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In this paper, we study the asymptotic behaviour of the solution of a convective heat transfer boundary problem in an "-periodic domain which consists of two interwoven phases, solid and fluid, separated by an interface. The fluid flow and its dependence with respect to the temperature are governed by the Boussinesq approximation of the Stokes equations. The tensors of thermal di↵usion of both phases are "-periodic, as well as the heat transfer coe cient which is used to describe the first-order jump condition on the interface. We find by homogenization that the two-scale limits of the solutions verify the most commonly system used to describe local thermal non-equilibrium phenomena in porous media (see [11] and [17]). Since now, this system was justified only by volume averaging arguments.

Introduction

The macroscopic description of heat and mass transfer in porous media is of great interest in many geophysical and industrial problems. In the case of biphasic porous media, the one-temperature models imply a local thermal equilibrium between the solid and fluid phases. But this condition is not valid when the thermal properties di↵er widely or when the convective transport is important (see [START_REF] Duval | A local thermal non-equilibrium model for two-phase flows with phase-change in porous media[END_REF]). Thus, there have been considered the so-called non-equilibrium models, usually involving two temperatures. The first such models have been introduced heuristically (see [START_REF] Vortmeyer | Equivalence of one-and two-phase models for heat transfer processes in packed beds, one dimensional theory[END_REF]). Since now, these models were justified only by volume averaging arguments (see [START_REF] Quintard | Modelling local non-equilibrium heat transfer in porous media[END_REF], [START_REF] Nield | Convection in porous media. 2d Edition[END_REF] and [START_REF] Whitaker | The method of volume averaging[END_REF]).

In this paper we find a two-temperature model for a convective heat and mass transfer model using the homogenization method. We still use the interfacial thermal barrier introduced by [START_REF] Quintard | Modelling local non-equilibrium heat transfer in porous media[END_REF], reminding of a similar problem, that of the flow of slightly compressible fluids in porous media (see [START_REF] Barenblatt | On basic conceptions of the theory of homogeneous fluids seepage in fractured rocks (in Russian)[END_REF]), which was justified by homogenization in [START_REF] Ene | Model of di↵usion in partially fissured media[END_REF].

We study here the asymptotic behaviour of the solution of a convective heat transfer boundary problem in an "-periodic domain which consists of two interwoven phases, solid and fluid, separated by an interface. The fluid part is connected and the only one reaching the boundary of the domain. The solid part is not necessarily connected.

We improve here the biphasic structure introduced in [START_REF] Poliševski | Basic homogenization results for a biconnected "-periodic structure[END_REF], by attaching at its ends the so-called cells of "-caps, which allow the "-periodic interface to be as smooth as it is needed. Moreover, all the properties of [START_REF] Poliševski | Basic homogenization results for a biconnected "-periodic structure[END_REF] hold for the present structure too.

We consider an incompressible viscous fluid flow which is governed by the Stokes equation, assuming that the temperature di↵erences are small enough to allow the Boussinesq approximation of the Stokes equations.

We consider that the tensors of thermal di↵usion of the two phases are "-periodic and not necessarily equal. On the interface, the heat flux is continuous and proportional with the temperature jump. This first-order jump condition presents an heat transfer coe cient which is also assumed "periodic. In order to balance the measure of the surface of the interface, we assume that the heat transfer coe cient is of "-order. Finally, a temperature distribution is imposed on the boundary of the domain.

We prove the existence and uniqueness properties of the corresponding velocity, pressure and temperature distribution. An L 1 -estimate of the temperature, uniform with respect to ", is obtained.

The homogenization process is performed in the case when the Rayleigh number is of unity order. Using the techniques of the two-scale convergence theory (see [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF], [START_REF] Allaire | Homogenization and two-scale convergence[END_REF] and [START_REF] Cioranescu | An Introduction to Homogenization[END_REF]), we find the twoscale system verified by the two-scale limits of the "-solutions and the solutions of the local problems which allow us to define the e↵ective coe cients of the homogenized system, called sometimes as the macroscopic system, as it does not depend on the microscopic variable.

The homogenized system that is verified here by the limits of the "-solutions turns out to be the most common system used to describe local thermal non-equilibrium phenomena in porous media (see [START_REF] Quintard | Modelling local non-equilibrium heat transfer in porous media[END_REF], [START_REF] Nield | Convection in porous media. 2d Edition[END_REF] and [START_REF] Rees | Local thermal non-equilibrium in porous medium convection[END_REF]).

The "-caps of the periodic porous structure

Let ⌦ be an open connected bounded set in R N , N 1, locally located on one side of the boundary @⌦, a Lipschitz manifold composed of a finite number of connected components.

Let E be the rhombic polyhedron obtained by a xing square pyramids of 1/2 height on each face of the cube

Y =] 1/2, 1/2[ N , that is E = int(Conv(Y [ {±e i , i = 1, 2, ..., N})), (2.1) 
where e i are the unit vectors of the canonical basis in R N . For D ⇢⇢ E, a domain which is of Lipschitz class, we define

D ± i = (Y ± e i ) \ D, 8i 2 {1, 2, ..., N}. (2.2) 
We assume that Y s := Y \ D has the property

Y s \ ⌃ ±i ⇢⇢ ⌃ ±i , 8i 2 {1, 2, ..., N}, (2.3) 
where ⌃ ±i = {y 2 @Y : y i = ±1/2}. Denoting Y f := Y \ Y s , we assume that the reunion of all the Y f parts is a connected domain in R N with a locally Lipschitz boundary, denoted by R N f . Obviously, the origin of the coordinate system can be set in such a way that there exists r > 0 with the property B(0, r) ✓ R N f . For any " 2]0, 1[ we denote

