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Model of two-temperature convective transfer

in porous media

Isabelle Gruais and Dan Polǐsevski

Abstract. In this paper, we study the asymptotic behaviour of the solution of a convective heat
transfer boundary problem in an "-periodic domain which consists of two interwoven phases, solid
and fluid, separated by an interface. The fluid flow and its dependence with respect to the tem-
perature are governed by the Boussinesq approximation of the Stokes equations. The tensors of
thermal di↵usion of both phases are "-periodic, as well as the heat transfer coe�cient which is
used to describe the first-order jump condition on the interface. We find by homogenization that
the two-scale limits of the solutions verify the most commonly system used to describe local ther-
mal non-equilibrium phenomena in porous media (see [11] and [17]). Since now, this system was
justified only by volume averaging arguments.

Mathematics Subject Classification (2010). 35B27; 76M50; 76Rxx; 74F10; 74Q05.

Keywords. Homogenization, "-caps, Stokes-Boussinesq system, heat transfer coe�cient, first-order
jump interface, two-scale convergence.

1. Introduction

The macroscopic description of heat and mass transfer in porous media is of great interest in many
geophysical and industrial problems. In the case of biphasic porous media, the one-temperature models
imply a local thermal equilibrium between the solid and fluid phases. But this condition is not valid
when the thermal properties di↵er widely or when the convective transport is important (see [5]). Thus,
there have been considered the so-called non-equilibrium models, usually involving two temperatures.
The first such models have been introduced heuristically (see [19]). Since now, these models were
justified only by volume averaging arguments (see [16], [11] and [20]).

In this paper we find a two-temperature model for a convective heat and mass transfer model
using the homogenization method. We still use the interfacial thermal barrier introduced by [16],
reminding of a similar problem, that of the flow of slightly compressible fluids in porous media (see
[2]), which was justified by homogenization in [6].

We study here the asymptotic behaviour of the solution of a convective heat transfer boundary
problem in an "-periodic domain which consists of two interwoven phases, solid and fluid, separated
by an interface. The fluid part is connected and the only one reaching the boundary of the domain.
The solid part is not necessarily connected.

We improve here the biphasic structure introduced in [15], by attaching at its ends the so-called
cells of "-caps, which allow the "-periodic interface to be as smooth as it is needed. Moreover, all the
properties of [15] hold for the present structure too.

We consider an incompressible viscous fluid flow which is governed by the Stokes equation,
assuming that the temperature di↵erences are small enough to allow the Boussinesq approximation
of the Stokes equations.
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We consider that the tensors of thermal di↵usion of the two phases are "-periodic and not
necessarily equal. On the interface, the heat flux is continuous and proportional with the temperature
jump. This first-order jump condition presents an heat transfer coe�cient which is also assumed "-
periodic. In order to balance the measure of the surface of the interface, we assume that the heat
transfer coe�cient is of "-order. Finally, a temperature distribution is imposed on the boundary of
the domain.

We prove the existence and uniqueness properties of the corresponding velocity, pressure and
temperature distribution. An L1-estimate of the temperature, uniform with respect to ", is obtained.

The homogenization process is performed in the case when the Rayleigh number is of unity
order. Using the techniques of the two-scale convergence theory (see [10], [1] and [3]), we find the two-
scale system verified by the two-scale limits of the "-solutions and the solutions of the local problems
which allow us to define the e↵ective coe�cients of the homogenized system, called sometimes as the
macroscopic system, as it does not depend on the microscopic variable.

The homogenized system that is verified here by the limits of the "-solutions turns out to be the
most common system used to describe local thermal non-equilibrium phenomena in porous media (see
[16], [11] and [17]).

2. The "-caps of the periodic porous structure

Let ⌦ be an open connected bounded set in RN , N � 1, locally located on one side of the boundary
@⌦, a Lipschitz manifold composed of a finite number of connected components.

