speedups
in practice, while the theory provides high-probability recovery guarantees for
DFC comparable to those provided by its base algorithm. So, Mackey et al. [209]
proposed two algorithms called DFC-PROJ and DFC-NYS, that differ from the
method used to divide the original matrix. DFC-PROJ randomly partitions the
orthogonal projection of the matrix A onto the t l-column submatrices C1, ..., Ct by
using a column sampling method, while DFC-NYS selects an l-column submatrix
C and an d-row submatrix R using the generalized Nyström method. DFC sig-
nificantly reduces the per-iteration complexity to O(mlrC1

) where rC1
is the rank
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of the matrix C1 for the DFC-PROJ. The cost of combining the submatrix esti-
mates is even smaller, since the outputs of standard MF algorithms are returned
in factored form. Indeed, the column projection step of DFC-PROJ requires only
O(mr2 + lr2) time for r = maxikCi

, O(mr2 + lr2) time for the pseudoinversion of
Ci and O(mr2 + lr2) time for matrix multiplication with each Ci in parallel. For
the DFC-NYS, the per-iteration complexity O(mlrC) where rC is the rank of the
matrix C and O(mlrR) where rR is the rank of the matrix R. The cost of combin-
ing requires O(lr̄2+dr̄2+min(m,n)r̄2) time where r̄ = max(rC , rR). Mackey et al.
[209] improved these real time implementations by using ensemble methods that
improve performance of matrix approximation algorithms, while straightforwardly
leveraging the parallelism of modern many-core and distributed architectures [165].
As such, an ensemble variants of the DFC algorithms have been developed reduc-
ing recovery error while introducing a negligible cost to the parallel running time.
For DFC-PROJ-ENS, rather than projecting only onto the column space of C1,
the projection of C1, ..., Ct is done onto the column space of each Ci in parallel
and then average the t resulting low-rank approximations.For DFC-NYS-ENS, a
random d-row submatrix is chosen as in DFC-NYS and independently partition
the columns of the matrix in l as in DFC-PROJ. After running the base MF al-
gorithm on each submatrix, the generalized Nyström method is applied to each
pair of matrices in parallel and then the t resulting low-rank approximations is
obtained by average.

2.2.4 Modified-SPCP

In the literature, There are several modifications which concern the original SPCP
and they can be classified as follows:

1. Bilateral factorization: Zhou and Tao [390] proposed a noisy robust PCA by
replacing L with its bilateral factorization L = UV and regularizing the l1norm

of S’s entries. The corresponding minimization problem is then formulated as
follows:

min
U,V,S

λ||S||l1 + ||A− UV − S||2F

subj rank(U) = rank(V ) ≤ r (45)

The l1 regularization permits soft-thresholding in updating S. Zhou and Tao
[390] solved this minimization problem using a Greedy Bilateral Smoothing
algorithm (GreBsmo). GreBsmo considerably speed up the decomposition and
performs 30-100 times faster than most existing algorithms such as IALM [188].

2. Nuclear norm free: Other variants of SPCP were given by Yuan et al. [367]
who developed a nuclear-norm-free algorithm to avoid the SVD computation
in SPCP. The low-rank matrix is thus represented as u1T where u ∈ Rm and
1 denotes the vector Rn. Accordingly, a noiseless decomposition is formulated
as follows:

A = u1T + S + E (46)

Then, the corresponding minimization problem is the following one:

min
S∈Rm×n,u∈Rm

||S||l1 +
µ

2
||A− u1T − S||2F
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subj rank(u1T ) = 1 (47)

where µ is a penalty parameter. This model has no closed-form solution and
need to be solved iteratively. This model extracts more accurately the back-
ground than the original SPCP. Another advantage of this model against the
original SPCP is that it has only one parameter in the minimization function
to be tuned in the implementation. Considering, that there might be a blur in a
noisy video surveillance video, Yuan et al. [367] extended the model developed
in Equation 47 to:

min
S∈Rm×n,u∈Rm

min ||S||l1 +
µ

2
||A+H(U1T + S)||2F

subj rank(u1T ) = 1 (48)

where H is the matrix representation of a regular blurring operator. The blur
is assumed to appear in a frame-wise way. In this blur configuration, this
nuclear-norm-free model extracts more robustly the background than the orig-
inal SPCP with the blur option.

3. Under-complete dictionary: Considering a dictionary approach, Sprechman
et al.[295] proposed the following decomposition:

A = UT + S + E (49)

where U ∈ Rm×r, T ∈ Rr×n, and S ∈ Rm×n. Then, the corresponding mini-
mization problem is as follows:

min
U,T,S

λ||S||l1 +
λ1

2
(||U ||2F + ||T ||2F ) +

1

2
||A− UT − S)||2F

subj rank(UT ) ≤ r (50)

The low-rank component can be considered as an under-complete dictionary
U , with r atoms, multiplied by a matrix T containing in its columns the cor-
responding coefficients for each data vector in A. This interpretation brings
the SPCP problem close to that of dictionary learning in the sparse modeling
domain. This is solved via an alternating minimization problem. Furthermore,
Sprechman et al.[295] developed an online version of their SPCP via fast train-
able encoders.

4. Variational formulation: Aravkin et al. [10] proposed a convex variational
framework which is accelerated with quasi-Newton methods. The correspond-
ing minimization problem is then formulated as follows:

min Φ(L, S) subj ρ(L+ S −A) ≤ ǫ

where in classical formulation Φ(L, S) = ||L||∗ + λ||S||l1 and ρ is assumed to
be the Frobenius norm. As this restriction is not necessary, Aravkin et al. [10]
considered ρ to be smooth and convex. Then, ρ is taken to be the robust Huber
penalty. This approach offers advantages over the original SPCP formulation
in terms of scalability and practical parameter selection.
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5. Three Term Low-rank Optimization: Oreifej et al. [236] proposed a three
term decomposition for video stabilization and moving object detection in tur-
bulence as follows:

min
A,L,S

λ||L||∗ + λ1||fπ(S)||+ λ2||E||2F subj A = L+ S + E (51)

where the frames of the sequence are stacked in the matrix A. Thus, low-rank
matrix L corresponds to the background, the sparse matrix E corresponds to
the moving object and the dense error matrix E corresponds to the turbulence.
The turbulence causes dense and Gaussian noise, and therefore can be captured
by Frobenius norm. Therefore, Oreifej et al. [236] enforced an additional con-
straint on the objects with fπ(.) which is the object confidence map, which is
a linear operator that weights the entries of S according to their confidence of
corresponding to a moving object such that the most probable elements are
unchanged and the least are set to zero. Oreifej et al. [236] used the solver
IALM [188] to solve Equation 51. Experimental results [236] show that this
decomposition outperforms Mixture of Gaussians (MoG) [298], Kernel Density
Estimation [80] and PCA [233]. Furthermore, the code called ThreeWayDec32

is provided.

2.3 RPCA via Quantization based Principal Component Pursuit

Becker et al. [20] proposed a inequality constrained version of RPCA proposed
by Candes et al. [40] to take into account the quantization error of the pixel’s
value. Indeed, each pixel has a value between 0, 1, 2, . . . , 255. This value is the
quantized version of the real value which is between [0,255]. So, the idea is to
apply RPCA to the real observations instead of applying it to the quantized ones.
Indeed, it is unlikely that the quantized observation can be split nicely into a
low-rank and sparse component. So, Becker et al. [20] supposed that L + S is
not exactly equal to A, but rather that L+ S agrees with A up to the precision
of the quantization. The quantization can induce at most an error of 0.5 in the
pixel value. This measurement model assumes that the observation matrix A is
represented as follows:

A = L+ S +Q (52)

where Q is the error of the quantization. Then, the objective function is the same
than the equality version in Equation (22), but instead of the constraints L+S = A,
the constraints are ‖A−L−S‖l∞ ≤ 0.5. So, the quantization based PCP (QPCP)
is formulated as follows:

min
L,S

||L||∗ + λ||S||l1 subj ‖A− L− S‖l∞ ≤ 0.5 (53)

The l∞-norm allows to capture the quantization error of the observed value of the
pixel.

Algorithms for solving QPCP: Becker et al. [20] used a general framework for
solving this convex cone problem called Templates for First-Order Conic Solvers

32http://www.vision.eecs.ucf.edu/projects/Turbulence/
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(TFOCS). First, this approach determines a conic formulation of the problem and
then its dual. Then, Becker et al. [20] applied smoothing and solved the problem
using an optimal first-order method. This approach allows to solve the problem in
compressed sensing.

2.4 RPCA via Block based Principal Component Pursuit

Tang and Nehorai [306] proposed a block based PCP (BPCP) that enforces the low-
rankness of one part and the block sparsity of the other part. This decomposition
involves the same model than PCP in Equation (20), that is A = L+S, where L is
the low-rank component but S is a block-sparse component. The low-rank matrix
L and the block-sparsity matrix S can be recovered by the following optimization
problem [389]:

min
L,S

||L||∗ + κ(1− λ)||L||l2,1 + κλ||S||l2,1

subj A− L− S = 0 (54)

where ||.||∗ and ||.||l2,1 are the nuclear norm and the l2,1-norm, respectively. The

l2,1-norm corresponds to the l1-norm of the vector formed by taking the l2-norms
of the columns of the underlying matrix. The term κ(1 − λ)||L||l2,1 ensures that
the recovered matrix L has exact zero columns corresponding to the outliers. In
order to eliminate ambiguity, the columns of the low-rank matrix L corresponding
to the outlier columns are assumed to be zeros.

Algorithm for solving BPCP: Tang and Nehorai [326] designed an efficient al-
gorithm to solve the convex problem in Equation (54) based on the ALM method.
This algorithm decomposed the matrix A in a low-rank and block-sparse matrices
in respect to the ||.||l2,1 and the extra term κ(1− λ)||L||l2,1 .

2.5 RPCA via Local Principal Component Pursuit

PCP is highly effective but the underlying model is not appropriate when the
data are not modeled well by a single low-dimensional subspace. Wohlberg et al.
[333] proposed a decomposition corresponding to a more general underlying model
consisting of a union of low-dimensional subspaces.

A = AU + S (55)

This idea can be implemented as the following problem:

min
U,S

α||U ||l1 + β||U ||l2,1 + β||S||l1 subj A− AU − S = 0 (56)

The explicit notion of low-rank, and its nuclear norm proxy, is replaced by rep-
resentability of a matrix as a sparse representation on itself. The l2,1-norm en-
courages rows of U to be zero, but does not discourage nonzero values among the
entries of a nonzero row. The l1-norm encourages zero values within each nonzero
row of S.
To better handle noisy data, Wohlberg et al. [333] modified the Equation (56) with
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a penalized form and add a Total Variation penalty on the sparse deviations for
contiguous regions as follows:

min
U,S

1

2
||A −DU − S||2l2 + α||U ||l1

+ β||U ||l2,1 + β||S||l1 + δ||grad(S)||l1 subj A−DU − S = 0 (57)

where the dictionary D is derived from the data A by mean subtraction and scal-
ing, and grad(S) is a vector valued discretization of the 3D gradient of S. An
appropriate sparse U can be viewed as generating a locally low-dimensional ap-
proximation DU of A − S. When the dictionary is simply the data (i.e., D = A),
the sparse deviations (or outliers) S are also the deviations of the dictionary D,
so constructing the locally low-dimensional approximation as (D− S)U , implying
an adaptive dictionary D − S, should allow U to be even sparser.

Algorithm for solving LPCP: Wohlberg et al. [333] proposed to solve the Equa-
tion (56) using the Split Bregman Algorithm (SBA) [91]. Adding terms relaxing
the equality constraints of each quantity and its auxiliary variable, Wohlberg et
al. [333] introduced Bregman variables in the Equation (56). So, the problem is
split into an alternating minimization of five subproblems. Two subproblems are l2
problems that are solved by techniques for solving linear systems such as conjugate
gradient. The other three subproblems are solved very cheaply using shrinkage, i.e
generalized shrinkage and soft shrinkage.

2.6 RPCA via Outlier Pursuit

Xu et al. [342] proposed a robust PCA via Outlier Pursuit (OP) to obtain a robust
decomposition when the outliers corrupted entire columns, that is every entry is
corrupted in some columns. This method involves the nuclear norm minimization
and recover the correct column space of the uncorrupted matrix, rather than the
exact matrix itself. The decomposition involves the same model than PCP in
Equation (20), that is A = L+ S. A straightforward formulation to minimize the
energy function can be written as follows:

min
L,S

rank(L) + λ||S||0,c subj A− L− S = 0 (58)

where ||S||0,c stands for the number of nonzero columns of a matrix, and it is
equivalent to ||S||l2,0 which corresponds to the number of non-zero columns too
[375]. λ > 0 is an arbitrary balanced parameter. But this problem is NP -hard, typ-
ical solution might involve a search with combinatorial complexity. This research
seeks to solve for L with the following optimization problem:

min
L,S

||L||∗ + λ||S||l1,2 subj A− L− S = 0 (59)

where ||.||∗ and ||.||l1,2 are the nuclear norm and the l1,2-norm, respectively. The
l1,2-norm corresponds to the l2-norm of the vector formed by taking the l1-norms
of the columns of the underlying matrix. λ > 0 is an arbitrary balanced parameter.
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Adapting the OP algorithm to the noisy case,that is A = L+S+E, Xu et al. [342]
proposed a robust PCA via Stable Outlier Pursuit (SOP):

min
L,S

||L||∗ + λ||S||l1,2 subj ||A− L− S||F < δ (60)

where S is supported on at most γn columns and λ = 3
7
√
γn .

Algorithm for solving OP and SOP: Xu et al. [342] used the Singular Value
Threshold (SVT) algorithm to solve these two minimization problems.

2.7 RPCA with Sparsity Control

Mateos and Giannakis [213][214] proposed a robust PCA using a bilinear decom-
position with Sparsity Control (RPCA-SpaCtrl). The decomposition involves the
following model:

A = M + PUT + S + E (61)

where M is the mean matrix, the matrix U has orthogonal columns, P are the
principal components matrix, S is the outliers matrix and E is a zero-mean matrix.
The percentage of outliers determines the degree of sparsity in S. The criterion
for controlling outlier sparsity is seek to the relaxed estimation:

min
U,S

||X + 1NMT − PUT − S||2F + λ||S||l2(r) subj UUT = Iq (62)

where ||S||l2(r) =
∑m×n

i=1 ||Si||l2 is the row-wise l2-norm. The non-differentiable l2-
norm regularization term controls rows-wise sparsity on the estimator of S. The
sparsity is then also controlled by the parameter λ. To optimize Equation (62),
Mateos and Giannakis [213][214] used an alternating minimization algorithm [396].

Algorithm for incremental SpaCtrl: An incremental version of Equation (62) is
obtained using the Exponentially Weighted Least Squares (EWLS) estimator as
follows:

min
U,S

m×n∑

i=1

β(m×n)−i
[

||Xn +m− UTTi − Si||2l2 + λ||Si||l2
]

(63)

where β is a learning rate between 0 and 1. So, the entire history of data is
incorporated in the online estimation process. Whenever β < 1, past data are
exponentially discarded thus enabling operation in nonstationary backgrounds.
Towards deriving a real-time, computationally efficient, and recursive solver of
Equation (63), an AM scheme is adopted in which iteration k coincides with the
time scale i = 1, 2, ... of data acquisition. Experimental results [214] show that
RPCA-SpaCtrl with λ = 9.69× 10−4 presents better performance than the naive
PCA [233] and RSL[310] with less time computation.
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2.8 RPCA with Sparse Corruption

Even if the matrix A is exactly the sum of a sparse matrix S and a low-rank matrix
L, it may be impossible to identify these components from the sum. For example,
the sparse matrix S may be low-rank, or the low-rank matrix L may be sparse.
So, Hsu et al. [130] imposed conditions on the sparse and low-rank components in
order to guarantee their identifiability from A . This method requires that S not
be too dense in any single row or column, and that the singular vectors of L not
be too sparse. The level of denseness and sparseness are considered jointly in the
conditions in order to obtain the weakest possible conditions. This decomposition
RPCA with Sparse Corruption (RPCA-SpaCorr) involves the same model than
PCP in Equation (20), that is A = L + S. Then, Hsu et al. [130] proposed two
convex formulations. The first is the following constrained formulation:

min
L,S

||L||∗ + λ||S||l1 subj ||A− L− S||l1 ≤ ǫ1

and ||A− L− S||∗ ≤ ǫ∗ (64)

where λ > 0, ǫ1 ≥ 0 and ǫ∗ ≥ 0. The second is the regularized formulation:

min
L,S

||L||∗ + λ||S||l1 +
1

2µ
||A− L− S||2F

subj ||A− L− S||l1 ≤ ǫ1 and ||A− L− S||∗ ≤ ǫ∗ (65)

where µ > 0 is the regularization parameter. Hsu et al. [130] added a constraint
to control the entry-wise ∞-norm of L, that is ||L||l∞ . That is ||L||l∞ ≤ b is added
in Equation(64) and ||A − S||l∞ ≤ b is added in Equation (65). The parameter
b is a natural bound for L and is typically 510 for image processing. Hsu et al.
[130] determined two identifiability conditions that guarantee the recovery. The
first measures the maximum number of non-zero entries in any row or column of
S. The second one measures the sparseness of the singular vectors L. Then, a mild
strengthening of these measures is achieved for the recovery guarantees.

