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Introduction 
 

Given the relative lack of, and huge demand for, quantitative spa- 

tial soil information to be used in environmental management and 

modelling, digital soil mapping (DSM) has been proposed as an 

alternative to classical soil surveys for the quantitative mapping 

of soil properties over regions at intermediate (20 – 200 m) spatial 

resolutions (McBratney et al., 2003). A DSM program aiming to 

map soil properties at global level with a 3 arc second spatial 

resolution has been recently launched (Sanchez et al., 2009). 

McBratney et al. (2003) proposed the equation S = f(s, c, o, r, 

p, a, n) for summarizing the general principle of DSM. According 

to this equation, a soil type or a soil property (S) can be predicted 

by a spatial inference function (f) using, as input, the existing 

soil information (s), the spatial covariates that map the different 

factors of soil formation, as defined by Jenny (1941) (c, o, r, 

p, a,), and the geographical location (n), which can capture any 
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spatial trends missed by  the  other  covariates. There has  been 

a  growing interest in using soil sensing technologies in DSM 

studies as a way to document s (Grunwald, 2009). However, these 

technologies have more often been used to complement analytical 

soil data for individual site characterization than to produce spatial 

inputs of DSM models and their applications at landscape scale 

are even more scarce (Grunwald, 2009). Recent progress in the 

development of  these  soil  sensing  techniques (Ben-Dor et al., 

2008; Viscarra Rossel et al., 2010), leads us to anticipate their 

extensive application in DSM in the near future. 

Among the available soil sensors, visible near infrared (Vis- 

NIR) imaging spectrometry looks to be one of the most promising. 

In  laboratory  studies,  the  capability  of  Vis-NIR  spectroscopy 

(450 – 250 nm)  to  accurately  quantify  soil  property  contents 

has  been  already  proven  (Viscarra  Rossel  et al.,  2006).  More 

recently,  spatial  predictions  of  some  usual  soil  properties  for 

bare soil surfaces were obtained from high-resolution airborne 

hyperspectral images with uncertainties ranging from R2  = 0.53 

to 0.75 depending on the study areas and their properties (Selige
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et al., 2010; Schwanghart & Jarmer, 2011). Although these results 

revealed a decrease in precision because of atmospheric effects 

and the signal to noise ratio (SNR) of the instrument (Lagacherie 

et al., 2008), imaging spectrometry provided correlations with soil 

properties of bare surfaces that out-performed most of the soil 

covariates usually considered in DSM applications. This present 

paper examines how this new input can be used for the DSM of 

soil properties over large spatial areas. PEZENAS 

Airborne  Vis-NIR  imaging  spectrometry  differs  greatly  in 

spatial  resolution  and  extent  from  those  currently  handled  in 

DSM. Airborne Vis-Nir sensors provide data at very fine spatial 

resolutions, including less than 5 m, which is much finer than the 

resolutions of the usual spatial covariates and target resolutions of 

DSM (see above). Also, the applications of imaging spectrometry 

are limited in space because of clouds and vegetation that mask the 

soil surface. These disruptions can result in scattered spatial data 

with isolated measured areas separated by non-measured areas. 

To overcome these problems, we propose and test the block- 

co-kriging of clay content at different spatial resolutions using, as 

a covariate, a clay content indicator derived from an airborne 

hyperspectral  sensor.  The  mapping  was  carried  out  over  a 

24.6-km2  area located in the vineyard plain of Languedoc with 

usable hyperspectral data scattered over only 3.5% of this area. 
 

 
The case study 

 

Study area 
 

The study was carried out in the La Peyne catchment (Figure 1) in 

the south of France (43◦ 29   N and 3◦ 22   E). Vineyards form the 

primary land-use in the area. Marl, limestone and calcareous sand- 

stones from Miocene marine and lacustrine sediments formed the 

parent material of several soil types observed in this area, includ- 

ing Lithic Leptosols, Calcaric Regosols and Calcaric Cambisols 

(WRB soil classification, ISSS-ISRIC-FAO, 1998). These sedi- 

ments were partly covered by successive alluvial deposits ranging 

from the Pliocene to Holocene and differing in their initial nature 

and in the duration of weathering conditions. These sediments 

have produced an intricate soil pattern that includes a large range 

of soil types, such as Calcaric, Chromic and Eutric Cambisols, 

Chromic and Eutric Luvisols and Eutric Fluvisols. The local trans- 

port of colluvial material along the slopes has added to the com- 

plexity of the soil patterns. An earlier ground sampling made in the 

study region (Lagacherie et al., 2008) showed that these complex 

soil patterns correspond to a great variability of clay content at the 

soil surface (from 65 to 452 g kg – 1 ). A study area of 24.6 km2 

(Figure 1) was defined by intersecting this region of interest with 

the hyperspectral image used in this study (see below). 
 