Let E be the rhombic polyhedron obtained by a�xing square pyramids of 1/2 height on each
face of the cube Y =]� 1/2, 1/2[N , that is

E = int(Conv(Y [ {±ei, i = 1, 2, ..., N})), (2.1)

where ei are the unit vectors of the canonical basis in RN .
For D ⇢⇢ E, a domain which is of Lipschitz class, we define

D±
i = (Y ± ei) \D, 8i 2 {1, 2, ..., N}. (2.2)

We assume that Ys := Y \D has the property

Y s \ ⌃±i ⇢⇢ ⌃±i, 8i 2 {1, 2, ..., N}, (2.3)

where ⌃±i = {y 2 @Y : yi = ±1/2}.
Denoting Yf := Y \Y s, we assume that the reunion of all the Y f parts is a connected domain in

RN with a locally Lipschitz boundary, denoted by RN
f . Obviously, the origin of the coordinate system

can be set in such a way that there exists r > 0 with the property B(0, r) ✓ RN
f .

For any " 2]0, 1[ we denote

Z" = {k 2 ZN : "k + "Y ✓ ⌦}, (2.4)

I" = {k 2 Z" : "k ± "ei + "Y ✓ ⌦, 8i 2 {1, 2, ..., N}}, (2.5)

⌦Y"s = int

 

[

k2I"

("k + "Y s)

!

(2.6)

J±",k = { i 2 {1, 2, ..., N}, ("k + "D
±
i ) \ ⌦Y",s 6= ; }, 8k 2 Z" \ I". (2.7)

For every k 2 Z" \ I" we define the so-called cell of "-caps by

D",k = ([i2J+",k
("k + "D+

i )) [ ([i2J�",k
("k + "D�

i )) ⇢ "k + "Y. (2.8)

Thus, the solid part of our structure is given by

⌦",s = int(⌦Y"s [ ([k2Z"\I"D"k)) (2.9)

and the fluid part by
⌦"f = ⌦ \ ⌦"s. (2.10)
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The interface between the two components is denoted by

�" = @⌦"f \ @⌦"s = @⌦"s. (2.11)

We see that all the boundaries are at least locally Lipschitz, ⌦"f is connected and ⌦"s can be,
in particular, connected too. We remark also that the cells of "-caps are of at most (4N � 2) types
and that they do not a↵ect the classical results concerning such "-periodic structures (see [4], [6] and
[15]). The main advantage of using the structure with cells of "-caps is that �" has the same class as
the boundaries of D and RN

f , which can be assumed as smooth as it is needed.
From now on, let us denote � = @Yf \ @Ys and ⌫ the normal on � (exterior to Yf ). Then, for

x 2 ("k + "�), k 2 Z", we find that ⌫"(x) = ⌫ ({x/"}) is the corresponding normal on �" (exterior to
⌦"f ), where {x/"} stands for the fractional parts of the components of "�1x.

Our domain has the following well-known properties (see [4] and [6]):

Lemma 2.1. There exists an extension operator P"k 2 L
�

H1(⌦"k);H1(⌦)
�

, for any k 2 {s, f}, with
the properties:

P"kT = T in ⌦"k, (2.12)

|rP"kT |L2
(⌦)

 C |rT |L2
(⌦"k)

, 8T 2 H1(⌦"k), (2.13)

where C > 0 is a constant independent of ".

Lemma 2.2. For any T 2 H1

0

(⌦ \ �") there exists C > 0, independent of ", such that

|T |L2
(⌦"f )

 C |rT |L2
(⌦"f )

, (2.14)

"1/2 |�"kT |L2
(�")

 C
⇣

|T |L2
(⌦"k)

+ " |rT |L2
(⌦"k)

⌘

, k 2 {s, f} (2.15)

|T |L2
(⌦"s)

 C
⇣

"1/2 |�"sT |L2
(�")

+ " |rT |L2
(⌦"s)

⌘

. (2.16)

Remark 2.3. Taking in account the L2�norm of the jump on �" the results of the previous Lemma
have an important consequence:

|T |L2
(⌦"s)

 C |T |H1
0 (⌦\�")

, 8T 2 H1

0

(⌦ \ �"). (2.17)

We recall here the main inequalities that hold in the vectorial case.