2.9 RPCA via Log-sum Heuristic Recovery

When the matrix has high intrinsic rank structure or the corrupted errors become
dense, the convex approaches may not achieve good performances. Then, Deng et
al. [66] used the Log-sum Heuristic Recovery (LHR) to learn the low-rank struc-
ture. The decomposition involves the same model than PCP in Equation (20),
that is A = L + S. Although the objective in Equation (22) involves the nuclear
norm and the l1-norm, it is based on the l1 heuristic since nuclear norm can be re-
garded as a specific case of l1-norm [66]. Replacing the nuclear norm by its l1-norm
formulation, the problem can be solved as follows:

min
X̂∈D̂

1

2
(||diag(Y )||l1 + ||diag(Z)||l1) + λ||E||l1 (66)

where X̂ = {Y,Z, L, S} and
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D̂ =

{

(Y,Z, L, S) :

(
Y L

LT Z

)

≥ 0, (L, S) ∈ C

}

(L, S) ∈ C stands for convex constraint. Y and Z are both symmetric and pos-
itive definite. ≥ represents semi-positive definite. The convex problem with two
norms in Equation (22) has been converted to an optimization only with l1-norm
and therefore it is called l1-heuristic. Next, Deng et al. [66] used the logsum term
to represent the sparsity of signals and obtained the Log-sum Heuristic Recovery
(LHR) model:

min
X̂∈D̂

1

2
(||diag(Y )||L + ||diag(Z)||L) + λ||E||L (67)

where ||X||L =
∑

ij log (|Xij| + δ) with δ > 0 is a small regularization constant.
This model is non convex but the convex upper bound can be easily defined. LHR
can removemuch denser errors from the corrupted matrix rather compared to PCP.

Algorithm for solving LHR: Deng et al. [66] used the majorization-minimization
(MM) [82][171] algorithm that replaces the hard problem by a sequence of easier
ones. It proceeds in an Expectation Maximization (EM)-like fashion by repeating
two steps of majorization and minimization in an iterative way. During the ma-
jorization step, it constructs the convex upper bound of the non-convex objective.
In the minimization step, it minimizes the upper bound.

2.10 RPCA via Iteratively Reweighted Least Squares Minimization

Guyon et al. [113] proposed the decomposition solved via IRLS with the following
model:

A = L+ S = UV + S (68)

where U is a low-rank matrix corresponding to the background model plus noise,
and V reconstructs L by linear combination. S corresponds to the moving ob-
jects. The model involves the error reconstruction determined by the following
constraints:

min
U∈Rn×p,V ∈Rp×m

µ||UV ||∗ + ||(A− UV ) ◦W1||lα,β
(69)

where ||.||∗ denote the nuclear norm and ||.||lα,β
is a mixed norm. W1 which is

a weighted matrix is iteratively computed and aims to enforce the fit exclusively
on guessed background region. A function Φ(.) smoothes the error like spatial
median filtering and transforms the error for obtain a suitable weighted mask for
regression:

W = Φ(A− UV ), Φ(x) = e−γTV (A−UV ) (70)

By including local penalty as a constraint in RPCA, it explicitly increases local
coherence of the sparse component as filled/plain shapes for moving objects. Fur-
thermore, the decomposition is split into two parts. The first part tracks 1-Rank
decomposition since the first eigen-vector is strongly dominant in video surveil-
lance. For the mixed norm, Guyon et al. [113] used ||.||l2,1 instead of the usual
||.||l1,1 because it forces spatial homogeneous fitting. Thus, the SVD algorithm
can be seen as an iterative regression and then IRLS algorithm is then used. So,
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Guyon et al. [113] increased local coherence of the error for moving objects by
including local penalty as a constraint in the decomposition. Using the same ap-
proach, Guyon et al. [112] added spatial constraint in the minimization based on
the gradient and Guyon et al. [111] proposed a spatio-temporal version. Another
variant of RPCA via IRLS have been developed by Lu et al [202].

2.11 RPCA via Stochastic Optimization

Feng et al. [83] proposed an Online Robust PCA (OR-PCA) algorithm. The main
idea is to develop a stochastic optimization algorithm to minimize the empirical
cost function, which processes one sample per time instance in an online manner.
The coefficients which correspond to noise and the basis are optimized in an al-
ternative manner. The low dimensional subspace called low-rank matric basis are
first initialized randomly and then updated after every frame per time instance.
Moreover, OR-PCA decomposes the nuclear norm of the objective function of the
traditional PCP algorithms into an explicit product of two low-rank matrices, i.e.
basis and coefficients. The main function in OR-PCA is formulated as:

min
L∈Rn×p,R∈Rn×r

1

2
||A − LRT − S||2F +

λ1

2
(||L||2F + ||R||2F ) + λ2||S||l1 (71)

where R is a coefficient matrix. λ1 controls the basis and coefficients for low-rank
matrix, whereas λ2 controls the sparsity pattern, which can be tunned according
to video analysis. In addition, basis and coefficient depend on the value of rank.
In case of video background modeling, no visual results [83] have been found us-
ing this technique. Therefore, Javed et. al [144] modified OR-PCA via stochastic
optimization method for background subtraction applications. An initialization
scheme is adopted which converges the algorithm very fastly as compared to orig-
inal OR-PCA.

In order to perform OR-PCA, a number of video frames are first initialized as
a low dimensional basis then stochastic optimization is performed on each input
frame to separate the low-rank and sparse component. As compare to conventional
RPCA via PCP based schemes, no batch optimizations are needed therefore OR-
PCA is applicable for real time processing. In addition, a global pre-processing
steps such as Laplacian and Gaussian images are introduced in modified OR-PCA
which increase the detection rate. Using these modifications in original scheme,
both memory cost and computational time is decreased, since the idea is based on
to process one single frame per time instance, but the method shows some weak
performance when large variations in the background scenes occurs such as waving
trees and water surface.

Therefore, Javed et al. [147][143] further improved the foreground segmentation
using the continuous constraints such as Markov Random Field (MRF). OR-PCA
via image decomposition using initialization scheme including continuous MRF
with tuned parameters shows a drastic improvements in the experimental results
specially in case highly dynamic backgrounds. In their work a good parameters
range is provided according to different background scenarios. A huge amount
of experimental results are provided which shows a very nice potential for its
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Bayesian RPCA Categories Authors - Dates

Decompositions 1) Original BRPCA Ding et al. (2011) [71]

2) Variational BRPCA (VBRPCA) Babacan et al. (2011) [17]

3) Factorized Variational BRPCA (FVBRPCA) Aicher (2013) [5]

4) MOG-RPCA Zhao et al. (2014) [385]

Solvers Markov chain Monte Carlo (MCMC) Robert and Cassela (2004) [256]

Variational Bayesian Inference (VB) Beal (2003) [19]

Approximate Bayesian Inference (AB) Beal (2003) [19]

Table 17 Bayesian Robust Principal Component Analysis: A Complete Overview. The first
column indicates the concerned category and the second column the name of each method.
Their corresponding acronym is indicated in the first parenthesis. The third column gives the
name of the authors and the date of the related publication.

real time applicability. This scheme was improved with dynamic feature selection
[146][143], a depth extended version with spatiotemporal constraints [141], and for
noisy videos [140].

2.12 Bayesian Robust Principal Component Analysis

Bayesian Robust Principal Component Analysis approaches have also been in-
vestigated for RPCA and used a Bayesian framework in the decomposition into
low-rank plus sparse matrices. Ding et al. [71] modeled the singular values of L and
theentries of S with beta-Bernoulli priors, and used a Markov chain Monte Carlo
(MCMC) sampling scheme to perform inference. This method called Bayesian
RPCA (BRPCA) needs many sampling iterations, always hampering its practical
use. In a similar approach, Babacan et al. [17] adopted the automatic relevance de-
termination (ARD) approach to model both L and S, and utilized the variational
Bayes (VB) method to do inference. This method called Variational Bayesian
RPCA (VBRPCA) is more computationally efficient. However, these three meth-
ods assume a certain noise prior (a sparse noise plus a dense noise), which cannot
always effectively model the diverse types of noises occurring in practice. To ad-
dress this problem, Zhao et al. [385] proposed a generative RPCA model under
the Bayesian framework by modeling data noise as a mixture of Gaussians (MoG).
Table 17 shows an overview of the Bayesian Robust Principal Component Analysis
methods.

2.12.1 Bayesian Robust PCA

Ding et al.[71] proposed a Bayesian Robust PCA (BRPCA). Assuming that the
observed data matrix A can be decomposed in three matrix as in SPCP [393], the
Bayesian model is then as follows:

A = D(ZG)W2 +BX + E (72)

where D ∈ Rn×r, W ∈ Rr×m and G ∈ Rr×r are diagonal matrices and X ∈
Rn×m. The diagonal matrix Z has binaries entries along the diagonal, and the
binary matrix B ∈

{
0, 1n×m

}
is sparse. r defines the largest possible rank that

may inferred for L, and r is set to a large value. The low-rank, sparse and noise
component are obtained as follows.
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– Low-rank Component:The low-rank component is modeled as L = D(ZG)W2.
This is similar to SVD excepted for the extra diagonal matrix Z with diagonal
elements zk,k ∈ 0, 1 for k = 1, ..., r. The product ZG is a diagonal matrix too.
The use of Z decouples the rank learning and the singular value learning. r
is chosen large and then the diagonal entries of ZG are sparse. The binary
diagonal matrix Z is modeled as follows:

zk,k ∼ Bernoulli(pk) (73)

pk ∼ Beta(α0, β0), k = 1, ...r (74)

with α0 > 0 and β0 > 0. The parameters α0 and β0 imposed the sparseness
of the diagonal of Z. α0 and β0 are set respectively to 1/K and (K − 1)/K.
Each diagonal entry in G, denoted as gk,k for k = 1, ..., r, is obtained from a
normal-gamma distribution:

gk,k ∼ N (0, τ−1)k = 1, ...r. (75)

τ ∼ Gamma(a0, b0) (76)

with a0 > 0 and b0 > 0. a0 and b0 are set to 10−7. The column of matrices D

and W2 are obtained from normal distribution:

dk ∼ N (0, (1/N)IN)k = 1, ...K. (77)

w2,m ∼ N (0, (1/K)IK)m = 1, ...M. (78)

with IN is the N ×N identity matrix. The decomposition can be rewritten as
follows:

lm = D(ZG)w2,m =
K∑

k=1

zk,kgk,kw2,(k,m)dk,m = 1, ...,M (79)

So, each column of L is the weighted sum of the dictionary elements in D,
and K is the size of the dictionary. The weights zk,kgk,kk=1:K

determined the
dictionary elements that are active to construct L. The weights w2,(k,m)k=1:K
determined the importance of the selected dictionary elements for the repre-
sentation of the mth column of L.

– Sparse Component: The sparse component is modeled as S = BX, where B

is a binary matrix. This decomposition separates the learning sparseness from
the learning of values. Each column of B is modeled as follows:

bm ∼
N∏

n=1

Bernoulli(πn),m = 1, ...,M (80)

πn ∼ Beta(α1, β1), n = 1, ...N. (81)

The sparseness prior is made with the parameters α1 and β1. α1 and β1 are
set respectively to 1/N and (N − 1)/N . The columns of X are obtained from a
normal-gamma distribution:

xm ∼ N (0, v−1IN ),m = 1, ...,M (82)

v ∼ Gamma(c0, d0). (83)
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with c0 > 0 and d0 > 0. c0 and d0 are set to 10−6. Ding et al.[71] addressed
the dependency of the sparse component in time and space with a Markov
structure. If the parent node of It(i, j) noted It−1(i, j) is non-zero, its child
node is also non-zero with a high probability. To introduce spatial dependence,
Ding et al. [71] defined the state of Ft(i, j) as follows:

S(Ft(i, j)) = active if ||N(Ft(i, j)||0 ≥ ρ (84)

S(Ft(i, j)) = inactive otherwise (85)

where ρ = 5 which imposes that a node is active if the sparse component con-
tains at least 5 non-zero members in its neighborhood defined by N(Ft(i, j)) ={
F(k,l) : |k − i| ≤ 1, |l − j| ≤ 1

}
. Then, a child node depends on its parent node

in time and on its neighbors in space. Markov dependency is then imposed by
modifying the equations (80) and (81) as follows.

bt ∼
N∏

n=1

Bernoulli(πnt), t = 1, ..., M (86)

πnt ∼ Beta(αH , βH) if S(bn,t−1) = active

with n = 1, ...N, t = 2, ...,M. (87)

πnt ∼ Beta(αL, βL) if S(bn,t−1) = inactive (88)

with n = 1, ...N, t = 2, ...,M.

where H and L indicate the high and low states in the Markov model and
αH ,αH , βL and βH are set to assume that the sparseness will be propagated
along time with high probability. For t = 1, the equation (80) and (81) are
used since there are no parent nodes for the first frame.

– Noise Component: The noise is modeled by a Gaussian distribution as follows:

en,m ∼ N (0, γ−1
m ), with n = 1, ..., N (89)

γm ∼ Gamma(e0, f0) for m = 1, ..., M, (90)

with en,m is the entry at row n and column m of E. c0 and d0 are set to 10−6.

Then, the posterior density function of the BRPCA is as follows:

− log (p(Θ|A,H)) =
τ

2
||G||2F − log ([fBB(Z;H))]

+
N

2

r∑

k=1

||dk||2l2 +
1

2

M∑

m=1

||wm||2l2 +
v

2
||X||2F

− log ([fBB(B;H))] +
1

2
||Y − L− S||2F

− log [Gamma(τ |H)Gamma(v|H)Gamma(γ|H)]

+ constant (91)

where Θ represents all model parameters, fBB(.|H) represents the beta-Bernoulli
prior, and H = {α0, α1, β0, β1, a0, b0, c0, d0, e0, f0} are model hyper parameters.

Algorithms for solving BRPCA: Ding et al. [71] proposed to approximate the
posterior density function in Equation (91) with two algorithms:



Title Suppressed Due to Excessive Length 67

– Markov chain Monte Carlo (MCMC) analysis implemented with Gibbs

sampler [256]: The posterior distribution is approximated by a set of samples,
collected by iteratively drawing each random variable from its conditional pos-
terior distribution given the most recent values of all the other parameters.

– Variational Bayesian inference (VB) [19]: A set of distributions q(Θ) allow
to approximate the true posterior distributions p(Θ|A), and uses a lower bound
to approximate the true log-likelihood of the model log (p(A|Θ). The algorithm
iteratively updates q(Θ) so that the lower bound approaches to log (p(A|Θ).

The computational complexity of MCMC and VB iteration is approximatively the
same. The VB solution may find a local-optimal solution which may be not be
the global-optimal best solution. Ding et al. [71] found that MCMC work quite
effectively in practice.

Relation to PCP and SPCP: For the low-rank component, Ding et al. [71]
employed a Gaussian prior to obtain a constraint on Frobenius norm ||G||2F with
a beta-Bernoulli distribution to address the sparseness of singular value and to
obtain a small number of non-zero singular values, while PCP employs the rank
function that is relaxed to the nuclear norm when solving the problem in a convex
way. For the sparse component, the constraint on Frobenius matrix norm ||X||2F
and the beta-Bernoulli distribution are used to impose sparseness while PCP use
the l0-norm that is relaxed to the l1-norm. The error term (2µ)−1||A−L−S||2F in
SPCP [335] corresponds to the Gaussian prior placed on the measurement noise in
Equation (89). For solving the problem, the main difference is that BRPCA uses
numerical methods to estimate a distribution for the unknown parameters, whereas
optimization based methods effectively search a single solution that minimizes a
analogous functional to −log (p(Θ|A,H)).

2.12.2 Variational Bayesian Robust Principal Component Analysis

Babacan et al. [17] proposed a Variational Bayesian Robust PCA (VBRPCA).
Assuming that the observed data matrix A can be decomposed in three matrix as
in SPCP [393], the variational Bayesian model is then as follows:

A = DBT + S + E (92)

where DBT is the low-rank component with D ∈ Rm×r and B ∈ Rr×n, S is the
sparse component with arbitrarily large coefficients and E is the dense error matrix
with relatively smaller coefficients. The low-rank, sparse and noise component are
obtained as follows. The low-rank component L is then given by DBT . So, L is
the sum of outer-products of the columns of D and B, that is,

L =
k∑

i=1

d.ib
T
.i (93)

where k ≥ r. d.i and di. denote the ith column and row of D, respectively. To
impose column sparsity in D and B, such that most columns in D and B are set
equal to zero, the columns are defined with Gaussians priors as follows:

p(D|γ) =
k∏

i=1

N (d.i|0, σiI) (94)
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p(B|γ) =
k∏

i=1

N (b.i|0, σiI) (95)

where σi is the variance. Most of the variances are very small values during infer-
ence to reduce the rank of the estimate. Then, the following conditional distribu-
tion for the observations are obtained:

p(A|D,B, S, β) = N (A|DBT + S, γ−1I) (96)

= exp[
β

2
||A−DBT − S||2F (97)

where β is a uniform hyperprior. The modeling of the sparse component S is done
by using independent Gaussian priors on its coefficients Sij as follows:

p(S|α) =
m∏

i=1

n∏

j=1

N (Sij |0, α−1
ij ) (98)

where α =
{
αij

}
, αij is the precision of the Gaussian on the (i, j)th coefficient and

p(αij)=const ∀i, j. Finally, the joint distribution is expressed as follows:

p(A,D,B, S, γ, α, β)

= p(A|D,B, S, β)p(D|γ)p(B|γ)p(S|α)p(γ)p(α)p(β) (99)

where p(γi) = 1
γi

a+1
exp(−b

γi
) and p(β) is a constant assuming that the noise

precision have a uniform prior.