 
The data 

 

The dataset used in this study (Figure 2) included a set of 200 

sites with measurements of the clay content (in g kg – 1 ) by means 

of a classical laboratory analysis (Robinson pipette) and a set 
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Figure 1 Location of the study area (the grey rectangle). 

 
 

 
 
Figure 2 The sites with measurements of clay content (black dots) and 

the bare soil fields with estimations of clay content from the HYMAP data 

(grey areas). 
 

 
of 192 bare soil fields with clay content estimations from a 

hyperspectral image that together covered 84.8 ha (3.5%) of the 

study area. These two types of data are successively described in 

the following.
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One  hundred and  thirty-seven sites  of  the  set  of  200  were 

located in the bare soil fields and so clay content measurements 

and hyperspectral estimations were available for these. The 

remaining 63 sites were located in vineyard areas and had clay 

content measurements only because the presence of vegetation 

prevented us from obtaining hyperspectral estimates. All of these 

samples were composed of five subsamples collected to a depth of 

5 cm and representing, at best, a 5-m-wide square centred on the 

geographical position recorded by a decimetric GPS instrument. 

After homogenization of the sample and removal of plant debris 

and stones, about 20 g was used for analysis of soil properties. 

The initial samples were sieved and air-dried prior to transport to 

the laboratory for analysis. 

The HYMAP airborne imaging spectrometer measured reflected 

radiance   in   126   non-contiguous  bands   covering   the   400 – 

2500-nm spectral range with around 19-nm bandwidths and aver- 

Methods 
 

Modelling multivariate spatial correlations 
 

In this study, the soil variable (here, clay content) and the soil 

sensing covariable (here, loglogCR2206 ) are denoted as Z1  and Z2 , 

respectively. Suppose that u is a location in two-dimensional space 

and Z1 (u) and Z2 (u) are spatial random functions. The random 

functions are assumed to satisfy the hypothesis of second-order 

stationarity (Matheron, 1971). Assuming that the soil variable (Z1 ) 

is spatially cross-correlated with the soil sensing covariable (Z2 ), 

the spatial cross-correlation between Z1 and Z2  can be quantified 

by a cross-covariance function or a cross-variogram as defined 

in  Wackernagel (1995). In  univariate or  bivariate frameworks, 

the covariance and variogram functions can be estimated as 

follows: 

 
N (h )

age sampling intervals of 17 nm in the 1950 – 2480 nm domain 
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h )     z̄  ),      (1)
(http://www.intspec.com/). The HYMAP image was acquired on 

13 July 2003 from 3000-m altitude, providing a 5 × 5-m spa- 

tial resolution. Radiometric calibration was performed inflight 

(Richter, 1996) using nadir ground measurements (Beisl, 2001). 

The  ATCOR4  code  for  airborne  sensors  was  used  for  atmo- 
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spheric corrections (Richter & Schläpfer, 2000). Topographic cor- 

rections were performed with a high-resolution digital elevation 

γ̂ z z  (h )      
              

 
2N(h ) 

α=1 

(zi (u α + h ) − zi (u α ))

model from the Institut Géographique National (www.ign.fr) and 

differential GPS (DGPS) ground control points. 

The image was masked by using normalized difference 

vegetation index (NDVI) to remove living vegetation (essentially 

vineyards). The cellulose absorption band (2010 nm) was used 

to remove dry vegetation. Small areas of bare soils that could 

not be representative of neighbouring soil characteristics were 

also  removed.  Finally,  the  image  provided  usable  data  over 

33,782 5 × 5 m pixels covering 3.5% of the total area only; that 

is, the bare soil fields that were randomly scattered over the region 

at the date of measurement. 