Lemma 2.4. There exists C > 0 independent of " such that

|u|L2
(⌦"f )

 C"|ru|L2
(⌦"f )

, 8u 2 H1

0

(⌦"f )
N (2.18)

|p|L2
(⌦"f )/R  C

"
|rp|H�1

(⌦"f )
, 8p 2 L2(⌦"f ). (2.19)

|p|L2
(⌦"f )/R  C|rp|L2

(⌦"f )
, 8p 2 H1(⌦"f ). (2.20)

Denoting �"
k and �k as the characteristic functions of respectively ⌦"k and Yk, we have a specific

compactness result for the pressure type estimates in H�1(⌦"f ) (see [15]).

Theorem 2.5. If (p")" 2 L2(⌦"f ) has the property that for some constant C > 0 there hold:

�

�

�

�

�

Z

⌦"f

p"(x) dx

�

�

�

�

�

 C, 8" 2]0, 1[, (2.21)

|rp"|H�1
(⌦"f )

 C", 8" 2]0, 1[, (2.22)

then there exists p 2 L2(⌦) such that, on some subsequence:

�"fp
" 2

* �fp. (2.23)
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3. The heat and mass transfer across the interface

In this section, we present the existence and uniqueness properties, as well as the a priori estimates of
the solutions of the convection problem occuring in the "-periodic structure introduced in the previous
section. We consider that the viscous fluid flow takes place only in ⌦"f and is governed by the Stokes
system in the Boussinesq approximation. The heat transport throughout ⌦ presents an interfacial
barrier on �", where the temperature obeys to a first-order jump condition. The problem is completed
by imposing a certain temperature distribution on the boundary of ⌦.

Let us introduce the Hilbert space

H1

0

(⌦ \ �")={T 2L2(⌦), T |
⌦"f 2 H1(⌦"f ), T |⌦"s 2 H1(⌦"s), T = 0 on @⌦} (3.1)

endowed with the scalar product

(T, S)H1
0 (⌦\�")

=

Z

⌦"f

rTrS +

Z

⌦"s

rTrS + "

Z

�"

[T ][S], (3.2)

where [T ] = �"sT � �"fT and �"fT, �"sT are the traces of T on �" defined in H1(⌦"f ) and H1(⌦"s),
respectively.

For any " 2]0, 1[ we introduce the jump transmission factor ⌘"(x) = ⌘(x/") and the symmetric
conductivities a"fij (x) = afij(x/") and a"sij (x) = asij(x/"), where afij , a

s
ij 2 L1

per

(Y ) and ⌘ 2 C1

per

(Y )
have the property that there exists � > 0 such that

⌘ � �, a.e. on Y (3.3)

akij⇠i⇠j � �⇠i⇠i 8⇠ 2 RN , a.e. on Y, 8k 2 {s, f}. (3.4)

Also, we consider ↵" > 0, g 2 L1(⌦)N and Q 2 L2(⌦) to be respectively the Rayleigh number,
the external body force and the heat source. The nondimensional system which governs the velocity
u", pressure p", and temperature ✓", is the following (see [14]):

divu" = 0 in ⌦"f , (3.5)

"2�u" + ✓"g = rp" in ⌦"f , (3.6)

↵"u
"r✓" � div(a"fr✓") = Q in ⌦"f , (3.7)

�div(a"sr✓") = Q in ⌦"s, (3.8)

a"fij
@✓"

@xj
⌫"i = a"sij

@✓"

@xj
⌫"i = "⌘"(�"s✓

" � �"f✓
") on �" (3.9)

u" = 0 on @⌦"f , (3.10)

✓" = ⌧ on @⌦, (3.11)

where ⌧ 2 H3/2(@⌦), infx2@⌦ ⌧ = �1/2 and supx2@⌦ ⌧ = 1/2.
Because of the nonlinear inertial term, we pass to a homogeneous problem with the following

precaution (see [12] or [13]):

Lemma 3.1. For any h > 0, there exists ⌧h 2 H2(⌦) such that:

⌧h = ⌧ on @⌦ (3.12)

| Sr⌧h|L2
(⌦)

 h|rS|L2
(⌦)

, 8S 2 H1

0

(⌦). (3.13)