Algorithm for solving VBRPCA: The exact full-Bayesian inference using joint
distributions in Equation (99) is intractable because p(y) can’t be computed by
marginalizing all variables. Therefore, Babacan et al. [17] used an inference pro-
cedure based on mean field variational Bayes. The aim is to compute posterior
distribution approximations by minimizing the Kullback-Leibler divergence in an
alternating way for each variable. Let z = (D,D, S, γ, α, β), the posterior approxi-
mation q(zk) of each variable zk ∈ z is then determined as follows:

log (q(zk)) = 〈log (p(A,z))〉 z
zk

+ const (100)

where z
zk

is the set z without zk. The distribution p(A, z) is the joint probability
distribution given in Equation (99). The posterior factorization q(z) =

∏
q(zk) is

used such that the posterior distribution of each unknown is estimated by holding
the others fixed using their most recent distributions. Thus, the expectations of
all parameters in the joint distribution are taken with respect to their most recent
distributions, and the result is normalized to find the approximate posterior dis-
tribution. Since all distributions are in the conjugate exponential family, the form
of each posterior approximation is easily determined.
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2.12.3 Factorized Variational Bayesian RPCA (FVBRPCA)

Aicher [5] proposed a Factorized Variational Bayesian RPCA. This model is slightly
different from BRPCA [71] and VBRPCA [17] in how sparse noise is modeled and
incorporated as well as the use of variational Bayes instead of MCMC.

A = UV T + Z∗ ◦B + E (101)

where ◦ denotes the Hadamard element-wise multiplication. The low-rank matrix
is L = UV T and U is restrited to be an n× r matrix and V to be an r×m matrix
so that the rank of L less than or equal to r. The sparse matrix is S = Z∗ ◦B and
B is set to be a sparse binary matrix and Z∗ is without constraint. For numerical
reasons, Z∗ is treated as a very diffuse Gaussian matrix. To induce sparsity in S, a
prior on B is selected such that it is sparse. E is a small Gaussian noise term and
the prior on its variance small compared with the variance of Z∗. Instead of solving
Equation 101, it is more numerical convenient to solve the following problem:

A = UV T + Z∗ ◦B + E ◦ (1−B) (102)

To infer U ,V ,B,Z and E, Aicher [5] approximated the posterior distribution with
a factorizable distribution. This a variational approach selects the distribution
q closest to the posterior in the sense of Kullback-Leibler (KL) divergence. By
parameterizing q, Aicher [5] converted the inference scheme back into an objective
maximization problem. After selecting a distribution to approximate the posterior,
the expectations of U ,V ,B,Z and E are taken to estimate them. Experimental
results [5] show that FVBRPCA performs slightly better than RPCA solved via
IALM [188], VBRPCA [17] and GoDec [389].

2.12.4 Bayesian RPCA with MoG noise(MoG-BRPCA)

Zhao et al. [385] developed a generative RPCA model under the Bayesian frame-
work by modeling data noise as a mixture of Gaussians (MoG). The MoG is a
universal estimator to continuous distributions and thus MoG-BRPCA is able to
fit a wide range of noises such as Laplacian, Gaussian, sparse noises and any com-
binations of them.

2.13 Approximated RPCA

2.13.1 ”Go Decomposition” (GoDec)

Zhou and Tao [389] proposed a randomized low-rank and sparse matrix decompo-
sition called ”Go Decomposition” (GoDec). GoDec estimates the low-rank part L

and the sparse part S by using the same decomposition than SPCP [393]:

A = L+ S + E (103)

To solve the problem in Equation (103), GoDec alternatively assigns the low-
rank approximation to A − S to L and the sparse approximation to A − L to S.
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This approximated decomposition problem seeks to solve the minimization of the
following decomposition error:

min
L,S

||A − L− S||2F subj rank(L) ≤ r, card(S) ≤ k. (104)

Algorithm for solving GoDec: The optimization problem in Equation (104) is
solved by alternatively solving the two following subproblems:

Lt = arg min
rank(L)≤e

||A− L− St−1||2F (105)

St = arg min
card(S)≤e

||A − Lt − S||2F (106)

Although both subproblems have nonconvex constraints, their global solutions
Lt and St exist. Indeed, these subproblems can be solved by updating Lt via
singular value hard thresholding of A− St−1 and updating St via entry-wise hard
thresholding of A− Lt, respectively as follows:

Lt =
r∑

i=1

λiUiV
T
i with SV D(A− St−1) = UGV T (107)

St = PΩ(A− Lt) with Ω :
∣
∣(A− Lt)i,j∈Ω

∣
∣ 6= 0

and ≥
∣
∣(A− Lt)i,j∈Ω̄

∣
∣ , |Ω| ≥ k (108)

where PΩ(.) is defined as the projection of the matrix on the observed entries
following the sampling set Ω. The main computation time is due to the com-
putation of the SVD for A − St−1 in the updating Lt sequence. To significantly
reduce the time cost, Zhou and Tao [389] replaced the SVD by a Bilateral Random
Projection(BRP) based low-rank approximation.

2.13.2 Semi-Soft GoDec

Zhou and Tao [389] proposed a Semi-Soft GoDec which adopts soft thresholding
to the entries of S, instead of GoDec which imposes hard thresholding to both
the singular values of the low-rank part L and the entries of the sparse part S.
This improvement has two two main advantages: 1) the parameter k in constraint
card(S) ≤ k is automatically determined by a soft-threshold τ , thus avoids the
situation when k is chosen too large and some part of noise E is leaked into S;
2) the time cost is substantially smaller than the ordinary GoDec. For example,
the background modeling experiments can be accomplished with a speed 4 times
faster then ordinary GoDec, while the error is kept the same or even smaller.
The approximated decomposition problem seeks to solve the minimization of the
following decomposition error:

min
L,S

||A − L− S||2F subj rank(L) ≤ r, card(S) ≤ τ. (109)

where τ is the soft threshold. Chen et al. [52] proposed to use Semi-Soft GoDec
for video coding in the existing standard codecs H.264/AVC and HEVC via back-
ground/foreground separation. For this, Chen et al. [52] developed an extension
of the Semi-Soft GoDec that is able to perform LRSD on new matrix columns
with a given low-rank structure, which is called incremental low-rank and sparse
decomposition (ILRSD).
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2.14 Sparse Additive Matrix Factorization (SAMF)

Nakajima et al. [222][223] extented the original robust PCA [40] by proposing
a unified view called Sparse Additive Matrix Factorization (SAMF). Instead of
RPCA which only copes with element-wise sparsity (spiky noise) and low-rank
sparsity (low-dimensional matrix), SAMF handles various types of sparse noise
such as row-wise and column-wise sparsity. Thus, the decomposition is written as
follows:

A =
K∑

k=0

S + E (110)

where K is the number of sparse matrices. K = 2 in the original RPCA [40] in
which the element-wise sparse term is added to the low-rank term. For back-
ground/foreground separation, the low-rank term and the element-wise sparse
term capture the static background and the moving foreground, respectively. Naka-
jima et al. [222][223] relied on the natural assumption that a pixel segment which
has similar intensity values in an image tends to belong to the same object. Thus,
Nakajima et al. [222][223] adopted a segment-wise sparse term, where the ma-
trix is constructed using a precomputed over-segmented. Experimental results
[222][223] on the CAVIAR dataset [84] show that SAMF based on image segmen-
tation (sSAMF) outperforms PCP via IALM [40] which correponds to ’LE’-SAMF
in [222][223].

Algorithm for solving SAMF: First, Nakajima et al. [222][223] reduced the par-
tial SAMF problem to the standard MF problem, which can be solved analytically.
Then, Nakajima et al. [222][223] derived an iterative algorithm called the mean
update (MU) for the variational Bayesian approximation to SAMF, which gives
the global optimal solution for a large subset of parameters in each step.

2.15 Variational Bayesian Sparse Estimator (VBSE)

Chen et al. [57][58][56] proposed a generalization of the original RPCA [40], where
a linear transformation through the use of a known measurement matrix, is applied
to the outlier corrupted data. The aim is to estimate the outlier amplitudes given
the transformed observation. This approach called variational Bayesian Sparse
Estimator (VBSE) can achieved background/foreground separation in blurred and
noisy video sequences.Thus, the decomposition is written as follows:

A = L+RS + E (111)

where R models the linear transformation performed on the data. The aim is to
obtain accurate estimates for the sparse term S and the low-rank term L, given
the noise corrupted observation A. Although S is sparse, the multiplication with
a wide matrix R has an effect of compression, and hence the product RE is not
necessarily sparse. Then, Chen et al. [57][58] modeled the lowk-rank part as follows:

||L||∗ = min
U,V

1

2
||U ||2F + ||V ||2F subj L = UV T (112)
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With these relaxation and parametrization, Chen et al. [57][58] obtained the fol-
lowing optimization problem:

min
U,V,S

1

2
||A−UV T −RS||2F +λ∗(||U ||2F + ||V ||2F )+λ1||E||l1 subj L = UV T (113)

where λ∗ and λ1 are regularization parameters. To enforce column sparsity in U

and V , the columns of U and V are modeled with Gaussian priors of precision.
Then, Chen et al. [57][58] incorporated conjugate Gamma hyperprior on the pre-
cisions. The sparse part S is modeled by setting the entries be independent of each
other, and their amplitudes are modeled by zero-mean Gaussian distributions with
independent precisions. For the noise part E, Gaussian priors with zero mean are
used to model the dense observation noise. By combining these different stages in
a hierarchical Bayesian model, a joint distribution of the observation and all the
unknowns is expressed as follows:

ρ(A,U, V, S, γ, α, β) (114)

where γ and α are hyperparameters and β is the noise precision. To solve VBSE,
Chen et al. [57][58] used an an approximate Bayesian inference. Experimental
results [57][58] on the CAVIAR dataset [84] show that VBSE outperforms PCP
solved via APG [189] and PCA solved via IALM [40].

3 Robust Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) approximates a non-negative matrix A

by a product of two non-negative low-rank factor matricesW and H. Table 5 shows
an overview of the different robust NMF decompositions. Their corresponding
solvers as well as their complexity can be seen in Table 12.

3.1 Manhattan Non-negative Matrix Factorization (MahNMF)

Guan et al. [99] proposed a robust non-negative matrix factorization when the
noise distribution is heavy tailed. The method called Manhattan NMF (MahNMF)
minimizes the Manhattan distance between A and WTH for modeling the heavy
tailed Laplacian noise. Thus, Guan et al. [99] minimized the Manhattan distance
between an m× n-dimensional non-negative matrix A and WTH as follows:

min
W≥0,H≥0

f(W,H) = ||A −WTH ||M (115)

where ||.||M is the Manhattan distance which is equals the summation of the l1
norm, and the reduced dimensionality r satisfies that r ≪ min(m,n). Since W and
H are low-rank matrices, MahNMF actually estimates the nonnegative low-rank
part, i.e., WTH, and the sparse part, i.e., A − WTH, of a non-negative matrix
A. MahNMF performs effectively and robustly when data are contaminated by
outliers because it benefits from both the modeling ability of Laplace distribution
to the heavy tailed behavior of noise and the robust recovery capability of the
sparse and low-rank decomposition. Experimental results [99] on the I2R dataset
[177] show that MahNMF gives similar visual results than PCP via IALM [40] and
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GoDec [389].

Algorithms for solving MahNMF: Two fast optimization algorithms for Mah-
NMF were developed by Guan et al. [99] and called the rank-one residual iteration
(RRI) method and Nesterov’s smoothing method, respectively. By approximating
the residual matrix by the outer product of one row of W and one row of H,
the RRI method iteratively updates each variable of W and H in a closed form
solution. RRI is neither scalable to large scale matrices nor flexible enough to opti-
mize all MahNMF extensions. As the objective functions of MahNMF are neither
convex nor smooth, Guan et al. [99] proposed a Nesterov’s smoothing method to
recursively optimize one factor matrix with another matrix fixed. By setting the
smoothing parameter inversely proportional to the iteration number, the approx-
imation accuracy is improved iteratively.

3.2 Near-separable Non-negative Matrix Factorization (NS-NMF)

Promising robust NMF approaches have emerged recently based under the as-
sumption that the data matrix satisfies a separability condition which enables the
NMF problem to be solved efficiently and exactly. Under this assumption, the data
matrix A is said to be r-separable if all columns of X are contained in the conical
hull generated by a subset of r columns of A. In other words, if A has a factor-
ization WH then the separability assumption states that the columns of W are
present in A at positions given by an unknown index set B of size r. Equivalently,
the corresponding columns of the right factor matrixH constitute the r×r identity
matrix, i.e., HB = I. These columns indexed by B are called anchor columns.
In this framework, Kumar et al. [164] proposed a family of conical hull finding pro-
cedures called Xray for near-separable NMF (NS-NMF) problems with Frobenius
norm loss. The minimization problem can be formulated as follows:

min
AB≥0,H≥0

||A− ABH ||2F subj AB ≥ 0,H ≥ 0 (116)

Geometrically, Xray finds anchor columns one after the other, incrementally
expanding the cone and using exterior columns to locate the next anchor. Xray
present several advantages for background/foreground separation: (1) it requires
no more than r iterations each of which is parallelizable, (2) it empirically robust
to noise, (3) it admits efficient model selection, and (4) it does not require nor-
malizations or preprocessing needed in other methods. However, in the presence
of outliers or different noise characteristics, the use of Frobenius norm approxima-
tions is not optimal.
In this context, Kumar and Sindhwani [163] improved Xray to provide robust fac-
torizations with respect to 11 loss, and approximations with respect to the family
of Bregman divergences. In the case of background/foreground separation, it is
natural to seek a low-rank background matrix L that minimizes ||A−L|| where A

is the frame-by-pixel video matrix, and the l1 loss imposes a sparsity prior on the
residual foreground. Instead of low-rank approximations in Frobenius or spectral
norms, there is not a SVD-like tractable solution. For this, Kumar et al. [163]
recovered tractability by imposing the separable NMF assumption on the back-
ground matrix. This implies that the variability of pixels across the frames can be
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considered as observed variability in a small set of anchor pixels. Under a more
restrictive setting, it is equivalent to median filtering on the video frames, while
a full near-separable NMF model imparts more degrees of freedom to model the
background. The minimization problem can be formulated as follows:

min
AB≥0,H≥0

||A− ABH ||l1 subj AB ≥ 0,H ≥ 0 (117)

where AB are the columns of A indexed by set B ⊂ 1,2, ..., n. Experimental
results [163] on the I2R dataset [177] show that RobustXray outperforms the ro-
bust NMF (local search) which minimizes min

W≥0,H≥0
||A−WH ||l1 [163], the robust

Low-rank (local-search) which minimizes min
W,H

||A − WH ||l1 [163], XRay-l2 [164]

and PCP via IALM [40].

Algorithms for solving XRay-l2 and RobustXray: Algorithms of Kumar et al.
[164] are not suitable for noise distributions other than Gaussian. The algorithm
for RobustXray proceeds by identifying one anchor column in each iteration and
adding it to the current set of anchors, thus expanding the cone generated by
anchors. Each iteration consists of two steps: (1) anchor selection step that finds
the column of A to be added as an anchor, and (2) a projection step where all data
points (columns of A ) are projected to the current cone in terms of minimizing
the l1 norm.

3.3 Robust Asymmetric Non-negative Matrix Factorization (RANMF)

Woo and Park [334] proposed a formulation called l∞-norm based robust asym-
metric nonnegative matrix factorization (RANMF) for the grouped outliers and
low nonnegative rank separation problems. The main advantage of RANMF is that
the denseness of the low nonnegative rank factor matrices can be controlled. To
control distinguishability of the column vectors in the low nonnegative rank factor
matrices for stable basis, Woo and Park [334] imposed asymmetric constraints, i.e.,
denseness condition on the coefficient factor matrix only. As a byproduct, a well-
conditioned basis factor matrix is obtained. Compared to the nuclear norm based
low-rank enforcing models, RANMF is not sensitive to the nonnegative rank con-
straint parameter due to the soft regularization method. Thus, the decomposition
is made as follows:

A = L+ S = WΛH + S (118)

where L = WΛH is low nonnegative rank matrix and S contains the grouped
outliers. Λ is a diagonal matrix with Λii = λi which is be considered as an asym-
metric singular value of L. Since Λ is subsumed into W or H, Equation 118 is a
typical nonnegative matrix factorization (NMF) formulation and its corresponding
minimization problem can be written as follows:

min
L,S,Φ

α

2
||A−L−S||2F+Φ(S)+βΨ(S,Φ)+γTV (Q(Φ)) subj Rank(L) ≤ τ, 0 < L < bL

(119)
where Φ(.) is a sparsity enforcing function, such as lp-norm (0 < p < 1) or log-
function. Q is the reshaping operator from 2D to 3D, TV (.) is the 3D Total Vari-
ation and bL = 255 for image data. Rank(L) is a low nonnegative rank enforcing
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function such as nonnegative nuclear norm, and τ ≥ 0 is a rank nonnegative con-
straint parameter. As grouped outliers is not foreground mask and can be very
noisy, the TV appears as an additional denoising/segmentation process to detect
foreground mask. To solve Equation 119, Woo and Park [334] developed a Soft
Regularized Asymmetric alternating Minimization (SRAM) algorithm.

Experimental results [334] on the I2R dataset [177] show that RANMF out-
performs PCP via IALM [40] and DECOLOR [391].

4 Robust Matrix Completion

Robust matrix completion RMC, also called RPCA plus matrix completion prob-
lem can also be used for background/foreground separation. Althought RPCA
via principal component pursuit [40] can be considered as RMC using l1-norm
loss function, the main difference lies in that in RMC problems the support of
missing entries is given, whereas in RPCA corrupted entries are never known
[335][360]. From a statistical learning viewpoint, RPCA is a typical unsupervised
learning problem while the RMC can be interpreted as a supervised learning prob-
lem [360]. Table 5 shows an overview of the different RMC decompositions. Their
corresponding solvers as well as their complexity can be seen in Table 12.