In  a  previous  study  (Lagacherie  et al.,  2008),  a  continuum 

removal  (CR)  technique  (Clark  &  Roush,  1984)  was  applied 

to HYMAP reflectance measurements to estimate clay contents. 

The  clay  contents  were  predicted  from  the  depths  of  the 

absorption  peaks  at  bands  of  2206 nm  (CR2206 )  that  were 

computed as the differences between HYMAP reflectances and 

continua approximated by a straight line joining two local 

reflectance maxima placed on both shoulders of the peak 

absorption  wavelength  (see  more  details  in  Lagacherie  et al., 

2008). The prediction performances at local sites measured by 

cross-validation resulted in an R2  value of 0.58 and a root mean 

square error (RMSE) of 82 g kg – 1 . These prediction performances 

were similar to those of a 1:25 000 soil map in the same region 

(Leenhardt  et al.,  1994)  while  providing  a  much  finer spatial 

resolution than a soil map at less cost. We therefore considered that 

CR2206 could be a suitable covariate to map clay content by DSM. 

To normalize the CR2206 distribution, a double log transformation 

was applied in further computations. This resulting variable will 

be denoted as loglogCR2206. 

× (zj (u α + h ) − zj (u α )).                        (2) 

 
In  Equations (1)  and  (2),  i  and  j belong  to  {1,  2}.  When 

i = j ,  Equations (1) and  (2)  denote  the  usual  covariance  and 

variogram estimates. When i = j , Equations (1) and (2) denote 

the cross-covariance and cross-variogram estimates, respectively. 

h  is  the separation vector between the data locations u α   and 

u α   + h (the translation of h from u α ), zi (u α ) and zj (uα  + h) 

are observations of the variable zi  and zj  at spatial locations u α 

and u α  + h, respectively, z̄i   and z̄j   are arithmetic means of zi 

and zj , respectively, and N(h ) is the number of distinct pairs 

of observations at distance h . In the bivariate case (i = j ), these 

two expressions still have a known relationship (Wackernagel, 

1995).  They  convey  the  same  amount  of  information only  if 

the  cross-covariances  are  even  functions.  In  this  latter  case, 

cross-variogram expressions are preferred for convenience, as in 

univariate frameworks. 

To undertake the co-kriging (see later), a variogram matrix in 

which the diagonal entries are variograms and the off-diagonal 

entries   are   cross-variograms   must   be   strictly   conditionally 

negative  definite. To  ensure  this  condition,  intrinsic  or  linear 

co-regionalization models can be used. The formulation of the 

latter in the bivariate case with two nested spatial structures is 

(Wackernagel, 1995) 

 
 (h ) = B1 g1(h ) + B2 g2(h ) ,                    (3) 

 
where g1 (h)  and g2 (h)  are two normalized variograms, one for 

each spatial structure, and B 1  and B 2  are positive semi-definite 

2 × 2 matrices.

http://www.intspec.com/
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Co-kriging 
 

The co-kriging estimator is a best linear unbiased estimator 

(BLUE) and has minimum estimation error variance (Wacker- 

nagel, 1995). In the two variable case, the ordinary co-kriging 

estimator is a linear combination of weights w1  and w2  with data 

where γz1 z1 
(v(u ), v(u )) is the mean within block semi-variance 

and it is approximated by the arithmetic average of the variogram 

between  any  two  discretised  points  within  the  block  v(u ). 

To  simplify  the  notation,  it  is  further  denoted  γ̄ (v, v).  Then, 

γz1 zj 
(u α , v(u ))  is  the  variogram  (j  = 1)  or  cross-variogram

α               α                                     
(j = 2) between the data support uα  and the block v(u ), and it is

from the two variables Z1  and Z2  located at sample points in the 

neighbourhood of a spatial location u0 . Each variable is defined 

with a set of samples of possibly different sizes n1  and n2 , and 

the estimator is defined as: 
 

n1                                     n2 

 

approximated by the arithmetic average of the variogram between 

the data support and the points discretising the block v(u ). 