Setting T " = ✓" � ⌧h, for some h which will be chosen later, and defining

V"f = {v 2 H1

0

(⌦"f ), divv = 0 in ⌦"f}, (3.14)

the variational formulation of our problem is:
To find (u", T ") 2 V"f ⇥H1

0

(⌦ \ �"), solution of the system

"2(ru",rv)"f � ((T " + ⌧h)g, v)"f = 0, 8v 2 V"f (3.15)
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(a"fr(T " + ⌧h),rS)"f + (a"sr(T " + ⌧h),rS)"s + "

Z

�"

⌘"[T "][S]+

+↵"(u
", Sr(T " + ⌧h))"f = (Q,S)L2

(⌦)

, 8S 2 H1

0

(⌦ \ �") (3.16)

where (·, ·)"k denotes the scalar product in L2(⌦"k)N , k 2 {s, f}.

Defining F" 2 (V"f ⇥H1

0

(⌦ \ �"))0 by

F"(v, S) := �(⌧hg, v)"f + (Q,S)L2
(⌦)

� (a"fr⌧h,rS)"f � (a"sr⌧h,rS)"s,

we introduce a problem equivalent to (3.15)–(3.16):

To find (u", ✓") 2 V"f ⇥H1

0

(⌦ \ �") such that

hG(u", ✓"), (v,')i = F"(') for any (v,') 2 V"f ⇥H1

0

(⌦ \ �"), (3.17)

where the mapping G : V"f ⇥H1

0

(⌦ \ �") ! (V"f ⇥H1

0

(⌦ \ �"))0 is defined by

hG(u, ✓), (v,')i = h↵""
2(ru",rv)"f � h↵"(T

"g, v)"f + "

Z

�"

⌘"[T "][S]

+(a"frT ",rS)"f + (a"srT ",rS)"s + ↵"(u
", Sr(T " + ⌧h))"f (3.18)

Remark 3.2. It is obvious from (3.17) that we already know that h↵" > 0 is a suitable multiplier for
the flow equation.

In order to prove the existence theorem for problem (3.17), we remind the following result of
Gossez (see [7]):

Theorem 3.3. Let X be a reflexive Banach space and G : X ! X 0
a continuous mapping between the

corresponding weak topologies. If

hG','i
|'|X

! 1 as |'|X ! 1, (3.19)

then G is a surjection.

Here it is the main result of this section.

Theorem 3.4. There exists (u", T ") solution of the problem (3.15)–(3.16) for a proper choice of h > 0,
that is when h↵" is smaller than a certain constant, independent of ". Moreover, T " 2 L1(⌦) and

there exists c > 0 (independent of ") such that

|T " + ⌧h|L1
(⌦"f )

 1

2
+ c|Q|L2

(⌦)

. (3.20)

Proof. Using Theorem 3.3 and acting as in the proof of Theorem 5.2.2 [13] (Ch 1, Sec. 5), we obtain
the first part of the result in a classical way.
In order to prove (3.20) let us define for any t > 0

⌦t
" = {x 2 ⌦, |T "(x) + ⌧h(x)| > 1/2 + t}, (3.21)

⌦t
"k = ⌦t

" \ ⌦"k, k 2 {s, f}, (3.22)

R"
t = sgn(T " + ⌧h)max{|T " + ⌧h|� 1/2� t, 0}, (3.23)

where the inequalities are in the H1-sense (see [9]). We see that

R"
t 2 H1

0

(⌦ \ �") and rR"
t = r(T " + ⌧h) in L2(⌦ \ �"). (3.24)

As for any k 2 {s, f} we have

|R"
t |2L4

(⌦

t
"k)

 |P"kR
"
t |2L4

(⌦)

 c|rP"kR
"
t |2L2

(⌦)

 c|rR"
t |2L2

(⌦

t
"k)

=

= c|r(T " + ⌧h)|2L2
(⌦"k)

 c(a"kr(T " + ⌧h),r(T " + ⌧h))"k =

= c(a"kr(T " + ⌧h),rR"
t )"k, (3.25)