4.1 lσ-norm loss function (RMC-lσ)

RPCA via principal component pursuit can be considered as RMC using l1-norm
loss function. Following this idea, Yang et al. [360] proposed a nonconvex relaxation
approach to the matrix completion problems when the entries are contaminated
by non-Gaussian noise or outliers. Based on a nonconvex lσ loss function, Yang et
al. [360] developed a rank constrained as well as a nuclear norm regularized model.
The nuclear norm heuristic model is formulated in the following form:

min
S∈Rm×n

λ||L||∗ + lσ(L) (120)

where λ is a regularization parameter and the data fitting risk lσ(L) is given by:

lσ(L) =
σ2

2

∑

(i,j)∈Ω

(1− exp(−(Lij − Aij)
2/σ2)) (121)

Experimental results [360] show that RMC-lσ performs slightly better than PCP
solved via IALM [40] because details of the background images are recovered well,
whereas PCP solved via IALM [40] does not seem to perform as well as RMC-lσ
where some details of the background are added to the foreground. It can be also
observed that none of the two methods can recover the missing entries in the fore-
ground. Furthermore, RMC-lσ is more than 3 times faster than PCP solved via
IALM [40].

Algorithms for solving RMC-lσ-IHT: lσ-IHT leads to computational difficulty
due to its nonconvexity. To solve this problem, Yang et al. [360] developed two
algorithms based on iterative soft thresholding (IST) and iterative hard thresh-
olding (IHT). These two algorithms are called lσ-IST and lσ-IHT. By verifying
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the Lipschitz continuity of the gradient of the datafitting risk, lσ-IST and lσ-IHT
converge. Under proper conditions, the recoverability as well as the linear conver-
gence rate results are obtained. Only RMC-lσ-IHT was tested on the I2R dataset
[177].

4.2 Robust Bilateral Factorization (RMC-RBF)

For RMC, Shang et al. [275][273] proposed a scalable and provable structured
low-rank matrix factorization method to recover the low-rank plus sparse matri-
ces from missing and grossly corrupted data. Thus, a Robust Bilinear Factoriza-
tion (RBF) method recovered the low-rank plus sparse matrices from incomplete
and/or corrupted data, or a small set of linear measurements. The decomposition
is the followong one:

A = L+ S = UV T + S (122)

where U and V are two matrices of compatible dimensions, where U has orthogonal
columns. Then, the corresponding minimization problemn is formulated as follows:

min
U,V,S

λ||V ||∗ + ||PΩ(S)||l1 + subj PΩ(A) = PΩ(UV T + S), UTU = I (123)

where λ ≥ 0 is the regularization parameter, ||V ||∗ is the nuclear norm of the low-
rank matrix V ∈ Rm×n, S ∈ Rm×n is the sparse error matrix. Ω is the index set of
observed entries and PΩ(.) is the projection operator onto that subspace. RBF not
only takes into account the fact that the observation is contaminated by additive
outliers or missing data, but can also identify both low-rank and sparse noisy
components from incomplete and grossly corrupted measurements. So, Shang et al.
[275] developed two small-scalematrix nuclear norm regularized bilinear structured
factorization models for RMC problems, in which repetitively calculating SVD of a
large-scale matrix is replaced by updating two much smaller factor matrices. Then,
Shang et al. [275][273] applied the alternating direction method of multipliers
(ADMM) to efficiently solve the RMC problems. Experimental results show that
RBF gives similar visual results than RPCA solved via IALM [40] and GRASTA
[119] but RBF is more than 3 times faster than GRASTA [119] and more than 2
times faster than RPCA solved via IALM [40].

4.3 Matrix Factorization (RMC-MF)

The general RMC problem aims to simultaneously recover both low-rank and
sparse components from incomplete and grossly corrupted observations via the
following convex optimization problem:

min
L,S

||L||∗ + λ||S||l1 subj PΩ(L+ S) = PΩ(A) (124)

where PΩ(A) is defined as the projection of the matrix A on the observed
entries Ω: PΩ(Aij) = Aij if (i, j) ∈ Ω and PΩ(Aij) = 0 otherwise. From Equation
124, Shang et al. [274] find that the optimal solution EΩC = 0 where ΩC is the
complement of Ω and corresponds to the index set of the unobserved entries. So,
the RMC problem is equivalent to the following convex optimization problem:
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min
L,S

||L||∗ + λ||PΩ(S)||l1 subj PΩ(L+ S) = PΩ(A),EΩC = 0 (125)

To efficiently solve the RMC problem and avoid introducing some auxiliary
variables, Shang et al. [274] assumed that the constraint with a linear projection
operator PΩ can be simplified into A = L+ S. To further improve the efficiency
of this convex model and the scalability of handling large data sets, Shang et al.
[274] proposed a scalable non-convex model in which the desired low-rank matrix
L is factorized into two much smaller matrices U ∈ Rm×d and V ∈ Rd×n where d

is an upper bound for the rank of the matrix L, i.e., d ≥ r = rank(L). Thus, the
decomposition problem is formulated as follows:

A = UV T + S (126)

Finally, the RMC with Matrix Factorization (RMC-MF) problem is equivalent to
the following convex optimization problem:

min
U,V,S

||V ||∗ + λ||PΩ(S)||l1 subj A = UV T + S,UTU = I (127)

Experimental results show that RMC (convex formulation) and RMC-MF (non-
convex formulation) are slightly better than that of GRASTA [119] and UNN-BF
[37]. The theoretical reason for the unsatisfactory performance of the l1-penalty
is that the irrepresentable condition is not met. Hence, RMC-MF incorporating
with matrix factorization is more accurate in recovering the low-rank matrix than
RMC (convex formulation). Furthermore, RMC-MF is more than 7 times faster
than RMC (convex formulation), more than 4 times faster than GRASTA [119],
and more than 2 times faster than UNN-BF [37].

Algorithms for solving RMC and RMC-MF: Shang et al. [274] developed two
efficient alternating direction augmented Lagrangian (ADAL) solvers for solving
the convex model and the non-convex model, respectively. For the convex prob-
lem, the running time of the corresponding algorithm is dominated by that of
performing SVD on the matrix of size m × n. For the non-convex problem, the
corresponding algorithm performs SVD on much smaller matrices of sizes m × d

and d×n, and some matrix multiplications. Hence, the total time complexity of the
algorithm for the convex RMC and the algorithm for the non-convex are O(tmn2)
and O(t(d2m + mnd)) with (d ≪ n < m), respectively, where t is the number of
iterations.

4.4 Factorized Robust Matrix Completion (FRMC)

Mansour and Vetro [212] developed a factorized robust matrix completion (FRMC)
algorithm with global motion compensation to solve the background/foreground
separation problem. Since the main drawbacks in Equation 22 is that it requires
the computation of full or partial singular value decompositions of L in every it-
eration of the algorithm, Mansour and Vetro [212] adopted a surrogate for the
nuclear norm of a rank-r matrix L defined by the following factorization:
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||L||∗ = min
LL∈Rm,r,LR∈Rn,r

1

2
(||LL||2F + ||LR||2F ) subj LLL

T
R = L (128)

This nuclear norm surrogate can be used in standard nuclear norm minimiza-
tion algorithms that scale to very large matrix completion problems. Moreover, it
was shown that when the factors LL and LR have a rank greater than or equal
to the true rank of L. Then, each subproblem in the FRMC algorithm is a Lasso
problem that Mansour and Vetro [212] solved using spectral projected gradient
iterations. FRMC was developed in batch mode and online mode. The FRMC al-
gorithm in online mode completes the recovery 7 to 9 times faster than GRASTA
[119] and results in a comparable separation quality.

4.5 Motion-Assisted Matrix Completion (MAMC)

Yang et al. [351][365] proposed a motion-assisted matrix completion (MAMC)
model for foreground-background separation. Thus, a dense motion field is esti-
mated for each frame, and mapped into a weighting matrix W3 which indicates
the likelihood that each pixel belongs to the background as follows:

min
L,S

||L||∗ + λ||S||l1 subj W3 ◦A = W3 ◦ (L+ S) (129)

where ◦ is denotes the element-wise multiplication of two matrices and W3 is con-
structed from motion information. By incorporating this information, areas domi-
nated by slowly-moving objects are suppressed while the background that appears
at only a few frames has more chances to be recovered in the foreground detection
results. The influence of light conditions, camouflages, and dynamic backgrounds
can also be decreased.

In addition, Yang et al. [351][365] extended MAMC to a robust MAMC model
(RMAMC) which is robust to noise for practical applications as follows:

min
L,S,E

||L||∗ + λ||S||l1 + γ||E||2F subj W3 ◦A = W3 ◦ (L+ S + E) (130)

where γ is a positive constant and E is the matrix which contains the noise. Yang
et al. [351] adapted the ALM algorithm [188] to solve MAMC and RMAMC. Ex-
perimental results [351][365] on several datasets show that RMAMC outperforms
RPCA solved via IALM [40].

5 Robust Subspace Recovery

In this category are the robust decompositions other than RPCA and RNMF
decompositions. Table 6 shows an overview of the different RSR decompositions.
Their corresponding solvers as well as their complexity can be seen in Table 12.
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5.1 Robust Subspace Recovery via Bi-Sparsity (RoSuRe)

High dimensional data is distributed in a union of low dimensional subspaces in
sparse models but the underlying structure may be affected by sparse errors and/or
outliers. To solve this problem, Bian and Krim [24] proposed a bi-sparsity model
and provided an algorithm to recover the union of subspaces in presence of sparse
corruption. This, the proposed decomposition is the following one:

A = L+ S = LW + S (131)

where W4 is sparse matrix. Then, the corresponding minimization problem is for-
mulated as follows:

min
W,S

||W4||l1 + λ||S||l1 subj A = L+ S,L = LW4,W4,(ii) = 0,∀i (132)

Experimental results [24][23] on static and moving camera cases show the ability
of RoSuRe to separate foreground from background in both cases. More inter-
estingly, the sparse coefficient matrix W4 gives information about the relations
among data points, which potentially may be used to cluster data into individual
clusters. Indeed, for each column of the coefficient matrix W4, the nonzero entries
appear periodically. In considering the periodic motion of the camera, every frame
is mainly represented by the frames when the camera is in a similar position,
i.e. a similar background, with the foreground moving objects as outliers. After
permuting the rows and columns of W4 according to the position of cameras, a
block-diagonal structure appears, where images with similar backgrounds are clus-
tered as one subspace.

Algorithms for solving RoSuRe: Bian and Krim [24] developed an algorithm via
Bi-Sparsity Pursuit based on linearized ADMM [190]. Practically, Bian and Krim
[24] pursued the sparsity of S and W4 alternatively until convergence. Besides the
effectiveness of ADMM on l1 minimization problems, the augmented Lagrange
multiplier (ALM) method can address the non-convexity of Equation 132. It hence
follows that with a sufficiently large augmented Lagrange multiplier, the global
optimizer is approximated by solving the dual problem.

5.2 Robust Orthonomal Subspace Learning (ROSL)

Shu et al. [286][287] presented a computationally efficient low-rank recovery method,
called as Robust Orthonormal Subspace Learning (ROSL). ROSL speeds the rank-
minimization of a matrix L by imposing the group sparsity of its coefficients α

under orthonormal subspace spanned by orthonormal bases D. Its underlying idea
is that, given the subspace representation L = Dα, the rank of L is upper bounded
by the number of non-zero rows of α, that is ||α||row−0. ROSL can be regarded
as a non-convex relaxation of RPCA by replacing nuclear norm with this rank
heuristic [286]. So, ROSL involved the following decomposition:

A = Dα+ S (133)
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Thus, ROSL recovers the low-rank matrix L from A by minimizing the number of
non-zero rows of α, and the sparsity of S as follows:

min
S,D,α

||α||row−0 + λ||S||l0 subj Dα+ S = A,DTD = Ik,∀i (134)

where the subspace bases D = U , the coefficients α = SV T and L = USV T

obtained by SVD. As the sparsity-inducing l1-norm is an acceptable surrogate for
the sparsity measure with l0-norm, Shu et al. [287] reformulated ROSL as the
following non-convex optimization problem:

min
S,D,α

||α||row−1 + λ||S||l1 subj Dα+ S = A,DTD = Ik,∀i (135)

where the row − 1-norm is defined as ||α||row−1 =
∑k

i ||αi||l2
Experimental results [286][287] on the I2R dataset [177] show that the recov-

ery accuracy and efficiency of ROSL is slightly better than PCP solved via EALM
[188], PCP solved via IALM [188], PCP solved by Random Projection [221] and
PCP solved by LMaFit [281]. Furthermore, ROSL is more than 10 times faster
than RPCA solved via IALM [188].

Algorithms for solving ROSL: Shu et al. [287] presented an efficient sparse
coding algorithm to minimize this rank measure and recoverthe low-rank matrix
at quadratic complexity of the matrix size. This, ROSL is solved using inexact
ADM (Alternating Direction Method) at the higher scale and inexact BCD (Block
Coordinate Descent) at the lower scale. This solver is called inexact ADM/BCD.
Finally, Shu et al. [287] developed a random sampling algorithm to further speed
up ROSL such that its accelerated version (ROSL+) has linear complexity with
respect to the matrix size. ROSL+ is more than 92 times faster than RPCA solved
via IALM [188].

5.3 Robust Orthogonal Complement Principal Component Analysis (ROC-PCA)

She et al. [277] proposed a robust orthogonal complement principal component
analysis (ROC-PCA). The aim is to deal with orthogonal outliers that are not
necessarily apparent in the original observation space but could affect the principal
subspace estimation. For this, She et al. [277] introduced a projected mean-shift
decomposition as follows:

AV⊥ = L+ S + E (136)

where V⊥ is n × m matrix verifying V T
⊥ V⊥ = I and characterizes the subspace

orthorgonal to the rank-r principal component subspace. AV⊥ gives the coordi-
nates after projecting the data onto the orthogonal components subspace and it
decomposed into three parts: mean L, outlier S and noise E. The corresponding
minimization problem of Equation 136 is formulated as follows:

min
V⊥,µ,S

1

2
||AV⊥ − L− S||2F +

∑

ij

P (||sij ||l2 ; λi) subj V T
⊥ V⊥ = I (137)
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where I is the identity matrix and sij is the ith row vector of S. P (S; λ) =
∑

ij λij ||sij ||l2 where ||.||l2 allows the minimization to address outliers in a row-wise
manner. She et al. [277] used generalized M-estimator to solve this minimization.
The computation is related to the orthogonality constraint, in addition to the
non-smooth and possibly non-convex P , and She et al. [277] developed a fast al-
ternating optimization algorithm on the basis of Stiefel manifold optimization and
iterative nonlinear thresholdings.

6 Robust Subspace Tracking

Subspace tracking addresses the problem when new observations come progres-
sively as in online streaming application. The algorithm cannot store all the input
data in memory. Thus, the new incoming observations need to be processed and
then discarded. The involved subspaces can have low-rank and/or sparse struc-
tures as in the previous decomposition frameworks. Table 6 shows an overview of
the different RMC decompositions. Their corresponding solvers as well as their
complexity can be seen in Table 13.

6.1 Grassmannian Subspace Tracking (GRASTA)

He et al. [119][120] proposed a Grassmannian robust adaptive subspace tracking
algorithm (GRASTA). This algorithm uses a robust l1-norm cost function in order
to estimate and track non-stationary subspaces when the streaming data vectors
are corrupted with outliers. This problem is solved via an efficient Grassmannian
augmented Lagrangian Alternating Direction Method.
Let denote the evolving subspace of Rn×m as St at time t with its dimension d

that is supposed to be much smaller than m and n. Let the columns of an mn× d

matrix Ut be orthonormal and span St. Tracking the subspace St is equivalent to
estimating Ut at each time step t. The observed vector data At is assumed to be
generated at each time step t as follows:

At = Utwt + St + Et (138)

where Utwt = Lt posses a low-rank structure, and wt is a d× 1 weight vector. The
orthonormal columns of U − t span the low-rank subspace of the images. The set
of all subspaces of Rn dimension d is called the Grassmannian, which is a compact
Riemannian manifold and is denoted by G(d, n). St is the n×1 sparse outlier vector
whose nonzero entries may be arbitrarily large, and St models foreground pixels in
the background/foreground separation. Et is the n× 1 zero-mean Gaussian white
noise with small variance. Then, He et al. [119][120] subsampled At on the index
set Ωt ⊂ {1, ..., n}. So, only a small subset of entries of At are kept. UΩt

is the
submatrix of Ut consisting of the rows indexed by Ωt. For a vector At ∈ Rn , AΩt

is the vector in R|Ωt| whose entries are those of At indexed by Ωt. To quantify the
subspace error when the data are incomplete and corrupted, GRASTA uses the
l1-norm to measure the subspace error from the subspace spanned by the column
of Ut to the observed vector AΩt

:

F (S; t) = min
w

||UΩt
w − AΩt

||l1 (139)
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If UΩt
is known or can be estimated, this l1-minimization problem can be solved by

Alternating Direction Method of Multipliers (ADMM) [34]. According to ADM,
the Equation (139) is equivalent to the following problem by introducing a sparse
outlier vector S ∈ R|Ωt|:

min
U,w,S

||S||l1 subj AΩt
= UΩt

w + S, , U ∈ G(d, n) (140)

This problem is not convex but it offers much more computationally efficient so-
lutions. Experimental results [119] on the I2R dataset [177] show that GRASTA
show more robustness than RPCA solved via IALM [40] and ReProCS [243] with
less time requirement.