 

 
Validation procedure

Z1 (u 0 ) = 
    

w1 Z1 (u α ) + 
    

w2 Z2 (u α ),              (4)α 

α=1 

α 

α=1 

 

A true validation of the above procedure would ideally require
 

where the weights w1  and w2  are solutions of a co-kriging system us to collect composite soil samples to estimate the within-pixel
α               α                                                                                                mean values of the soil property over a sufficient number of loca-

and sum to 1 and 0, respectively.  

tions to represent the variations of these mean values satisfactorily
The co-kriging variance of the estimation error of Z1  in the two 

variables case can be estimated from the variogram γz1 z1  
and the 

cross-variogram γz1 z2  
(Wackernagel, 1995) by using the following 

expression 

over  the  study  area.  A  single  composite soil  sample  requires 

several initial samples; for example, 25 initial samples for the 

20 × 20 m sites of the French National Soil Quality Monitoring 

Network (Jolivet et al., 2006). Thus several hundred initial sam-

 
E (u 0 ) =

 

  
n1   

n2 

wα γz  z  (u α − u  ) + 
 

 

  

w2 γz z  (u α − u  ) 
 
+ μz1 ,

 
ples would have to be collected for validation only, which would 

lead to sampling densities that are rarely possible in DSM studies.1  1 
α=1 

0 
α=1 

α     1  2 0 
 

(5) 
An alternative to this purely experimental validation method was 

therefore undertaken to verify that the approach provided a reason- 

able approximation of the ground truth. We first cross-validated the
where μz1  

is the Lagrange multiplier of the co-kriging system and 
u α  – u 0  denotes the distance between u α  and u 0  locations. 

 
Block co-kriging 

 

The predictions of the soil property Z1  are required for the set 

of pixels (or square blocks) that are larger than the support of 

the input data. To obtain such predictions, it is possible to apply 

a block-ordinary co-kriging procedure (Gertner et al., 2007) that 

can combine and scale up the soil property measurements and 

the high-resolution sensing images available on a scattered set of 

fields. Let v(u ) denote a block centred at location u , n1  is the 

number of local measurements of the soil property, and n2  is the 

number of the soil sensing data from the images. The ordinary 

co-kriging estimator for the block v(u) is 
 

n1                                    n2 

Ẑ 
1 (v(u )) = 

    
λ1 Z1 (u α ) + 

    
λ2 Z2 (u α ),             (6) 

co-regionalization model by applying an exact ordinary co-kriging 

and verifying that the co-kriging error variances were correctly 

predicted over the study area. We thus assume that correctly pre- 

dicted punctual co-kriging errors prevent incorrectly estimated 

model parameters, especially those for nugget values. With lim- 

itations from this assumed model parameter, we considered the 

block co-kriging error variances were correctly predicted over the 

study area. 

Then we considered the block co-kriging error variances cal- 

culated from the same co-regionalization model as an estimator 

of the error on the mean value of the soil property. The val- 

idation of the ordinary co-kriging was done by comparing the 

true  measurements with  the  predicted values  obtained from  a 

leave-one-out cross-validation. The error variance given by the 

co-regionalization model  over  the  whole  study  area  was  first 

compared with the mean square error deduced from the cross-
α 

α=1 

α 

α=1 validation. 

To evaluate more precisely if the model can predict the local
where  λ1

 and  λ2
 are  the  weights  of  the  block  v(u )  to  the uncertainty, we  built  an  accuracy  plot  (Goovaerts, 1999)  that

data. The system of equations to determine the weights in the 

block co-kriging estimators comes once again from the best linear 

unbiased estimation properties. By solving the equation system, 

unknown weights and the Lagrange mutiplier μz1  
are computed. 

Using the solution of this system, the block co-kriging variance 

allowed us to compare the estimated and the observed fractions of 

the true values falling into a series of p-probability intervals (PI) 

bounded by (1 − p)/2 and (1 + p)/2 quantiles and denoted below 

as A. These probability intervals can be constructed for each p. 

As an example, under the assumption that Z1   is Gaussian, the
is calculated as: 

95%-probability interval PI
 

that satisfies Pr{Z  (u  ) A} = 95% 
2    (ni ) 

95                                          1     0 

will be (Cressie, 1991)

z1 (v(u )) = −μz1  
− γz1 z1 

(v(u ), v(u )) +     

 
j =1 α=1 

γz1 zj 
(u α , v(u )), 

 
(7) 

 
 
P I95  ≡ (Z1 (u 0 ) − 1.96σE (u 0 ), Z1 (u 0 ) + 1.96σE (u 0 )).      (8)



 
 
 

 

− 

 

In this example, 95% is the estimated fraction of the true values 

falling into PI 95 . It was compared with the observed fraction; 

that is, the proportion of true measurements falling within PI 95 . 