↵"(u
", R"

tr(T " + ⌧h))"f = ↵"(u
", R"

trR"
t )"f = 0, (3.26)
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and

"

Z

�"

⌘"[T "][R"
t ] � 0 (3.27)

it follows from (3.16) that

|R"
t |2L4

(⌦

t
")

 c|(Q,R"
t )|  |Q|L1

(⌦)

|⌦t
"|

3
4 |R"

t |L4
(⌦

t
")
. (3.28)

Moreover, considering h > 0 we notice that

|R"
t |4 � h4 a.e. on ⌦t+h

" (3.29)

and hence
h |⌦t+h

" | 14  |R"
t |L4

(⌦

t+h
" )

 |R"
t |L4

(⌦

t
")
. (3.30)

Defining the nonincreasing function �" : R
+

! R
+

by �"(t) = |⌦t
"|, we see that

�"(t+ h)  c

h4

|Q|4L1
(⌦)

�3

"(t), 8t, h > 0. (3.31)

Applying Lemma B.1 (see [9], Chap. 2) it follows that there exists c > 0 (independent of ") such that
�"(c|Q|L1

(⌦)

) = 0, that is

meas{x 2 ⌦, |T "(x) + ⌧h(x)| > 1/2 + c|Q|L1
(⌦)

} = 0, (3.32)

and the proof is completed.

Remark 3.5. We do not have a uniqueness result, except if we assume that the Rayleigh number
↵" > 0 is small enough.

4. Compactness results for bounded Rayleigh numbers

From now on we assume that there exists ↵ > 0 such that

↵" ! ↵ when "! 0. (4.1)

First of all, let us notice that in the present case h and ⌧h are independent of ".
We proceed with the a priori estimates of the solutions.
Setting (v, S) = (u", T ") in (3.15)–(3.16) and using (2.14)–(2.18) and (3.20), we get

|u"|"f  c, "|ru"|"f  c and |T "|H1
0 (⌦\�")

 c, (4.2)

for some c independent of ".

For any k 2 {s, f}, let us introduce the following notations

V
0

(div,⌦) = {v 2 H(div,⌦), divv = 0 in ⌦, v · ⌫ = 0 on @⌦} (4.3)

H1

per

(Yk) =
�

' 2 H1

loc

�

RN
k

�

,' is Y -periodic
 

(4.4)

V
0

(Yf ) = {v 2 H1

per

(Yf )
N , divv = 0 in Yf , v = 0 on �}. (4.5)

H̃1

per

(Yk) = {' 2 H1

per

(Yk), '̃ = 0}, (4.6)

where for any ' 2 L1(⌦⇥ Y ), we denote

'̃ =

Z

Y

'dy. (4.7)

The estimates (4.2) prove that �"
f (u

"), "�"
f (ru") and �"

k(T
"), "�"

k(rT ") are respectively bounded

in L2(⌦)N and L2(⌦), for any k 2 {s, f}. A first compactness result follows:

Theorem 4.1. There exist u 2 L2(⌦;V
0

(Yf )), Tk 2 H1

0

(⌦) and Sk 2 L2

⇣

⌦; H̃1

per

(Yk)
⌘

, k 2 {s, f},
with the properties:

�"
f (u

")
2s
* �f (u), (4.8)

"�"
f

✓

@u"

@xi

◆

2s
* �f

✓

@u

@yi

◆

, (4.9)
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�"
k(T

")
2s
* �k(Tk), (4.10)

�"
k

✓

@T "

@xi

◆

2s
* �k

✓

@Tk

@xi
+
@Sk

@yi

◆

, i 2 {1, 2, ..., N}. (4.11)

where

2s
* represents the two-scale convergence in L2(⌦). Moreover, we have:

ũ 2 V
0

(div,⌦). (4.12)