Algorithm for solving GRASTA: The problem in Equation (140) is solved via
the augmented Lagrangian function:

L(S,w, y) = ||S||1 + yT (UΩt
w + S −AΩt

)

+
ρ

2
||UΩt

w + S − AΩt
||2l2 (141)

where y is the dual vector. The unknowns are S, w, y and U . If U is fixed, the
triple (S, w, y) is solved by ADMM [34] and if the triple (S,w, y) is fixed, U is
estimate by Grassmannian geodesic gradient descent [78]. GRASTA is then com-
posed by this alternating approach. The total computational cost of GRASTA is
O(|Ω| d3 + Td |Ω|+ nd2) where |Ω| is the number of samples per vector used, d is
the dimension of the subspace, n is the ambient dimension, and T is the number
of ADMM iterations.

6.2 Transformed Grassmannian Subspace Tracking (t-GRASTA)

He et al. [122][123] proposed t-GRASTA (transformed-GRASTA) which iteratively
performs incremental gradient descent constrained to the Grassmannian manifold
of subspaces in order to simultaneously estimate a decomposition of a collection
of images into a low-rank subspace, a sparse part of occlusions and foreground
objects, and a transformation such as rotation or translation of the image. Based
on RASL (Robust Alignment by Sparse and Low-rank decomposition) [239] which
poses the robust image alignment problem as a transformed version of RPCA, He
et al. [122][123] adapted Equation 140 as follows:

min
U,w,S,τ

||S||l1 subj AΩt
◦ τ = UΩt

w + S , U ∈ G(d, n) (142)

where τ are the transformations. He et al. [122][123] developed batch mode and
online mode algorithms. For batch mode, U is the iteratively learned aligned sub-
space in each iteration; while for online mode, U is a collection of subspaces which
are used for approximating the nonlinear transform, and they are updated itera-
tively for each video frame. To solve t-GRASTA, He et al. [122][123] used a ADDM
solver suitable for the locally linearized problem.Experimental results [122][123] on
sequences with simulating camera jitters show that t-GRASTA outperforms RASL
[239] and GRASTA [119]. Furthermore, t-GRASTA is four faster than state-of-the-
art algorithms and has half the memory requirement.
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6.3 Grassmannian Adaptive Stochastic Gradient with l2,1-norm (GASG21)

In the presence of column outliers corruption, He and Zhang [124] formulated the
GrassmannianAdaptive Stochastic Gradient for l2,1-normminimization (GASG21).
Moreover, the classical matrix l2,1-norm minimization problem is formulated in its
stochastic programming coun- terpart.

min
w

||Uw −A||l2,1 −
m∑

j=1

||Ujwj − Aj ||l2 subj U ∈ G(d, n) (143)

The l2,1-norm minimization is well suitable for column outliers corruption. For
inliers which can be well represented by the subspace, the residues are small. For
outliers which can not be fitted into the subspace, the residues are large. Then
Equation 143 means that HHe and Zhang [124] are optimizing U which can best
fit inliers to reduce the sum of l2 fit residues. To solve GAS21, He and Zhang
[124] solved the l2,1- norm minimization by stochastic gradient descent (SGD).
Experimental results [124] show that GAS21 outperfoms slightly OP [342] with
less time computation.

6.4 Lp-norm Robust Online Subspace Tracking (pROST)

GRASTA performs a gradient descent on the Grassmannian and aims at optimiz-
ing an l1-cost function to mitigate the effects of heavy outliers in the subspace
tracking stage. He et al. [119] overcame the nondifferentiability of the l1-norm by
formulating an augmented Lagrangian optimization problem at the cost of dou-
bling the number of unknown parameters. Although the l1-norm leads to favor-
ably conditioned optimization problems it is well-known that penalizing with non-
convex l0-surrogates allows reconstruction even in the case when l1-based meth-
ods fail. Therefore, Hage and Kleinsteuber [115][268] proposed a framework that
combines the advantages of Grassmannian optimization with non-convex sparsity
measures. This method called pROST focuses primarily on reconstructing and
tracking the underlying subspace and can operate on both fully and incompletely
observed data sets. The involved decomposition is the same than in GRASTA (See
Equation 138) but the minimization problem is formulated as follows:

min
Rank(L)≤k

||UW − A||Lp
(144)

where UW = L. ||.||Lp
is a smoothed and weighted Lp-quasi-norm cost function to

achieve robustness against outliers, and it is defined as follows:

Lp(X) =
m∑

i=1

(x2
i + µ)

1
p 0 < p < 1 (145)

Spatial and temporal proximity of pixels leads that corresponding pixels in con-
secutive frames are likely to have the same label. Thus, Hage and Kleinsteuber
[115][268] used this knowledge to increase the robustness of the residual cost. The
contribution of labeled foreground pixels to the overall penalty is reduced by intro-
ducing additional pixel weights wi. If the pixel was previously labeled a foreground
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pixel and is then likely to remain an outlier in the current frame, the weight is
small to avoid foreground objects compromising the background. If the pixel was
labeled a background pixel, the weight is equal to one for an adaptive model main-
tenance. Thus, the weighted smoothed Lp-quasi-norm cost function is defined as
follows:

Lp(X) =
m∑

i=1

wi(x
2
i + µ)

1
p 0 < p < 1 (146)

Then, an alternating online optimization framework for estimating the subspace
makes the algorithm suitable for online subspace tracking. In contrast to GRASTA,
the method presented directly optimizes the cost function and thus operates with
less than half the number of unknowns.

pROST can be applied in real-time background/foreground separation and
makes use of the spatio-temporal dependencies between pixel labels. This leads to
especially good performance in presence of bootstrapping, large foreground objects
(which often arise in RPCA-based methods) and jittery cameras. Experimental
results [268] on the ChangeDetection.net dataset [93] confirm that the proposed
method can cope with more outliers and with an underlying matrix of higher rank
than GRASTA. Particularly, pROST outperforms GRASTA in the case of multi-
modal backgrounds.

Algorithm for solving pROST: Hage and Kleinsteuber [115] [268] used a Conju-
gate Gradient (CG) type algorithm on the Grassmannian for solving the individual
minimization tasks. Like all optimization methods on the Grassmannian, the algo-
rithm allows to upper-bound the dimension of the underlying subspace and easily
extends to the problem of robustly tracking this subspace.

6.5 Grassmannian Online Subspace Updates with Structured-sparsity (GOSUS)

Xu et al. [343] studied the problem of online subspace learning when sequential ob-
servations involves structured perturbations. As the observations are an unknown
mixture of two components presented to the model sequentially, if no additional
constraints is imposed on the residual, it often corresponds to noise terms in the
signal which were unaccounted for by the main effect. To address this problem,
Xu et al. [343] imposed structural contiguity, which has the effect of leveraging
the secondary terms as a covariate that helps the estimation of the subspace itself,
instead of merely serving as a noise residual.

min
UTU=Id,W,S

l∑

i=1

µi||DiS||l2 +
λ

2
||UW + S −A||2l2 (147)

where UW = L posses a low-rank structure, S posses a sparse structure, and Di is
diagonal matrix which denotes a group i. Each diagonal element of Di corresponds
to the presence/absence of a pixel in the ith group. So, Dij is equal to one if pixel

j is in group i, and it is equal to zero otherwise. Thus, the term
∑l

i=1 µi||DiS||l2
is penalty function where µi is the weight for group i and l is the number of such
groups. This group sparsity function has a mixed norm structure. The inner norm
is either l2 forcing pixels in the corresponding group to be similarly weighted, and
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the outer norm is l1 which encourages sparsity, that is.only few groups are selected.
The corresponding online estimation procedure for Equation 147 is written as
an approximate optimization process on a Grassmannian, called Grassmannian
Online Subspace Updates with Structured-sparsity (GOSUS). GOSUS is solvable
via an alternating direction method of multipliers (ADMM) [34] applied in a block-
wise manner. Experimental results [343] on the Wallflower dataset and the I2R
dataset [177] show that GOSUS outperforms slightly RPCA solved via IALM
[188], GRASTA[119] and BRMF [366].

6.6 Fast Adaptive Robust Subspace Tracking (FARST)

In spite of these good properties, the global convergence of GRASTA is note
proved as developed in [4]. Empirically, it is slowly adapted to background change
or not adapted to dynamic background. On the contrary, FARST [4] has an op-
timal global convergence while sharing some favorable properties with GRASTA.
FARST shares the procedure of separating frames into background and foreground
with GRASTA, but it uses a recursive least square algorithm for subspace tracking,
which makes it fast adapted to background change and dynamics. Every time a
video frame streams in, two alternating procedures are repeatedly done. First, basis
images are updated by a recursive least square algorithm. Secondly, foreground im-
ages are extracted by solving the l1-minimization problem. Furthermore, FARST
is an online algorithm fast adapted to background change. Results [4] show that
FARST outperforms GRASTA [119] and PRMF [321] in the presence of dynamic
backgrounds. FARST is solvable via an alternating direction method of multipliers
(ADMM) [34].

7 Robust Low Rank Minimization

Low-rank minimization is a minimization problem involving a cost function which
measures the fit between a given data matrix A and an approximating low-rank
matrix L. Table 18 shows an overview of the different Robust Low Rank Minimiza-
tion (RLRM) methods and the corresponding solvers. Furthermore, the complexity
of the solverts can be seen in Table 13.

7.1 LRM with contiguous outliers detection (DECOLOR)

Zhou et al. [391] proposed a formulation of outlier detection in the low-rank rep-
resentation, in which the outlier support and the low-rank matrix are estimated.
This method is called Detecting Contiguous Outlier detection in the Low-rank
Representation (DECOLOR). The decomposition involves the same model than
SPCP in Equation (43), that is A = L + S + E. So, the following formulation is
proposed to achieve the decomposition:

min
L,S

αrank(L) + β||S||l0 +
1

2
||A− L− S||2F

subj rank(L) ≤ r (148)
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Categories Authors - Dates

Decompositions

Contiguous Outlier Detection (DECOLOR) Zhou et al. (2011) [391]

Direct Robust Matrix Factorization (DRMF) Xiong et al. (2011) [341]

Direct Robust Matrix Factorization-Rows (DRMF-R) Xiong et al. (2011) [341]

Probabilistic Robust Matrix Factorization (PRMF) Wang et al. (2012) [321]

Bayesian Robust Matrix Factorization (BRMF) Wang et al. (2013) [366]

Markov Bayesian Robust Matrix Factorization (MBRMF) Wang et al. (2013) [366]

Practical Low-Rank Matrix Factorization (PLRMF) Zheng et al. (2012) [386]

Low Rank Matrix Factorization with MoG noise (LRMF-MOG) Meng et al. (2013) [216]

Unifying Nuclear Norm and Bilinear Factorization (UNN-BF) Cabral et al. (2013) [37]

Low Rank Matrix Factorization with General Mixture noise (LRMF-GM) Cao et al. (2013) [42]

Robust Rank Factorization (RRF) Sheng et al. (2014) [282]

Variational Bayesian Method (VBMF-l1) Zhao et al. (2015) [384]

Robust Orthogonal Matrix Factorization (ROMF) Kim and Oh (2015) [160]

Contiguous Outliers Representation via Online Low-Rank Approximation (COROLA) Shakeri and Zhang (2015) [272]

Online Low Rank Matrix Completion (ORLRMR) Guo (2015) [104]

Matrix Factorization - Elastic-net Regularization (FactEN) Kim et al. (2015) [159]

Incremental Learning Low Rank Representation - Spatial Constraint (LSVD-LRR) Dou et al. (2015) [73]

Online Robust Low Rank Matrix Recovery (ORLRMR) Guo (2015) [105]

Solvers

Alternating Algorithm (AA) Zhou et al. (2011) [391]

Block Coordinate Descent Strategy (BCDS) Xiong et al. (2001) [341]

Conditional EM Algorithm (CEM) Jebara and Pentland (1999) [148]

Augmented Lagrangian Multiplier (ALM) Zheng et al. (2012) [386]

Alternative Direction Descent Algorithm (ADDA) Sheng et al. (2014) [282]

Table 18 Robust Low Rank Minimization: A Complete Overview. The first column indicates
the concerned category and the second column the name of each method. Their corresponding
acronym is indicated in the first parenthesis. The third column gives the name of the authors
and the date of the related publication.

where /alpha and /beta are regularization parameters. Then, Zhou et al. [391] de-
fined the foreground support matrix of S, denoted F ∈ {0,1}m×n as follows:

Fij = 0 if the pixel ij is background
Fij = 1 if the pixel ij is foreground

Suppose that (L∗, S∗) is a minimizer of Equation (148). As long as S∗
ij 6= 0,

S∗
ij = Aij − Lij∗ minimize the Equation (148). That is:

Aij − Lij∗ − S∗
ij = Aij − Lij∗ if S∗

ij = 0 (Fij = 0)
Aij − Lij∗ − S∗

ij = 0 if S∗
ij 6= 0 (Fij = 1)

Thus, the following equation is obtained:

min
L,S

αrank(L) + β||S||l0 +
1

2

∑

(i,j):Fij=0

(Aij − Lij)
2

subj rank(L) ≤ r (149)

Let PF (X) represents the orthogonal projection of the matrix X onto the linear
space of matrices supported by F :

PF (X)(i, j) = 0 if Fij = 0 (150)

PF (X)(i, j) = Xij if Fij = 1 (151)

and PF̄ (X) is its complementary projection, i.e PF (X) + PF̄ (X) = X. Thus, the
Equation (152) is obtained:

min
L,S

αrank(L) + β||S||l0 +
1

2
|PF̄ (L− S)||2F
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subj rank(L) ≤ r (152)

The binary states of entries in foreground support F are modeled by a Markov
Random Field because the foreground objects are contiguous pieces with relatively
small size. Based on the first order MRFs, the following regularizer on F is used:

||Cvec(F )||l1 =
∑

(ij,kl)∈N

∣
∣Fij − Fkl

∣
∣ (153)

where C is the node-edge incidence matrix of a graph G with m×n nodes, and N is
the set of all pairs of adjacent nodes in G. ij and kl denote the nodes corresponding
to Sij and Skl, respectively. Then, the following energy function is obtained by
relaxing rank(L) with the nuclear norm and adding the continuity constraint on
F :

min
L,S

α||L||∗ + β||F ||l1 +
1

2
||PF̄ (A− L)||2F + γ||Cvec(F )||l1 (154)

where α > 0 is a parameter which controls the complexity of the background
model. S is recovered by S = PF (L− S).
Experimental results [391] on the I2R dataset [177] show that DECOLOR out-
performs PCP solved via IALM [40] and two conventional models which are the
mean model and the MOG model [298] but the main drawback of DECOLOR is its
prohibitive computation time. However, the code called DECOLOR33 is provided

Algorithm for solving DECOLOR: The objective function is non-convex and its
include both continuous and discrete variable. Zhou et al. [307] adopted an alter-
nating algorithm that separates the energy minimization over B and F into two
steps. B-step is a convex optimization problem and F -step is a combinatorial opti-
mization problem. The optimal B is computed efficiently by the SOFT-IMPUTE
[215] algorithm and the outlier support S is estimated in polynomial time using
graph-cut [35][161].

7.2 LRM with Direct Robust Matrix Factorization (DRMF)

Xiong et al. [341] proposed a direct robust matrix factorization (DRMF) assuming
that a small portion of the matrix A has been corrupted by some arbitrary outliers.
The aim is to get a reliable estimation of the true low-rank structure of this
matrix and to identify the outliers. To achieve this, the outliers are excluded from
the model estimation. The decomposition involves the same model than PCP in
Equation (20), that is A = L+ S. The direct formulation of DRMF is written as
follows:

min
L,S

||A− S − L||F subj rank(L) ≤ r, ||S||l0 ≤ p (155)

where L is the low-rank approximation, r is the rank, S is the matrix of outliers,
and p is the maximal number of entries that can be ignored as outliers. Compar-
ing DRMF to the conventional LRM, the difference is that the outliers S can be
excluded from the low-rank approximation, as long as the number of outliers is
not too large, that is, S is sufficiently sparse. By excluding the outliers from the
low-rank approximation, Xiong et al. [341] ensured the reliability of the estimated

33http://bioinformatics.ust.hk/decolor/decolor.html
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low-rank structure. PCP [40] is the convex relaxation of DRMF.
Experimental results [341] on the I2R dataset [177] show that DRMF outperforms
SVD [92], PCP solved via IALM [40] and SPCP [393]. Furthermore, the code called
DRMF34 is provided.

Algorithm for solving DRMF: Optimization problems involving the rank or
the l0-norm that is set cardinality are difficult to solve. Nevertheless, the DRMF
problem admits a simple solution due to its decomposable structure in L and S.
This problem can be solved by a block coordinate descent strategy. First, the
current outliers S are fixed. Secondly, they are excluded from A to get the clean
data C. Then, Xiong et al. [341] fit L based on C. Then, the outliers S are updated
based on the current errors E = A − L. The algorithm solved the factorization
problem as follows:

arg minL
L,S

||C − L||F subj rank(L) ≤ r (156)

where C = A− S.Then, the outlier detection problem is solved as follows:

arg minS
L,S

||E − L||F subj ||S||l0 ≤ p (157)

where E = X − L. The solution to the low-rank approximation problem (156) is
directly given by SVD. Since only the first r singular vectors are required, the
computation is accelerated using a partial SVD algorithm.