Finally, a scattergram of the estimated versus observed fractions 

for different p allowed us to verify that the spatial model provided 

a  good  estimator  of  the  local  error  variance.  Having  verified 

that, it was then possible to use the block kriging error variance 

estimated by Equation (7) as an estimation of the error on the 

mean value of the soil property. This error was expressed after 

the two complementary error indicators, namely, RMSE and the 

determination coefficient (R2 ), thus providing a measure of the 

absolute and relative error, respectively. 

For computing the latter, it was first necessary to calculate 

the variance of the within-block mean values (Z1 (v(u )) over the 

spatial domain V (the dispersion variance) (Wackernagel, 1995). 

It was shown by Wackernagel (1995) that dispersion variance can 

be calculated from the variograms of the model with the following 

expression: 

 
σ 2 (v/ V ) = γ̄ (V , V ) − γ̄ (v, v).                       (9) 

Figure 4 shows that this cross-covariance function is truly an even 

function, with no delay or spatial shift effect, which means that 

no information is lost by using the cross-variogram instead of the 

cross-covariance. 

 
 
The co-regionalization model 
 

The linear co-regionalization model was built for the pair ‘clay 

content’  and  ‘loglog  CR2206 ’  from  the  set  of  137  bare-soil 

field  sites  at  which  these  two  variables  were  available.  To 

reduce computing costs, we sampled one row and one colunm 

from every two in the original HYMAP image. The two direct 

semi-variograms were first modelled as linear combinations of 

two  selected  basic  structures  (spherical  265 m  and  spherical 

2000 m).  The  same  basic  structures  were  then  fitted  to  the 

cross-semi-variogram under the positive semi-definite constraint 

(Goovaerts, 1997). 

Figure 5 shows the fitted linear model of co-regionalization. 

The model is as follows:

 
The theoretical determination of the dispersion variance reduces 

   
γclay −clay           γclay 

 
−CR 

 
2206

 

to the computation of the variogram integrals γ̄ (V , V ) and γ̄ (v, v) 

associated with the two supports v  and V . In practice, this is 

done by averaging the variogram values of all the pairs of points 

obtained by a discrete gridding of v and V .  

γCR2206 −clay      γCR2206 −CR2206 

    
3693          3.786

 
 

=                         Sph 
−3.786     0.0110 

 

   
  h   

 
 

265

To investigate the impact of block size on the clay content 

predictions, block co-kriging was  applied with  different block 

sizes (50, 100, 250 and 500 m). We examined both the absolute 

1872      −5.339 
+  

−5.339     0.0188 

  
   h    

 
 

Sph               ,          (10) 
2000

performances measured by  error  variance and  RMSE  and  the where Sph 
  

 h  
   

and Sph 
  

 h   
   

are the basic spherical models265 2000

relative performances measured by the coefficient of determination 

R2 . To calculate the latter, the two terms of the dispersion variance 

with ranges 265 and 2000 m, respectively. 

This model has no nugget effect. The diagonal elements and

(variogram  integrals γ̄ (V , V )   and γ̄ (v, v)   of   Equation (9)) the determinants of the two co-regionalization matrices are all

were estimated from the co-regionalization model with a block 

discretisation of 10 and 1 m, respectively. 
 

 
Results 

 

Preliminary results 
 

Figure 3(a,b) shows the distributions of the measurements of clay 

contents and of loglogCR2206 , respectively. A large variability 

in clay contents was observed over the study area (Figure 3a), 

as previously shown (Lagacherie et al., 2008). Although the two 

distributions (Figure 3a,b) appeared as global bell-shapes, they 

were  too  dis-symmetric to  be  strictly  considered  as  normally 

distributed. Figure 3(c) shows that clay contents measurements 

were linearly correlated with loglog(CR2206 ) with a coefficient of 

determination that is slightly less than in Lagacherie et al. (2008) 

(R2  = 0.55  and  0.58,  respectively) because  of  the  addition  of 

new sites. 