Proof. All the properties can be easily obtained by applying Proposition 1.14 of [1]. We only prove
here that Tk = 0 on @⌦, for both k 2 {s, f} and u = 0 on ⌦⇥ �.
Recalling the extension operators introduced by Lemma 2.1, we have

|P"kT
"
k |H1

0 (⌦)

 c|rP"kT
"
k |L2

(⌦)

 c|rT "
k |L2

(⌦"k)
 c (4.13)

which shows that (P"kT
"
k )" is bounded in H1

0

(⌦). Hence, there exists T 0
k 2 H1

0

(⌦) such that

P"kT
"
k �! T 0

k weakly in H1

0

(⌦), (4.14)

and consequently

�k

⇣nx

"

o⌘

P"kT
"
k

2s
* �k(y)T

0
k(x). (4.15)

On the other hand,

�k

⇣nx

"

o⌘

P"kT
"
k = �"

k(T
"
k )

2s
* �k(y)Tk(x) (4.16)

which obviously implies Tk = T 0
k 2 H1

0

(⌦).

Next, let ' 2 D(⌦, C1
per

(Y f ))N . Denoting '"(x) = '
⇣

x,
x

"

⌘

, it follows

0 = "

Z

�"

u"
i ('

" · ⌫") =
Z

⌦"f

(("ru"
i )'

" + u"
i ("div'

")) !

!
Z

⌦⇥Yf

('ryui + uidivy') =

Z

⌦⇥Yf

divy(ui') =

Z

⌦⇥�

ui(' · ⌫) (4.17)

and the result follows.

Remark 4.2. There is in the previous proof a second interpretation of the two limit temperatures, Ts

and Tf ; they are the weak limits of respectively (P"sT
"
s )" and (P"fT

"
f )" in H1

0

(⌦).

In order to study the asymptotic behaviour of (u", T "), we have to recover and estimate the
pressure, which was hidden by the variational formulation. For this, let us define F" 2 H�1(⌦) by

F"(v) = �"2(ru",rv)"f + ((T " + ⌧h)g, v)"f , v 2 H1

0

(⌦"f ). (4.18)

As F"(v) = 0 if divv = 0 in ⌦"f , from the Tartar’s variant of the De Rham Lemma (see Remark 1.9
[18]), we see that there exists p" 2 L2

0

(⌦"f ) such that

F"(v) = hrp", vihH�1,H1
0 i(⌦"f )

, 8v 2 H1

0

(⌦"f ), (4.19)

where L2

0

(⌦"f ) = {p 2 L2(⌦"f ),
R

⌦"f
p = 0}, that is

"2(ru",rv)"f � (p", divv)"f = ((T " + ⌧h)g, v)"f , 8v 2 H1

0

(⌦"f ). (4.20)

From (4.19) and Theorem 3.1 of [15] easily follows

|rp"|H�1
(⌦"f )

 c" and |p"|"f  c, (4.21)

for some c > 0 independent of ".
Thus, the hypotheses of Theorem 3.2 of [15] are fullfilled and the second final compactness result

can be presented.

Theorem 4.3. There exists p 2 L2

0

(⌦) = {p 2 L2(⌦),
R

⌦

p = 0} such that on some subsequence

�"
f (p

")
2s
* �f (y)p(x) (4.22)
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5. The homogenized system

Now, we shall look for the two-scale system verified by the limits u, p, Tk and Sk, k 2 {s, f}, introduced
by the theorems 4.1 and 4.3.

Theorem 5.1. For any  2 D(⌦;V
0

(Yf )), �k 2 D(⌦) and 'k 2 D(⌦; H̃1

per

(Yk)) we have

Z

⌦⇥Yf

ryury �
Z

⌦⇥Yf

pdivx =

Z

⌦⇥Yf

(Tf + ⌧h)g (5.1)

X

k2{s,f}

Z

⌦⇥Yk

ak(y)(rTk +rySk)(r�k +ry'k) +

Z

⌦⇥�

⌘(Ts � Tf )(�s � �f )+

+m↵

Z

⌦

ũ�fr(Tf + ⌧h) =
X

k2{s,f}

Z

⌦⇥Yk

Q�k, (5.2)

where m := |Yf | 2]0, 1[.