7.3 LRM with Direct Robust Matrix Factorization for Rows (DRMF-R)

Xiong et al. [341] proposed an extension of DRMF to deal with the presence of
outliers in entire columns. This method is called DRMF-Row (DRMF-R). Instead
of counting the number of outlier entries, the number of of outliers patterns is
counted using the structured l2,0-norm. The direct formulation of DRMF-R is
written as follows:

min
L,S

||A− S − L||F subj rank(L) ≤ r, ||S||l2,0 ≤ p (158)

where p is the maximal number of outlier rows allowed. OP [342] is the convex
relaxation of DRMF-R. No experimental results in Xiong et al. [341] are provided
for DRMF-R on background/foreground separation.

7.4 Probabilistic Robust Matrix Factorization (PRMF)

Wang et al. [321] proposed a probabilistic method for robust matrix factorization
(PRMF) based on the l1-norm loss and l2-regularizer, which bear duality with the
Laplace error and Gaussian prior, respectively. For model learning, Wang et al.
[321] used an efficient expectation- maximization (EM) algorithm by exploiting
a hierarchical representation of the Laplace distribution as a scaled mixture of
Gaussians. So, Wang et al. [321] considered the following probabilistic model:

34http://www.cs.cmu.edu/ lxiong/
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A = UV ′ + S subj
Uij |λU ∼ N(Uij |0, λ−1

U ),
Vij |λV ∼ N(Vij |0, λ−1

V )
(159)

where UB−1BV ′ = UV ′ holds for any r × r non singular matrix B. By exploiting
U and V as model parameters with λU , λV and λ as hyperparameters with fixed
values, MAP estimation is used to find U and V . From the rule of Bayes, the
following equivalence can be written:

p(U,V |A, λ, λU , λV ) ∝ p(A|U,V, λ)p(U,λU )p(V, λV ) (160)

Thus,

log (p(U,V |A, λ, λU , λV )) = −λ||A− UV ′||l1 − λU
2

||U ||2l2 − λV
2

||V ||2l2 + C (161)

where C is a constant term independent of U and V . Maximizing log (p(U,V |A, λ, λU , λV ))
w.r.t. U and V is equivalent to the following minimization problem:

min
U,V

||A− UV ′||l1 +
λ′U
2

||U ||2l2 +
λ′V
2

||V ||2l2 (162)

where λ′U = λU

λ and λ′V = λV

λ . Experimental results [321] on the I2R dataset
[177] show that PRMF gives similar visual results than PCP solved via IALM
[40], GoDec [389] and BRPCA [71] with less computation time. The correspond-
ing code for PRMF35 are provided in batch mode and online mode.

Algorithm for solving PRMF: While the model formulation given in Equation
161 is rather straightforward, solving the optimization problem directly would be
computationally challenging due to the non-smooth nature of the Laplace distri-
bution. To address this computational issue, Wang et al. [321] reformulated the
model by exploiting a two-level hierarchical representation of the Laplace distri-
bution and EM algorithm is then used to solve this hierarchical model.

7.5 Bayesian Robust Matrix Factorization (BRMF)

PRMF present the following drawbacks: 1) it assumed that the basis and coefficient
matrices are generated from zero-mean fixed-variance Gaussian distributions. This
assumption is too restrictive, limiting the model flexibility needed for many real-
world applications, 2) PRMF treats each pixel independently with no clustering
effect but the moving objects in the foreground usually form groups with high
within-group spatial or temporal proximity, 3) the loss function is defined based
on the l1 norm and it results to be not robust enough when the number of outliers
is large. To address these three limitations, Wang et al. [366] proposed a full
Bayesian formulation called Bayesian Robust Matrix Factorization (BRMF). The
framework is similar to PRMF but the differences are the following ones:

1. For the generative proces, BRMF assumes that the mean vectors and precision
matrices of the rows of U and V have conjugate priors. Learning the mean
vectors offers more flexibility for the generation of A and learning the precision
matrices captures the correlation between different features.

35http://winsty.net/prmf.html
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2. BRMF used a Laplace mixture with the generalized inverse Gaussian distribu-
tion as the noise model to further enhance model robustness.

3. BRMF contained a Markov extension (MBRMF) which assumes that the out-
liers exhibit spatial or temporal proximity.

Experimental results [366] on the SABS dataset [36] show that MBRMF out-
performs PCP solved via IALM [40], BRPCA [71], VBRPCA [17], DECOLOR
[391] and PRMF [321]. The corresponding codes for BRMF36 and MBRMF36 are
provided.

7.6 Practical Low-Rank Matrix Factorization (PLRMF)

Several LRM methods usually fail to minimize the l1-based nonconvex objective
function sufficiently. Zheng et al. [386] proposed to add a convex nuclear-norm
regularization term to improve convergence, without introducing too much het-
erogenous information. Thus, the robust l1-norm is choosen as the measurement.
Then, Zheng et al. [386] enforced U to be column orthogonal to shrink the solution
space, and added a nuclear- norm regularization term so as to improve convergence.
This method called Practical Low-Rank Matrix Factorization (PLRMF) is based
on the following problem:

min
U,V

||W5 ⊙ (A− UV )||l1 (163)

where Ais the data matrix with a priori rank of r. The unknowns are U ∈ Rm×r

and V ∈ Rr×n, which account for the rank constraint implicitly. W5 is an indi-
cator matrix of the same size as A where the entry value of 1 means that the
component at the same position in A is observed, and 0 otherwise. The operator
⊙ denotes Hadamard element-wise matrix multiplication. U is constrained to be
an orthogonal matrix and the following minimization problem is then obtained:

min
U,V

||W5 ⊙ (A− UV )||l1 subj UTU = Ir (164)

Therefore, Zheng et al. [386] used a nuclear-norm regularizer ||B||∗ = ||UV ||∗ where
||UV ||∗ = ||V ||∗ = due to UTU = Ir. The regularized minimization problem is then
formulated as follows:

min
U,V

||W5 ⊙ (A− UV )||l1 + λ||V ||∗ subj UTU = Ir (165)

where λ is is a weighting factor and should be small enough to keep the regularized
objective in Equation 165. Experimental results [386] are presented on Structure
from Motion (SFM) but not on background/foreground separation.

Algorithm for solving PLRMF (RegL1-ALM): Zheng et al. [386] developed a
scalable first-order optimization algorithm to solve the regularized formulation on
the basis of the augmented Lagrange multiplier (ALM) method with Gauss-Seidel
iteration. The corresponding code called RegL1-ALM37 is provided.

36http://winsty.net/brmf.html
37https://sites.google.com/site/yinqiangzheng/
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7.7 Low Rank Matrix Factorization with MoG noise (LRMF-MOG)

The previous low-rank factorization used loss functions such as the l2-norm and l1-
norm losses. l2-norm is optimal for Gaussian noise, while l1-norm is for Laplacian
distributed noise. However, real data in video are often corrupted by an unknown
noise distribution, which is unlikely to be purely Gaussian or Laplacian. To ad-
dress this problem, Meng et al. [216] proposed a low-rank matrix factorization
problem with a Mixture of Gaussians (MoG) noise model. Since the MoG model
is a universal estimator for any continuous distribution, it is able to represent a
wider range of noise distributions. The parameters of the MoG model are esti-
mated with a maximum likelihood method, while the subspace is computed with
standard approaches. Thus, the decomposition is made as follows: A = UV T + S.
Given the likelihood related to the MoG distribution, the aim is to maximize the
loglikelihood function w.r.t the MoG parameters (Π,Σ) and the LRMF parameters
(U , V ) as follows:

max
U,V,Π,Σ

∑

i,j∈Ω

K∑

k=1

πkN(xij |(ui)T vj , σ2
k) (166)

with the MoG distribution constraints on S.
Experimental results [216] on the I2R dataset [177] show that LRMF-MOG

outperforms SVD [92], RSL [310], PCP solved via IALM [40], CWM [168], PCA-
l1 [168].

7.8 Unifying Nuclear Norm and Bilinear Factorization

Cabral et al. [37] proposed a low-rank matrix decomposition which can be achieved
with both bilinear factorization and nuclear norm regularization models. By ana-
lyzing the conditions under which these two decompositions are equivalent, Cabral
et al. [37] proposed a unified model that inherits the benefits of both which is for-
mulated as follows:

min
U,V

f(A− UV T ) +
λ

2
(||U ||2F + λ||V ||2F ) (167)

where L = UV T is the low-rank matrix with known rank r. Cabral et al. [37]
showed that the existence of local minima in Equation 167 depends only on the
dimension r imposed on matrices U and V . Equation 167 can be written as follows:

min
L,U,V

||W5 ⊙ (A− L)||l1 +
λ

2
(||U ||2F + λ||V ||2F ) subj L = UV T (168)

where W5 ∈ Rm×n is a weight matrix that is used to denote missing data (i.e.,
w5,(ij) = 0) and observed data (i.e., w5,(ij) = 1). Furthermore, Cabral et al. [37]
developed an ALM (Augmented Lagrange Multiplier) to solve Equation 167.

Experimental results [37] on the I2R dataset [177] show that UNNBF out-
performs PCP solved via IALM [40], GRASTA [119] and PRMF [321] with less
computation times.
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7.9 Robust Rank Factorization (RRF)

Sheng et al. [282] proposed a l1-regularized Outlier Isolation and REgression
(LOIRE) model. The measurement process is written in the following decomposi-
tion form:

A = L+ S + E = BX + S + E (169)

where A the observation through B, S denotes the outlier vector and E denotes a
dense Gaussian noise. By adding a penalty term ||S||1 to the least mean squares
on E, Sheng et al. [282] derived a minimization problem for X as follows:

min
S,E

||E||l2 + µ||S||l1 subj µ > 0,A = BX + S + E (170)

where µ is a regularization term. This formulation is then extended to realize
robust rank factorization which can be applied to recover low-rank structures from
massive contaminations.

min
S,X

||A−BX − S||2l2 +
λ

2
||S||l1 subj µ > 0, A = BX + S + E (171)

where the matrix B is generally unknown, then a simple way to find a most
appropriate matrix B that fits the problem is to search one that minimizes the
above optimization problem:

min
B

min
S,X

||A −BX − S||2l2 +
λ

2
||S||l1 subj λ > 0,A = BX + S + E (172)

To ensure a unique solution for matrix B and X, each column of B should have a
unit length. To solve LOIRE, Sheng et al. [282] developed an Alternative Matrix
Descent Algorithm (AMDA). Experimental results [282] on the I2R dataset [177]
show that LOIRE outperforms the PCP solved via IALM [40] and SemiSoft GoDec
[389] in terms of computation efficiency with a similar visual accuracy.

8 Experimental Evaluation

First, we remind the challenges met in video-surveillance, a brief description of the
Background Models Challenges (BMC) dataset [315] and the measures used for
the performance evaluation. Then, we provide the evaluation and the comparison
on 32 algorithms of decomposition into low-rank plus additive matrices. We have
chosen the BMC dataset as a recent large-scale dataset in order to compare these
algorithms. Qualitative and quantitative results are provided and discussed among
this dataset. Several codes are available in the LRSLibrary [293] and some software
packages for partial SVD computation can be found in [187].

8.1 Challenges in Video Surveillance

Three main conditions assures a good functioning of the background subtraction in
video surveillance: the camera is fixed, the illumination is constant and the back-
ground is static. In practice, several challenges appear and perturb this process.
They are the following ones:
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– Noise image: It is due to a poor quality image source such as images acquired
by a web cam or images after compression.

– Camera jitter: In some conditions, the wind may cause the camera to sway
back and so it cause nominal motion in the sequence. Foreground mask show
false detections due to the motion without a robust maintenance mechanism.

– Camera automatic adjustments: Many modern cameras have auto focus,
automatic gain control, automatic white balance and auto brightness control.
These adjustments modify the dynamic in the color levels between different
frames in the sequence.

– Illumination changes: They can be gradual such as ones in a day in an outdoor
scene or sudden such as a light switch in an indoor scene.

– Bootstrapping: During the training period, the background is not available in
some environments. Then, it is impossible to compute a representative back-
ground image.

– Camouflage: A foreground objects pixel characteristics may be subsumed by
the modeled background. Then, the foreground and the background can be
distinguished.

– Foreground aperture: When a moved object has uniform colored regions,
changes inside these regions may not be detected. Thus, the entire object may
not appear as foreground. Foreground masks contain false negative detections.

– Moved background objects: Background objects can be moved. These ob-
jects should not be considered part of the foreground. Generally, both the initial
and the new position of the object are detected without a robust maintenance
mechanism.

– Inserted background objects: A new background object can be inserted.
These objects should not be considered part of the foreground. Generally, the
inserted background object is detected without a robust maintenance mecha-
nism.

– Dynamic backgrounds: Backgrounds can vacillate and this requires models
which can represent disjoint sets of pixel values.

– Beginning moving object: When an object initially in the background moves,
both it and the newly revealed parts of the background called ”ghost” are
detected.

– Sleeping foreground object: Foreground object that becomes motionless can-
not be distinguished from a background object and then it will be incorporated
in the background. How to manage this situation depends on the context. In-
deed, in some applications, motionless foreground objects must be incorporated
and in others it is not the case.

– Shadows: Shadows can be detected as foreground and can come from back-
ground objects or moving objects [125].

8.2 Background Models Challenge Dataset

The BMC (BackgroundModels Challenge38) dataset consists of both synthetic and
real videos to permit a rigorous comparison of background subtraction techniques
for the corresponding workshop organized within Asian Conference in Computer
Vision (ACCV). This dataset [315] consists of the following sequences:
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– Synthetic Sequences: A set of 20 urban video sequences rendered with the
SiVIC simulator.With this tool, the associate ground truth was rendered frame
by frame for each video at 25 fps. Several complex scenarios are simulated such
as fog, sun and acquisition noise for two environments (a rotary and a street).
A first part of 10 synthetic videos are devoted to the learning phase, while the
10 others are used for the evaluation.

– Real Sequences: The BMC dataset also contains 9 real videos acquired from
static cameras in video-surveillance contexts for evaluation. This real dataset
has been built in order test the algorithms reliability during time and in diffi-
cult situations such as outdoor scenes. So, real long videos about one hour and
up to four hours are available, and they may present long time change in lu-
minosity with small density of objects in time compared to previous synthetic
ones. Moreover, this real dataset allows to test the influence of some difficulties
encountered during the object extraction phase, as the presence of vegetation,
cast shadows or sudden light changes in the scene.

8.3 Performance Evaluation Metrics

We used ground truth based metrics computed from the true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN). FP and FN refer
to pixels misclassified as foreground (FP) or background (FN) while TP and TN
account for accurately classified pixels respectively as foreground and background.
Then, we computed the metrics used in the BMC dataset [279] such as the de-
tection rate, the specificity, the false positive rate, the false negative rate, the
percentage of wrong classifications, the precision and the F-Measure. Detection
rate gives the percentage of corrected pixels classified as background when com-
pared with the total number of background pixels in the ground truth:

DR =
TP

TP + FN
(173)

The specificity is computed as follows:

Specificity =
TN

TN + FP
(174)

The false positive rate and the false negative rate are defined as follows:

FPR =
FP

FP + TN
(175)

FNR =
FN

TP + FN
(176)

The percentage of wrong classifications is defined as follows:

PWC =
100(FN + FP )

TP + FN + FP + TN
(177)

38http://bmc.iut-auvergne.com/
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Precision gives the percentage of corrected pixels classified as background as com-
pared at the total pixels classified as background by the method:

Precision =
TP

TP + FP
(178)

A good performance is obtained when the detection rate is high without altering
the precision. A precision score of 1.0 means that every pixel labeled as belonging
to the class foreground in the mask does indeed belong to the corresponding class
in the ground-truth but pixels classified as background in the mask can be labeled
incorrectly whereas a recall of 1.0 means that every pixel from the class foreground
was labeled as belonging to the class foreground but says nothing about how many
other pixels were incorrectly also labeled as belonging to foreground. We also com-
puted the F-Measure (or effectiveness measure) as follows:

F =
2 ∗DR ∗ Precision

DR+ Precision
(179)

The F-Measure characterizes the performance of classification in Precision-Detection
Rate space. The aim is to maximize F closed to one.

8.4 Experimental Results

We made the experimental evaluation by using the quality metrics which are com-
putable thanks to a free software named BMC Wizard. The results of the first
workshop BMC 2012 are available at the related website. We evaluated the per-
formance of the following 32 algorithms grouped by category:

– Basic (2): PCA [233] and RSL [310].
– Robust Principal Components Analysis (20):

1. RPCA-PCP: EALM [188], IALM [188], ADM [368], LADMAP [190], LSADM
[90], LADM [281], BLWS [118], FAM [259].

2. PCA-SPCP: NSA [12], PSPG [14], R2PCP [127] and Lag-SPCP-QN [10].
3. RPCA-QPCP [20].
4. RPCA-BPCP [306].
5. RPCA-SO: OR-PCA [144] and OR-PCA with MRF [147].
6. Bayesian RPCA: BRPCA [71], VBRPCA [17] and MOG-RPCA [385].
7. Approximated RPCA: GoDec [389] and SemisoftGoDec [389].

– Robust Non-negative Matrix Factorization (1): MahNMF [99].
– Robust Subspace Recovery (1): ROSL [287].
– Robust Subspace Tracking (3): GRASTA [119], pROST [115] and GOSUS

[343].
– Robust Low-rank Minimization (4): DECOLOR [391], DRMF [341], PRMF

[321] and PLRMF (RegL1-ALM) [386].
– MOG (1): Adaptive MOG [284].