To verify that the cross-variogram is an appropriate tool for 

describing the  co-variation of  clay  contents  and  loglogCR2206 

over the study area, it was first necessary to examine the pair 

of  the  cross-covariance function  (Wackernagel,  1995,  p. 133). 

positive, which means that the linear model of co-regionalization 

is strictly conditionally negative definite (in the variogram). 

Figure 5 shows that the models fit well to the data. The large 

range  structure  (spherical  2000 m)  of  the  loglogCR2206   semi- 

variogram has a greater relative importance than that of the clay 

content  semi-variogram, which  prevents  the  application  of  an 

intrinsic co-regionalization model. 

 
 
Punctual co-kriging 
 

A punctual co-kriging with cross-validation was performed over 

the region. Because co-kriging from the whole set of sites with 

hyperspectral data would require too much computing time, 

subsets  of  sites  were  locally  selected  to  represent  optimally 

the   spatial  structure  of   the   hyperspectral  measurements  in 

the neighbourhood of the prediction location. The co-kriging 

procedure took into account only (i) all of the sites located less 

than 400 m  from the prediction location and (ii) a  sample of 

the sites located between 400 and 1500 m made by sampling 

each neighbouring bare-soil field at 15% of the sites, which were 

randomly selected. All of these parameters were fixed after a
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Figure 3 Data   distributions   and   linear   rela- 

tionship:  (a) distribution  of  clay  content  mea- 

surements,  (b) distribution  of  LogLog  CR2206 , 

(c) linear relationship between clay content and 

LogLog CR2206.
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Figure 4 Cross-covariance function (grey triangles) and variogram (black 

dots) for clay content (Z1 ). 
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trial-and-error procedure, which sought an acceptable compromise 

between the quality of interpolation and computing cost. 

A leave-one-out cross-validation was performed over the set 

of 200 sites with clay content measurements to obtain a set of 

observed estimation errors that were compared with the errors 

Figure 5 The linear model of co-regionalization for the pair ‘clay content’ 

and ‘loglogCR2206 ’. 
 

 
estimated by the co-kriging procedure. The result was that the 

error variance calculated globally over the 200 sites (2473 g2 

kg−2 , and RMSE = 50 g kg – 1 ) was close to that deduced from the 

cross-validation outputs (2606 g2  kg−2 , and RMSE = 51 g kg – 1 )
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Figure 6 Plots of the true clay content values falling within probability 

from which the interpolations are performed. Again, the error 

variance estimated by the block co-kriging procedure was used as 

an estimator of the true error. Four situations were distinguished 

in  the  study  area:  predicted  blocks  (i) close  to  clay  content 

measurements and hyperspectral data (≤200 m); (ii) close to clay 

content measurements and far from hyperspectral data (>200 m); 

(iii) far from clay content measurements and close to hyperspectral 

data; and (iv) far from clay content measurements and from 

hyperspectral data.  This  classification allowed  us  to  take  into 

account the spatial variation of error related to the local data 

configurations. 

Table 1 shows the performances of the block co-kriging for 

these four situations with a 100-m block size. As expected, there 

was a significant decrease of performance with the distance to 

the data source. These results also showed the usefulness of the 

hyperspectral data, which improved the predictions where the sites 

with clay content measurements were close (RMSE = 43 g kg – 1 
 

– 1 

intervals estimated by co-kriging (accuracy plot). 
compared with RMSE = 49 g kg ) and limited the degradation of

 
 

with, however, a slight under-estimation of the errors. It must 

be noted that the error variance of co-kriging was substantially 

the performances where the blocks were located far from any sites 

with clay content measurements (RMSE = 53  g kg – 1  compared 

with RMSE = 58 g kg – 1 ). Finally, the global error of the 100-m 

block predictions estimated over the whole area remained fairly
smaller than that of ordinary kriging (3567 g2  kg−2 , RMSE = 

60 g kg – 1 ), which revealed the added-value of the hyperspectral
 large (RMSE = 

error came
 

49 g kg – 1 ). However, a significant part of this 

blocks located more than 200 m from any data
data. 