Proof. We pass (4.20) and (3.16) to the limit ("! 0) with specific test functions. In (4.20) we set:

v(x) =  "(x) =  (x, x/") for x 2 ⌦"f ,  2 D(⌦;V
0

(Yf ))

and in (3.16) we set
S(x) = �k(x) + "'"

k(x) for x 2 ⌦"k, k 2 {s, f},
where �k 2 D(⌦) and '"

k(x) = '(x, x/") for x 2 ⌦"k, 'k 2 D(⌦; C1
per

(Yk)). Letting " ! 0 on the
subsequence ensured by the theorems 4.1–4.3 we find without di�culty (5.1); with the techniques of
[6] and [8] we prove the convergences to the all the terms of (5.2), except the nonlinear one, which we
treat here. Recalling Remark 4.2, as P"fT

" is strongly converging to Tf in L2(⌦), we have

↵"

Z

⌦"f

u"�fr(T " + ⌧h) = �↵"

Z

⌦

�"
f (u

")(P"fT
" + ⌧h)r�f !

! �↵
Z

⌦⇥Yf

u(Tf + ⌧h)r�f = m↵

Z

⌦

ũ�fr(Tf + ⌧h) (5.3)

Using the estimations (4.2), the other nonlinear term is converging to zero, as follows:
�

�

�

�

�

"↵"

Z

⌦"f

u"'"
fr(T " + ⌧h)

�

�

�

�

�

 C"|u"|L2
(⌦"f )

|r(T " + ⌧h)|L2
(⌦"f )

sup
⌦⇥Y

|'f |.

Moreover, (5.2) holds true for any 'k 2 D(⌦; H̃1

per

(Yk)) by density and continuity arguments.

The next result is straightforward.

Theorem 5.2. The limits u and Sk of the theorems 4.1–4.3 are uniquely determined with respect to p
and Tk by the following relations:

uj(x, y) = w
(i)
j (y)

✓

(Tf + ⌧h)gi �
@p

@xi

◆

(x) in ⌦⇥ Yf , (5.4)

Sk(x, y) = S
(i)
k (y)

@Tk

@xi
(x) in ⌦⇥ Yk, k 2 {s, f}, (5.5)

where w(i) 2 V
0

(Yf ) and S
(i)
k 2 H̃1

per

(Yf ) are the solutions of the well-defined (local) problems:

Z

Yf

rw(i)r =

Z

Yf

 i, 8 2 V
0

(Yf ), (5.6)

Z

Yk

akr(S(i)
k + yi)r k = 0, 8 k 2 H̃1

per

(Yk), k 2 {s, f}. (5.7)

Remark 5.3. Denoting with B the inverse of the positive-definite matrix (
R

Yf
rw(i)rw(j))i,j 2 RN⇥N ,

we get from (5.4)
Bũ+rp = (Tf + ⌧h)g in ⌦. (5.8)
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Remark 5.4. Introducing for k 2 {s, f} the positive-definite matrices

Aij =

Z

Yk

akr(S(i)
k + yi)r(S(j)

k + yj),

by taking into account (5.5) in (5.2), we obtain:
X

k2{s,f}

✓

Ak

Z

⌦

rTkr�k

◆

+ ⌘̂

Z

⌦

(Ts � Tf )(�s � �f )+

+m↵

Z

⌦

ũ�fr(Tf + ⌧h) =
X

k2{s,f}

Z

⌦⇥Yk

Q�k, (5.9)

where ⌘̂ =
R

�

⌘d�.

Returning to the initial notations, that is, ✓k = Tk + ⌧h, k 2 {s, f}, and summarizing the results
of the theorems 4.1–4.3 and of the remarks 5.3–5.4, we see that the homogenized system corresponding
to (3.5)–(3.11) is the following:

divũ = 0 in ⌦, (5.10)

Bũ+rp = ✓fg in ⌦, (5.11)

m↵ ũr✓f � div(Afr✓f ) + ⌘̂(✓f � ✓s) = mQ in ⌦, (5.12)

�div(Asr✓s) + ⌘̂(✓s � ✓f ) = (1�m)Q in ⌦, (5.13)

ũ · n = 0 on @⌦, (5.14)

✓f = ✓s = ⌧ on @⌦. (5.15)

Like the initial system, it has at least one weak solution, which is unique only when ↵ > 0 is su�ciently
small.
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