Table 19 and Table 20 show the evaluation results using the synthetic videos.
Table 21 and Table 22 shows the evaluation results using the real videos for evalua-
tion phase. First, we provide a short qualitative analysis in presence of illumination
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changes and dynamic backgrounds. Then, we give a full quantitative evaluation.
For the experimental setup, we used the parameters set in each original paper of
the corresponding algorithm. To reduce the computation time in the experiments,
we initialized batch algorihms with 200 frames instead of 300 frames (taken in the
survey restricted on the RPCA framework [33]). Thus, the performance in terms of
F-measure are lower for the shared algorithms between this paper and the survey
on the PCA framework [33]. But, the rank of the algorithms is the same showing
the stability of the algorithms and the evaluation. Thus, the conclusions made in
[33] are preserved. Because visual results of each algorithm seem very similar (as
in [33]), we have done a full quantitative evaluation.

8.5 Analysis of the Experimental Results

8.5.1 Synthetic Videos

From Table 19 and Table 20, we can see that the algorithms that gives the best
recall (more than 0.9) are the following ones (in italic in the tables): FAM [259],
MahNMF [99], ROSL [287] and DECOLOR [391]. For the precision, the algorithms
R2PCP [127], OR-PCA with MRF [147], GRASTA [119], pROST [115] and DRMF
present the higher precision. For the F-Measure, OR-PCA with MRF [147] gives
the best performance followed by Lag-SCP-QN [10], OR-PCA without MRF [144],
DECOLOR [391] and R2PCP [127]. We have indicated in the tables for the fifth
best score the rank of the algorithm between parenthesis. Figure 4 shows a visual
overview of the F-Measure for the 32 algorithms and the adaptive MOG [284].
The algorithm OR-PCA with MRF gives the highest F-Measure. For the stable
version of PCA, Lag-SCP-QN [10] shows the best performance. DECOLOR [391]
shows the best robustness for the low-rank methods but it is very time consuming
instead of DRMF [341] and PRMF [321].

8.5.2 Real Videos

From Table 21 and Table 22, we can see that for the F-Measure, OR-PCA with
MRF [147] gives the best performance followed by OR-PCA without MRF [144],
ROSL [287], PRMF [321] and DRMF [341]. Thus, the algorithm OR-PCA with
and without MRF has stable performance both on synthetic and real videos by
preserving their rank. Otherwise, ROSL, PRMF and DRMF are more robust on
real video than on synthetic videos. We has not conducted experiments on real
videes for DECOLOR and RegL1-ALM due to very expensive computation time,
and for GOSUS due to an implementation problem in the original code when very
long sequences appear. Figure 5 shows a visual overview of the F-Measure for the
32 algorithms and the adaptive MOG [284].

Another main conclusion is that most of the RPCA algorithms outperforms
the adaptive MOG for the synthetic videos as for real videos too. Figure 4 and
Figure 5 show the F-Measure of the evaluated algorithms for synthetic and real
videos, respectively.
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Algorithms Measure Street Rotary Average
112 212 312 412 512 122 222 322 422 522

RSL Recall 0.877 0.874 0.804 0.821 0.871 0.872 0.870 0.867 0.773 0.741 -
De La Torre et al. [310] Precision 0.646 0.642 0.616 0.551 0.526 0.659 0.656 0.649 0.618 0.607 -

F-measure 0.746 0.743 0.699 0.672 0.661 0.752 0.750 0.744 0.688 0.668 0.712

PCA Recall 0.683 0.723 0.700 0.726 0.726 0.716 0.635 0.558 0.584 0.613 -
Oliver et al.[233] Precision 0.710 0.794 0.816 0.785 0.748 0.755 0.760 0.796 0.625 0.719 -

F-measure 0.742 0.757 0.655 0.659 0.637 0.730 0.747 0.721 0.653 0.716 0.701

RPCA-PCP Candes et al. [40]
EALM Recall 0.607 0.599 0.533 0.516 0.509 0.656 0.651 0.569 0.468 0.596 -
Lin et al. [188] Precision 0.831 0.821 0.822 0.800 0.606 0.756 0.753 0.760 0.762 0.639 -

F-measure 0.705 0.696 0.652 0.633 0.554 0.703 0.699 0.653 0.587 0.617 0.649
IALM Recall 0.774 0.689 0.741 0.738 0.677 0.743 0.750 0.741 0.705 0.705 -
Lin et al. [188] Precision 0.662 0.811 0.719 0.743 0.664 0.779 0.769 0.740 0.773 0.747 -

F-measure 0.715 0.746 0.730 0.741 0.670 0.761 0.759 0.740 0.737 0.725 0.732
ADM Recall 0.699 0.691 0.713 0.737 0.680 0.727 0.728 0.711 0.658 0.718 -
(LRSD)Yuan and Yang [368] Precision 0.795 0.815 0.750 0.749 0.672 0.787 0.788 0.744 0.791 0.736 -

F-measure 0.744 0.749 0.731 0.742 0.676 0.756 0.757 0.727 0.719 0.727 0.732
LADMAP Recall 0.699 0.691 0.724 0.738 0.681 0.727 0.730 0.713 0.655 0.718 -
Lin et al. [190] Precision 0.795 0.815 0.741 0.748 0.673 0.787 0.787 0.745 0.793 0.737 -

F-measure 0.744 0.749 0.733 0.743 0.677 0.756 0.757 0.729 0.718 0.727 0.728
LSADM Recall 0.724 0.707 0.756 0.712 0.690 0.728 0.730 0.742 0.632 0.680 -
Goldfarb et al. [90] Precision 0.803 0.815 0.787 0.785 0.592 0.790 0.788 0.742 0.806 0.719 -

F-measure 0.762 0.758 0.736 0.747 0.638 0.758 0.758 0.742 0.710 0.699 0.730
LADM Recall 0.679 0.653 0.627 0.570 0.590 0.725 0.712 0.600 0.597 0.642 -
(LMaFit) Shen et al. [281] Precision 0.829 0.834 0.813 0.816 0.574 0.794 0.803 0.752 0.760 0.682 -

F-measure 0.748 0.734 0.710 0.675 0.582 0.758 0.756 0.669 0.671 0.662 0.696
BLWS Recall 0.550 0.548 0.514 0.483 0.470 0.636 0.635 0.513 0.453 0.643 -
Lin and Wei [191] Precision 0.831 0.821 0.816 0.410 0.625 0.697 0.698 0.771 0.388 0.561 -

F-measure 0.667 0.662 0.637 0.621 0.539 0.666 0.665 0.621 0.419 0.600 0.610
FAM (Fast PCP) Recall 0.979 0.980 0.948 0.929 0.949 0.956 0.978 0.958 0.906 0.945 -
Rodriguez and Wohlberg [259] Precision 0.707 0.691 0.531 0.522 0.531 0.671 0.680 0.567 0.532 0.499 -

F-measure 0.821 0.811 0.681 0.668 0.681 0.789 0.802 0.712 0.670 0.497 0.713

RPCA-SPCP Zhou et al. [393]
NSA Recall 0.707 0.706 0.722 0.700 0.688 0.717 0.722 0.742 0.636 0.687 -
Aybat et al. [12] Precision 0.820 0.817 0.749 0.798 0.712 0.799 0.795 0.742 0.797 0.598 -

F-measure 0.760 0.758 0.735 0.746 0.64 0.756 0.757 0.742 0.710 0.699 0.730
PSPG Recall 0.980 0.968 0.934 0.926 0.943 0.975 0.968 0.938 0.917 0.964 -
Aybat et al. [13] Precision 0.615 0.546 0.520 0.518 0.523 0.593 0.570 0.533 0.531 0.562 -

F-measure 0.756 0.699 0.668 0.664 0.673 0.737 0.717 0.680 0.672 0.710 0.698
IAM-MM (R2PCP) Recall 0.828 0.837 0.793 0.727 0.819 0.819 0.818 0.763 0.689 0.814 -
Hintermüller and Wu [127] Precision 0.901 0.905 0.909 0.861 0.828 0.897 0.894 0.898 0.825 0.870 -

F-measure 0.863 0.870 0.847 0.788 0.823 0.856 0.855 0.825 0.751 0.841 0.832 (5)
Variational SPCP (Lag-SPCP-QN)) Recall 0.976 0.952 0.937 0.932 0.946 0.972 0.930 0.909 0.880 0.925 -
Arakvin and Becker [10] Precision 0.776 0.818 0.821 0.837 0.819 0.803 0.836 0.838 0.857 0.839 -

F-measure 0.865 0.880 0.875 0.882 0.878 0.879 0.880 0.872 0.868 0.880 0.876 (2)

RPCA-QPCP Becker et al. [20]
TFOCS Recall 0.760 0.693 0.717 0.753 0.684 0.748 0.742 0.742 0.681 0.727 -
Becker et al. [20] Precision 0.680 0.815 0.749 0.740 0.674 0.774 0.782 0.737 0.790 0.729 -

F-measure 0.718 0.750 0.733 0.746 0.679 0.761 0.762 0.739 0.732 0.728 0.735

RPCA-BPCP Tang and Nehorai [306]
ALM Recall 0.607 0.599 0.533 0.516 0.509 0.656 0.651 0.569 0.469 0.596 -
Tang and Nehorai [306] Precision 0.831 0.821 0.822 0.800 0.606 0.755 0.753 0.760 0.762 0.639 -

F-Measure 0.705 0.696 0.652 0.633 0.544 0.703 0.699 0.653 0.587 0.617 0.649

RPCA via Stochastic Optimization

OR-PCA without MRF Recall 0.851 0.853 0.892 0.860 0.820 0.885 0.889 0.831 0.857 0.741 -
Javed et al. [144] Precision 0.911 0.911 0.848 0.836 0.873 0.908 0.907 0.878 0.816 0.905 -

F-measure 0.880 0.881 0.870 0.848 0.846 0.896 0.898 0.854 0.836 0.815 0.862 (3)
OR-PCA with MRF Recall 0.871 0.870 0.894 0.850 0.860 0.937 0.940 0.923 0.917 0.841 -
Javed et al. [147] Precision 0.956 0.952 0.882 0.873 0.894 0.924 0.924 0.901 0.846 0.925 -

F-measure 0.911 0.909 0.888 0.861 0.876 0.931 0.932 0.912 0.880 0.879 0.897 (1)

Bayesian RPCA

Bayesian RPCA Recall 0.659 0.626 0.509 0.511 0.475 0.725 0.651 0.569 0.529 0.596 -
Ding et al. [71] Precision 0.828 0.826 0.785 0.739 0.593 0.781 0.754 0.761 0.510 0.640 -

F-measure 0.736 0.715 0.623 0.609 0.529 0.752 0.699 0.654 0.520 0.618 0.643
Variational BRPCA Recall 0.676 0.639 0.710 0.618 0.654 0.694 0.698 0.671 0.611 0.642 -
Babacan et al. [17] Precision 0.833 0.838 0.757 0.811 0.569 0.775 0.772 0.748 0.758 0.628 -

F-measure 0.748 0.727 0.733 0.704 0.609 0.733 0.733 0.707 0.678 0.635 0.700
MOG-RPCA Recall 0.981 0.984 0.979 0.974 0.960 0.980 0.982 0.978 0.920 0.977 -
Zhao et al. [385] Precision 0.637 0.674 0.620 0.589 0.537 0.651 0.699 0.652 0.529 0.629 -

F-measure 0.773 0.800 0.759 0.734 0.689 0.782 0.817 0.782 0.672 0.765 0.757

Approximated RPCA

GoDec Recall 0.690 0.772 0.750 0.679 0.629 0.724 0.721 0.707 0.613 0.677 -
Zhou and Tao [389] Precision 0.817 0.724 0.703 0.716 0.536 0.792 0.795 0.748 0.807 0.681 -

F-measure 0.749 0.747 0.726 0.697 0.580 0.757 0.756 0.727 0.699 0.679 0.711
SemiSoft GoDec Recall 0.692 0.700 0.717 0.730 0.664 0.726 0.718 0.673 0.642 0.716 -
Zhou and Tao [389] Precision 0.816 0.818 0.752 0.772 0.601 0.792 0.799 0.750 0.804 0.688 -

F-measure 0.750 0.755 0.734 0.750 0.631 0.758 0.757 0.710 0.715 0.702 0.726

Table 19 BMC dataset: Evaluation Results using the Synthetic Videos for Evaluation Phase
(Part 1). The number between parenthesis indicates the rank of the algorithm in terms of
F-measure.

9 Implementation and Computational Cost

All the algorithms are implemented in Matlab and come from the LRSLibrary39.
The computational cost of the RPCA algorithms is mainly related to the singular
value decomposition (SVD). It can be reduced significantly by using a partial SVD
because only the first largest few singular values are needed. Practically, the imple-
mentation available in PROPACK40 are used for the IALM, LADMAP, LSADM
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Algorithms Measure Street Rotary Average
112 212 312 412 512 122 222 322 422 522

Robust NMF

MahNMF Recall 0.982 0.982 0.934 0.909 0.943 0.979 0.977 0.944 0.894 0.969 -
Guan et al. [99] Precision 0.661 0.622 0.520 0.515 0.524 0.624 0.612 0.538 0.524 0.576 -

F-measure 0.790 0.762 0.668 0.657 0.674 0.762 0.752 0.685 0.660 0.722 0.713

Robust Subspace Recovery

ROSL Recall 0.984 0.985 0.948 0.924 0.948 0.984 0.983 0.950 0.912 0.976 -
Shu et al. [287] Precision 0.744 0.744 0.528 0.519 0.527 0.753 0.753 0.545 0.533 0.619 -

F-measure 0.847 0.847 0.678 0.665 0.678 0.853 0.853 0.693 0.673 0.757 0.754

Robust Subspace Tracking

GRASTA Recall 0.700 0.787 0.695 0.787 0.669 0.680 0.637 0.619 0.623 0.791 -
He et al. [119] Precision 0.980 0.847 0.965 0.843 0.960 0.902 0.548 0.530 0.778 0.714 -

F-measure 0.817 0.816 0.807 0.814 0.789 0.776 0.589 0.571 0.692 0.751 0.618
pROST Recall 0.944 0.878 0.853 0.889 0.785 0.819 0.838 0.789 0.738 0.863 -
Hage and Kleinsteuber [115] Precision 0.844 0.937 0.968 0.931 0.961 0.903 0.847 0.953 0.730 0.815 -

F-measure 0.891 0.906 0.907 0.909 0.864 0.859 0.842 0.863 0.734 0.838 0.718
GOSUS Recall 0.982 0.981 0.945 0.933 0.949 0.978 0.977 0.958 0.906 0.969 -
Xu et al. [343] Precision 0.617 0.609 0.526 0.526 0.528 0.616 0.612 0.555 0.534 0.577 -

F-measure 0.758 0.751 0.676 0.672 0.678 0.756 0.752 0.702 0.672 0.723 0.714

Low Rank Minimization

DECOLOR Recall 0.982 0.985 0.983 0.980 0.978 0.983 0.983 0.981 0.967 0.980 -
Zhou et al. [391] Precision 0.778 0.748 0.747 0.729 0.599 0.764 0.759 0.760 0.762 0.694 -

F-measure 0.868 0.851 0.849 0.836 0.743 0.860 0.857 0.857 0.852 0.813 0.838 (4)
DRMF Recall 0.857 0.864 0.853 0.864 0.903 0.880 0.834 0.744 0.805 0.827 -
Xiong et al. [341] Precision 0.969 0.950 0.968 0.948 0.855 0.891 0.834 0.924 0.700 0.825 -

F-measure 0.910 0.905 0.907 0.904 0.878 0.885 0.834 0.824 0.749 0.826 0.710
PRMF Recall 0.944 0.903 0.918 0.901 0.899 0.891 0.906 0.867 0.824 0.869 -
Wang et al. [321] Precision 0.819 0.919 0.879 0.922 0.862 0.887 0.849 0.888 0.707 0.821 -

F-measure 0.877 0.911 0.898 0.911 0.880 0.889 0.877 0.878 0.761 0.845 0.727
PLRMF (RegL1-ALM) Recall 0.984 0.985 0.953 0.926 0.949 0.984 0.983 0.950 0.914 0.976 -
Zheng et al. [386] Precision 0.744 0.745 0.533 0.520 0.529 0.756 0.756 0.545 0.535 0.619 -

F-measure 0.847 0.848 0.684 0.666 0.679 0.855 0.855 0.693 0.675 0.758 0.756

Mixture of Gaussians

Adaptive MOG Recall 0.827 0.827 0.797 0.761 0.821 0.823 0.831 0.797 0.743 0.834 -
Shimada et al. [284] Precision 0.766 0.768 0.480 0.426 0.519 0.786 0.790 0.526 0.435 0.740 -

F-measure 0.796 0.796 0.605 0.553 0.640 0.804 0.810 0.638 0.555 0.784 0.698

Table 20 BMC dataset: Evaluation Results using the Synthetic Videos for Evaluation Phase
(Part 2). The number between parenthesis indicates the rank of the algorithm in terms of
F-measure.

and LADM. The SVDs and CPU time of each algorithm were computed for each
sequence. Table 23, Table 24, Table 25 and Table 26 group the average times. The
CPU times are reported in the form hh:mm:ss for images of size 144×176 and with
200 frames for the training to allow easy comparison with other RPCA algorithms
as the previous publications in this field present these performances on the I2R
dataset [177] in this data format. In this paper, the results for the NSA [12] and
the PSPG [13] come from their authors.