To  evaluate  more  precisely  if  the  model  could  predict  the 

local uncertainty, we built an accuracy plot (Figure 6) following 

the procedure described above. A perfect modelling of local 

uncertainty would mean that, over the study area, p%  of  the 

p-prediction intervals given by the model would include the true 

value of clay content, which is represented by the 1:1 line in 

Figure 5. We were fairly close to this situation (Figure 6), but 

there was an under-estimation of the local uncertainty, mostly for 

p-prediction intervals ranging from 0.75 to 0.85. Finally, it can 

be concluded that the co-regionalization model shown in Figure 5 

and Equation (10) provided an accurate estimate of the prediction 

errors for punctual predictions and, consequently, for the block 

predictions of block means. The latter will be considered in the 

following section. 
 

 
Block co-kriging 

 

Block co-kriging was applied over the study area with the same 

rules as described to define the spatial neighbourhood of data 

from 

(RMSE = 58 g kg – 1 ), which corresponded to urban or forest areas 

where it was not possible to sample or find any cultivated (bare) 

fields with hyperspectral data. Removing these areas significantly 

decreased the global error (RMSE = 46 g kg – 1 ). In the following, 

only  the  first three  situations  will  be  considered, as  they  are 

together  more  representative of  the  situations  targeted  in  this 

study. 

The performances of the predictions for different block sizes are 

presented in Table 2 for the whole area without considering the 

19% urban or forest areas. The estimation error (RMSE) globally 

decreased as the spatial resolution of predictions (the block size) 

increased. However, this decrease was moderate between the 50- 

and 100-m resolution, even resulting in a decrease of the ratio 

of  the  explained variance measured by  R2 .  These results can 

be  explained by  the  still  large  spatial autocorrelations for  the 

lag <250 m exhibited by the co-regionalization model (Figure 5), 

which strongly limited the decrease of variance error that should 

have been observed if the sites were independent. Finally, for 

spatial resolutions less than 100 m, at which the block size effect 

did not play a significant role in decreasing error, it was possible

 
Table 1 Estimated error variances (RMSE ) of 100-m block prediction of clay contents for different data situations 

 

 Closea  clay 
 

Close clay  
 

Far clay sites and far  

sites and close sites and farb
 Far clay sites and CR2206  sites (urbanized  All types except 

Type of block CR2206  sites CR2206  sites close CR2206  sites areas and forest) All types urban and forest 

Number of blocks 1181 212 483 434 2310 1876 

Error variance / g2  kg−2  (RMSE / g kg−1 ) 1835 (43) 2364 (49) 2781 (53) 3339 (58) 2364 (49) 2138 (46) 



 
 
 

 

a Close = <200 m. 
b Far = >200 m. 

      



 
 
 

 

 

Table 2 Estimated performances of the block co-kriging procedure for 

different spatial resolutions (urban and forest areas excluded) 

 
Block  size                           50                100              250              500   

data  and  the  quality  of  the  relation between the  clay  content 

and the hyperspectral covariable (Lagacherie et al., 2008) were 

not sufficient to successfully map this effect. Finally, the error 

maps showed that the error decrease observed in Table 2 was

Numbers of blocks 9707 1876 372 90 associated with a strong decrease of the error variability, especially 

Dispersion variance / 4835 4263 2868 1828 for resolutions 250 and 500 m. At these resolutions, the blocks 
g2  kg−2

 

Error variance / g2
 

kg−2  RMSE / g kg−1
 

 
2446 (49)    2138 (46)    1083 (33)      473 (22) 

became large enough to include systematically clay content data 

and bare-soil fields, which strongly diminished and homogenized 

the prediction error.
R2                                                         0.54            0.49            0.62            0.74 

 
to map half of the total variability of the clay content. For coarser 

resolutions, the prediction errors were small, and the variability 

mapped by the block co-kriging procedure was large. 

Figure 7 shows images of clay content obtained for different 

resolutions (first row) and the corresponding error maps. All of 

the images showed a global increase of clay content from the 

north to the south of the area. This is probably the effect of 

the  parent  material,  the  Pliocene  fluvial deposits,  being  more 

clayey than the Miocene marine sediments and its derived 

colluvions  and  alluvions.  At  the  finest spatial  resolutions  (50 

and 100 m), it was possible to see more detailed spatial patterns 

that could represent a relief effect. However, as shown by the 

error estimations for these resolutions (Table 2), the density of 

Discussion 
 

This study aimed to investigate how hyperspectral imagery data 

available for a set of fields scattered within a study region could 

help in mapping soil properties over a region at spatial resolutions 

compatible with those of normal DSM applications. We also con- 

sidered a set of sites that had laboratory measurements of the soil 

properties available. We provide an example of the mapping of 

clay content over a very heterogeneous area located in the south 

of France. 