We can see that EALM and ADM are very computational expensive due to the
fact that theses algorithms compute full SVDs. On these problems of extremely low
ranks, the partial SVD technique used in IALM, LADMAP, LSADM and LADM
become quite effective and reduce significantly the computation time. For the
SPCP, the PSPG solver is the most efficient follows by the NSA and the ASALM.
The variational BRPCA is less computational expensive than the BRPCA. The
GoDec algorithm is the one which requires less time computation time in the
RPCA category, and then it makes large videos applications reachable in real-
time. ROSL and ROSL+ reach time requirement under 15 seconds as OR-PCA
algorithms. In the RST category, GOSUS achieved less computation time than
GRASTA and pROST. DRMF is the best in the category PRMF. Practically, we
observed than the computation time of several algorithms increased differently in
function of the image size because of their difference in term of complexity and
memory requirement. Thus, the rank in term of computation time is not strictly
the same at other image sizes, and several algorithms are only suitable in the
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Fig. 4 F-Measure of the 32 Algorithms for the Evaluation Results using the Synthetic Videos
for Evaluation Phase.

case of low resolution. Finally, a full visual ranking of both matrix and tensor
algorithms is provided at the LRSLibrary website.

10 Conclusion

In this paper, we have firstly presented a full review of recent advances on prob-
lem formulations based on the decomposition into low-rank plus additive matrices
which are robust principal component analysis, robust non-negative matrix fac-
torization, robust matrix completion, robust subspace recovery, robust subspace
tracking and robust low-rank minimization. Thus, we proposed a unified view of
the decomposition into low-rank plus additive matrices that we called DLAM. We

39https://github.com/andrewssobral/lrslibrary
40http://soi.stanford.edu/rmunk/PROPACK/
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Algorithms Measure Real Videos Average
001 002 003 004 005 006 007 008 009

RSL Recall 0.800 0.689 0.840 0.872 0.861 0.823 0.658 0.589 0.690 -
De La Torre et al. [310] Precision 0.732 0.808 0.804 0.585 0.598 0.713 0.636 0.526 0.625 -

F-measure 0.765 0.744 0.821 0.700 0.706 0.764 0.647 0.556 0.656 0.707

PCA Recall 0.818 0.672 0.890 0.824 0.799 0.793 0.580 0.753 0.861 -
Oliver et al. [233] Precision 0.740 0.861 0.953 0.833 0.635 0.783 0.826 0.785 0.953 -

F-measure 0.777 0.755 0.920 0.829 0.700 0.788 0.682 0.768 0.905 0.791

RPCA-PCP Candes et al. [40]
EALM Recall 0.574 0.616 0.728 0.690 0.511 0.650 0.589 0.520 0.599 -
Lin et al. [188] Precision 0.405 0.705 0.809 0.695 0.394 0.580 0.750 0.579 0.815 -

F-measure 0.478 0.658 0.767 0.692 0.447 0.613 0.662 0.548 0.693 0.547
IALM Recall 0.697 0.515 0.759 0.691 0.635 0.642 0.433 0.617 0.707 -
Lin et al. [188] Precision 0.585 0.723 0.798 0.678 0.483 0.643 0.683 0.632 0.807 -

F-measure 0.637 0.605 0.778 0.684 0.551 0.643 0.536 0.624 0.754 0.644
ADM Recall 0.691 0.504 0.736 0.681 0.630 0.641 0.427 0.608 0.714 -
LRSD)Yuan and Yang [368] Precision 0.601 0.727 0.797 0.670 0.484 0.633 0.678 0.631 0.803 -

F-measure 0.644 0.599 0.766 0.676 0.549 0.637 0.530 0.620 0.756 0.641
LADMAP Recall 0.691 0.522 0.737 0.681 0.624 0.644 0.424 0.605 0.714 -
Lin et al. [190] Precision 0.601 0.716 0.796 0.669 0.485 0.632 0.690 0.642 0.803 -

F-measure 0.643 0.607 0.766 0.675 0.548 0.638 0.532 0.623 0.756 0.642
LSADM Recall 0.693 0.535 0.784 0.721 0.643 0.656 0.449 0.621 0.701 -
Goldfarb et al. [90] Precision 0.511 0.724 0.802 0.729 0.475 0.655 0.693 0.633 0.809 -

F-measure 0.591 0.618 0.793 0.725 0.549 0.656 0.551 0.627 0.752 0.650
LADM Recall 0.639 0.522 0.752 0.684 0.598 0.653 0.431 0.601 0.620 -
(LMaFit) Shen et al. [281] Precision 0.445 0.688 0.812 0.723 0.438 0.621 0.669 0.632 0.822 -

F-measure 0.528 0.596 0.781 0.703 0.509 0.637 0.530 0.616 0.709 0.622
BLWS Recall 0.576 0.618 0.692 0.661 0.539 0.656 0.602 0.527 0.555 -
Lin and Wei [191] Precision 0.399 0.697 0.814 0.686 0.378 0.565 0.748 0.486 0.810 -

F-measure 0.475 0.656 0.749 0.673 0.448 0.607 0.669 0.506 0.663 0.689
FAM (Fast PCP) Recall 0.859 0.820 0.895 0.863 0.847 0.822 0.788 0.558 0.723 -
Rodriguez and Wohlberg [259] Precision 0.639 0.672 0.705 0.539 0.555 0.632 0.676 0.508 0.605 -

F-measure 0.733 0.739 0.789 0.664 0.670 0.714 0.728 0.531 0.659 0.692

RPCA-SPCP Zhou et al. [393]
NSA Recall 0.688 0.616 0.784 0.725 0.511 0.656 0.450 0.621 0.599 -
Aybat et al. [12] Precision 0.514 0.705 0.802 0.728 0.394 0.655 0.694 0.632 0.815 -

F-measure 0.591 0.658 0.793 0.727 0.447 0.656 0.551 0.626 0.693 0.637
PSPG Recall 0.858 0.819 0.904 0.851 0.861 0.823 0.796 0.559 0.726 -
Aybat et al. [13] Precision 0.679 0.666 0.774 0.597 0.576 0.619 0.676 0.507 0.601 -

F-measure 0.758 0.735 0.834 0.701 0.690 0.706 0.731 0.532 0.657 0.705
IAM-MM (R2PCP) Recall 0.746 0.593 0.860 0.784 0.655 0.670 0.561 0.540 0.590 -
Hintermüller and Wu [127] Precision 0.803 0.859 0.821 0.728 0.815 0.820 0.673 0.542 0.678 -

F-measure 0.773 0.701 0.840 0.755 0.726 0.737 0.612 0.541 0.631 0.702
Variational SPCP (Lag-SPCP-QN)) Recall 0.734 0.528 0.723 0.649 0.662 0.593 0.643 0.528 0.688 -
Arakvin and Becker [10] Precision 0.911 0.791 0.828 0.813 0.799 0.781 0.677 0.564 0.774 -

F-measure 0.812 0.633 0.772 0.722 0.724 0.674 0.659 0.545 0.728 0.696

RPCA-QPCP Becker et al. [20]
TFOCS Recall 0.691 0.506 0.751 0.694 0.644 0.646 0.435 0.614 0.707 -
Becker et al. [20] Precision 0.587 0.729 0.798 0.673 0.483 0.642 0.683 0.645 0.807 -

F-measure 0.635 0.601 0.774 0.683 0.555 0.644 0.538 0.629 0.754 0.644

RPCA-BPCP Tang and Nehorai [306]
ALM Recall 0.573 0.615 0.728 0.689 0.510 0.650 0.599 0.520 0.598 -
Tang and Nehorai [306] Precision 0.404 0.705 0.808 0.694 0.493 0.679 0.750 0.678 0.815 -

F-measure 0.578 0.757 0.866 0.792 0.446 0.613 0.767 0.548 0.693 0.607

RPCA via Stochastic Optimization

OR-PCA without MRF Recall 0.756 0.683 0.545 0.779 0.781 0.692 0.669 0.507 0.748 -
Javed et al. [144] Precision 0.942 0.864 0.874 0.89 0.789 0.918 0.84 0.557 0.965 -

F-measure 0.839 0.763 0.671 0.831 0.787 0.789 0.745 0.531 0.843 0.755 (2)
OR-PCA with MRF Recall 0.776 0.845 0.905 0.799 0.779 0.800 0.806 0.566 0.956 -
Javed et al. [147] Precision 0.936 0.781 0.738 0.870 0.860 0.891 0.768 0.558 0.746 -

F-measure 0.848 0.812 0.813 0.834 0.826 0.843 0.786 0.562 0.854 0.797 (1)

Bayesian RPCA

BRPCA Recall 0.578 0.625 0.737 0.688 0.545 0.643 0.443 0.512 0.591 -
Ding et al. [71] Precision 0.404 0.707 0.800 0.674 0.386 0.583 0.689 0.583 0.817 -

F-measure 0.479 0.664 0.767 0.681 0.456 0.612 0.545 0.546 0.689 0.603
Variational RPCA Recall 0.685 0.540 0.785 0.725 0.632 0.667 0.457 0.605 0.698 -
Babacan et al. [17] Precision 0.472 0.712 0.800 0.725 0.464 0.659 0.694 0.631 0.801 -

F-measure 0.563 0.617 0.792 0.725 0.538 0.663 0.556 0.618 0.746 0.645
MOG-RPCA Recall 0.841 0.760 0.902 0.861 0.832 0.851 0.654 0.564 0.690 -
Zhao et al. [385] Precision 0.682 0.712 0.800 0.535 0.662 0.683 0.598 0.511 0.597 -

F-measure 0.753 0.735 0.848 0.660 0.738 0.758 0.625 0.536 0.640 0.699

Approximated RPCA

GoDec Recall 0.684 0.552 0.761 0.709 0.621 0.670 0.465 0.598 0.700 -
Zhou and Tao [389] Precision 0.444 0.682 0.808 0.728 0.462 0.636 0.626 0.601 0.747 -

F-measure 0.544 0.611 0.784 0.718 0.533 0.653 0.536 0.600 0.723 0.632
SemiSoft GoDec Recall 0.666 0.491 0.769 0.681 0.636 0.644 0.438 0.594 0.683 -
Zhou and Tao [389] Precision 0.548 0.706 0.809 0.694 0.489 0.632 0.642 0.629 0.816 -

F-measure 0.602 0.583 0.789 0.687 0.555 0.638 0.525 0.611 0.744 0.637

Table 21 BMC dataset: Evaluation Results using the Real Videos for Evaluation Phase (Part
1).

evaluated its adequation to the application of background/foreground separation
by investigated how these methods are solved and if incremental algorithms and
real-time implementations can be achieved. Finally, experimental results on the
Background Models Challenge (BMC) dataset show the comparative performance
of these recent methods.
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Algorithms Measure Real Videos Average
001 002 003 004 005 006 007 008 009

Robust NMF

MahNMF Recall 0.857 0.822 0.901 0.848 0.802 0.823 0.788 0.536 0.716 -
Guan et al. [99] Precision 0.646 0.671 0.739 0.529 0.520 0.620 0.672 0.505 0.599 -

F-measure 0.737 0.739 0.812 0.651 0.631 0.708 0.726 0.520 0.652 0.686

Robust Subspace Recovery

ROSL Recall 0.743 0.837 0.912 0.851 0.823 0.843 0.778 0.562 0.768 -
Shu et al. [287] Precision 0.865 0.731 0.779 0.531 0.512 0.680 0.684 0.508 0.852 -

F-measure 0.799 0.781 0.840 0.654 0.631 0.753 0.728 0.534 0.808 0.725 (3)

Robust Subspace Tracking

GRASTA Recall 0.719 0.767 0.852 0.823 0.533 0.802 0.751 0.673 0.730 -
He et al. [119] Precision 0.542 0.845 0.963 0.796 0.516 0.711 0.900 0.696 0.950 -

F-measure 0.618 0.804 0.904 0.809 0.524 0.754 0.819 0.684 0.826 0.674
pROST Recall 0.824 0.672 0.923 0.835 0.760 0.797 0.596 0.741 0.850 -
Hage and Kleinsteuber [115] Precision 0.632 0.844 0.958 0.884 0.631 0.787 0.796 0.770 0.874 -

F-measure 0.715 0.749 0.940 0.859 0.689 0.792 0.682 0.755 0.862 0.704

Low Rank Minimization

DRMF Recall 0.828 0.719 0.934 0.874 0.772 0.823 0.617 0.762 0.842 -
Xiong et al. [341] Precision 0.600 0.856 0.949 0.877 0.618 0.801 0.811 0.766 0.929 -

F-measure 0.696 0.782 0.941 0.875 0.686 0.812 0.701 0.764 0.883 0.714 (5)
PRMF Recall 0.830 0.720 0.937 0.874 0.790 0.805 0.596 0.746 0.839 -
Wang et al. [321] Precision 0.665 0.853 0.949 0.880 0.627 0.790 0.824 0.779 0.962 -

F-measure 0.738 0.781 0.943 0.877 0.699 0.797 0.691 0.762 0.897 0.718 (4)

Mixture of Gaussians

Adaptive MOG Recall 0.849 0.580 0.859 0.829 0.754 0.780 0.691 0.723 0.828 -
Shimada et al. [284] Precision 0.682 0.546 0.780 0.580 0.435 0.636 0.603 0.495 0.790 -

F-measure 0.757 0.562 0.818 0.785 0.558 0.702 0.644 0.591 0.809 0.680

Table 22 BMC dataset: Evaluation Results using the Real Videos for Evaluation Phase (Part
2).

RPCA-PCP
EALM [188] IALM [188] ADM (LRSD) [368] LADMAP [190] LSADM [90] LADM (LMaFit) [281]

SVDs CPU SVDs CPU SVDs CPU SVDs CPU SVDs CPU SVDs CPU

550 00:40:15 38 00:03:47 510 00:35:20 16 00:05:20 43 00:04:03 35 00:04:55

Table 23 Time Performance of RPCA Algorithms: PCP.

RPCA-SPCP OR-PCA
ASALM [307] NSA [12] PSPG [13] OR-PCA [144] OR-PCA with MRF [147]

SVDs CPU SVDs CPU SVDs CPU SVDs CPU SVDs CPU

94 00:15:17 19 00:03:07 23 00:01:05 - 00:0:12 - 00:00:14

Table 24 Time Performance of RPCA Algorithms: SPCP and OR-PCA.

Bayesian RPCA Approximated RPCA
BRPCA [71] VBRPCA [17] GoDec [389] Semi Soft GoDec [389]

SVDs CPU SVDs CPU SVDs CPU SVDs CPU

- 00:04:01 - 00:01:07 - 00:00:50 - 00:00:55

Table 25 Time Performance of RPCA Algorithms: Bayesian RPCA and Approximated
RPCA.

RSR RST RLRM
ROSL [287] ROSL+ [287] GRASTA [119] pROST [115] GOSUS [343] DRMF [341] PRMF [321]

SVDs CPU SVDs CPU SVDs CPU SVDs CPU SVDs CPU SVDs CPU SVDs CPU

- 00:00:15 - 00:00:06 - 00:01:06 - 00:01:05 - 00:00:23 - 00:00:17 - 00:00:36

Table 26 Time Performance of RSR, RST and RLRM Algorithms.
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Fig. 5 F-Measure of the 32 Algorithms for the Evaluation Results using the Real Videos for
Evaluation Phase.

In conclusion, this review for a comparative evaluation of robust subspace
learning via decomposition into low-rank plus additive algorithms highlights the
following points:

– Decomposition into low-rank plus additive matrices offers a suitable frame-
work for background/foreground separation with robustness against illumina-
tion changes and dynamic backgrounds if spatial and temporal constraints are
taken into account in the optimization problem with structured norms [275] or
MRF [147]. Furthermore, several DLAM models can outperform state-of-the-
art models in background/foreground separation such as the MOG.

– The main disadvantages of the DLAM models is that their original version
used batch algorithms that oftenly need too expensive computation time to
reach real-time requirements. Thus, many effort have been done to reach real-
time performance and to develop incremental algorithms as in the works of
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Rodriguez et al. [259][260][258][262], and Vaswani et al. [242][249][101].

– As images are stored in vectors which are oftenly exploited as is, DLAM mod-
els in their original version loss the spatial and temporal constraints. Thus,
it is more appropriate 1) to add the use of Markov Random Fields [147],
2) to use structured norms aiming to preserve the spatial structures of im-
ages while being insensitive to outliers and missing data [343][275][302][145],
or 3) to formulate RPCA in the two-dimensional case rather than via image
to vector conversion, which enables the preservation of the image spatial infor-
mation with reduced computational time. In the basic formulation, the result-
ing two-dimensional subspace methods mainly include two-dimensional PCA
(2dPCA) [353], two-dimensional SVD (2dSVD) [70], two-dimensional LDA
(2dLDA) [364], two-directional two-dimensional PCA ((2d)2PCA) [371], Gen-
eralized Low Rank Approximations of Matrices (GLRAM) [362][363]. Robust
formulations can be found for robust two dimensions (R2DRPCA) [301][302]
and for Robust GLRAM (RGLRAM) [283].

Future research may concern less computational SVD algorithms such as LMSVD
[195] for batch algorithms, and DLAM models which would be both incremental
and real-time to reach the performance of the state-of-the-art algorithms [269][285]
in term of computation time and memory requirements. Finally, DLAM mod-
els show a suitable potential for background modeling and foreground detec-
tion in video surveillance [152][153]. Furthermore, DLAM can been extended to
the measurement domain, rather than the pixel domain, for use in conjunction
with compressive sensing. Moreover, other research may concern the extension
of DLAM in tensor-wise way to exploit fully spatial and temporal constraints
[304][305][313][178][182][379]. The interest of the tensor approch over the matrix
approach is investigated by Anandkumar et al. [7]. Furthermore, efficient incremen-
tal algorithms have been recently developed for background/foreground separation
[289][250][142][294][224].
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