Block co-kriging was a suitable procedure for both interpolating 

and spatially aggregating the available input data to produce 

medium and coarse resolution maps (from 50 to 500 m) of clay 

content. Although some early applications of co-krigring to the
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 Images of clay content obtained for 

different resolutions (first row) and images of 

error variance (second row).



 
 
 

 

 

mapping of soil properties can be found in the literature (Stein & 

Corsten, 1991; Odeh et al., 1995), co-kriging has not been used 

widely in further DSM studies. This may change in the future 

with the increasing use in DSM of soil sensing covariates such 

as CR2206  that will be well correlated with a soil property but 

not exhaustively available in the study area. It must be noted 

that this procedure can only be applied if an intrinsic or a linear 

co-regionalization model can be fitted to satisfy the condition of 

definite positive variogram matrix. 

Block predictions of soil properties are not easy to validate 

because this requires a denser spatial sampling than is required 

for validating the point predictions. To overcome this problem 

partially,  we  proposed  first  to  verify  by  cross-validation  that 

the  co-regionalization  model  provided  a  good  estimator  of 

the  prediction  error  at  punctual  sites  and  then  to  consider 

whether the block prediction errors computed from the same co- 

regionalization model can approximate the unavailable observed 

error satisfactorily. As well as reducing the validation costs, the 

great advantage of such a procedure is to provide several images 

of the same spatial variability (Figure 7) that represent different 

compromises between accuracy and spatial resolution matching 

different users’ requirements. However, this validation procedure 

does not match the usual recommendations for validating DSM 

results (Lagacherie, 2008). It should therefore be completed by 

validations from independent samples (Brus et al., 2011). This 

would require an affordable spatial sampling design that would 

provide accurate local estimations of block prediction errors and 

represent the study area well, which would require, respectively, a 

minimum number of sites within a block and a sufficient amount of 

validation blocks. Recent advances in soil property measurement 

technologies (Adamchuk & Viscarra Rossel et al., 2010) should 

greatly help in fulfilling these requirements. 

We found that the hyperspectral image improved the prediction 

of clay contents substantially in spite of a moderate correlation 

between clay content and the hyperspectral covariable (R2  = 0.58) 

and  a  limited coverage of  the  study area (3.5%). The  former 

will  be  ameliorated  by  improving  the  correlations  thanks  to 

the  use  of  multivariate  regression  techniques  (Ben-Dor  et al., 

2008; Gomez et al., 2008; Stevens et al., 2010). Progress on the 

latter will concern either a defined choice of the flying period 

to  increase  the  chances  of  getting  bare  soil  surfaces  or  the 

use of signal processing algorithms such as spectral un-mixing 

techniques (Chabrillat et al., 2002; Bartholomeus et al., 2011) or 

‘blind source separation’ algorithms (Ouerghemmi et al., 2011) 

that would allow us to extend the hyperspectral estimations of 

soil properties to partially vegetated soil surfaces. 
 

 
Conclusions 

 

The key outputs from this study can be summarized as follows. 

Block  co-kriging  is  a  suitable  procedure  for  using  as  DSM 

inputs high-resolution and scattered data such as those produced 

by hyperspectral imagery. The unavailability of suitable spatial 

sampling for estimating errors on block mean soil properties can 

be partially overcome by using the error variance given by a DSM 

model previously validated at punctual sites. More research is 

needed on specific spatial sampling for validating block means 

estimations from independent samples. A DSM model can produce 

various maps that represent different compromises between 

prediction accuracy and spatial resolution. Using hyperspectral 

data  significantly  increases  the  accuracy  of  the  mean  clay 

content estimations. This result should, however, be improved 

by  increasing the  accuracy  of  the  hyperspectral indicator  and 

extending the surface covered by hyperspectral data. 
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