Z " = {k 2 Z N : "k + "Y ✓ ⌦}, (2.4) 
I " = {k 2 Z " : "k ± "e i + "Y ✓ ⌦, 8i 2 {1, 2, ..., N}}, (2.5) 
⌦ Y"s = int [ k2I" ("k + "Y s ) ! (2.6) J ± ",k = { i 2 {1, 2, ..., N}, ("k + "D ± i ) \ ⌦ Y",s 6 = ; }, 8k 2 Z " \ I " . (2.7) 
For every k 2 Z " \ I " we define the so-called cell of "-caps by

D ",k = ([ i2J + ",k ("k + "D + i )) [ ([ i2J ",k ("k + "D i )) ⇢ "k + "Y. (2.8)
Thus, the solid part of our structure is given by

⌦ ",s = int(⌦ Y"s [ ([ k2Z"\I" D "k )) (2.9)
and the fluid part by .10) The interface between the two components is denoted by " = @⌦ "f \ @⌦ "s = @⌦ "s .

⌦ "f = ⌦ \ ⌦ "s . ( 2 
(2.11)

We see that all the boundaries are at least locally Lipschitz, ⌦ "f is connected and ⌦ "s can be, in particular, connected too. We remark also that the cells of "-caps are of at most (4 N 2) types and that they do not a↵ect the classical results concerning such "-periodic structures (see [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF], [START_REF] Ene | Model of di↵usion in partially fissured media[END_REF] and [START_REF] Poliševski | Basic homogenization results for a biconnected "-periodic structure[END_REF]). The main advantage of using the structure with cells of "-caps is that " has the same class as the boundaries of D and R N f , which can be assumed as smooth as it is needed. From now on, let us denote = @Y f \ @Y s and ⌫ the normal on (exterior to Y f ). Then, for x 2 ("k + " ), k 2 Z " , we find that ⌫ " (x) = ⌫ ({x/"}) is the corresponding normal on " (exterior to ⌦ "f ), where {x/"} stands for the fractional parts of the components of " 1 x.

Our domain has the following well-known properties (see [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF] and [START_REF] Ene | Model of di↵usion in partially fissured media[END_REF]):

Lemma 2.1. There exists an extension operator

P "k 2 L H 1 (⌦ "k ); H 1 (⌦)
, for any k 2 {s, f }, with the properties:

P "k T = T in ⌦ "k , (2.12 
)

|rP "k T | L 2 (⌦)  C |rT | L 2 (⌦ "k ) , 8T 2 H 1 (⌦ "k ), (2.13) 
where C > 0 is a constant independent of ".

Lemma 2.2. For any T 2 H 1 0 (⌦ \ " ) there exists C > 0, independent of ", such that

|T | L 2 (⌦" f )  C |rT | L 2 (⌦" f ) , (2.14) 
" 1/2 | "k T | L 2 ( " )  C ⇣ |T | L 2 (⌦" k ) + " |rT | L 2 (⌦" k ) ⌘ , k 2 {s, f } (2.15) |T | L 2 (⌦"s)  C ⇣ " 1/2 | "s T | L 2 ( " ) + " |rT | L 2 (⌦"s) ⌘ . (2.16) 
Remark 2.3. Taking in account the L 2 norm of the jump on " the results of the previous Lemma have an important consequence:

|T | L 2 (⌦"s)  C |T | H 1 0 (⌦\ " ) , 8T 2 H 1 0 (⌦ \ " ).
(2.17)

We recall here the main inequalities that hold in the vectorial case.

Lemma 2.4. There exists C > 0 independent of " such that

|u| L 2 (⌦ "f )  C"|ru| L 2 (⌦ "f ) , 8u 2 H 1 0 (⌦ "f ) N (2.18) |p| L 2 (⌦ "f )/R  C " |rp| H 1 (⌦ "f ) , 8p 2 L 2 (⌦ "f ). (2.19) |p| L 2 (⌦ "f )/R  C|rp| L 2 (⌦ "f ) , 8p 2 H 1 (⌦ "f ). (2.20)
Denoting " k and k as the characteristic functions of respectively ⌦ "k and Y k , we have a specific compactness result for the pressure type estimates in H 1 (⌦ "f ) (see [START_REF] Poliševski | Basic homogenization results for a biconnected "-periodic structure[END_REF]).

Theorem 2.5. If (p " ) " 2 L 2 (⌦ "f ) has the property that for some constant C > 0 there hold:

Z ⌦ "f p " (x) dx  C, 8" 2]0, 1[, (2.21) |rp " | H 1 (⌦ "f )  C", 8" 2]0, 1[, (2.22)
then there exists p 2 L 2 (⌦) such that, on some subsequence:

"f p " 2 * f p.
(2.23)

The heat and mass transfer across the interface

In this section, we present the existence and uniqueness properties, as well as the a priori estimates of the solutions of the convection problem occuring in the "-periodic structure introduced in the previous section. We consider that the viscous fluid flow takes place only in ⌦ "f and is governed by the Stokes system in the Boussinesq approximation. The heat transport throughout ⌦ presents an interfacial barrier on " , where the temperature obeys to a first-order jump condition. The problem is completed by imposing a certain temperature distribution on the boundary of ⌦.

Let us introduce the Hilbert space

H 1 0 (⌦ \ " ) = {T 2 L 2 (⌦), T | ⌦ "f 2 H 1 (⌦ "f ), T | ⌦"s 2 H 1 (⌦ "s ), T = 0 on @⌦} (3.1)
endowed with the scalar product

(T, S) H 1 0 (⌦\ " ) = Z ⌦ "f rT rS + Z ⌦"s rT rS + " Z " [T ][S], (3.2) 
where [T ] = "s T "f T and "f T, "s T are the traces of T on " defined in H 1 (⌦ "f ) and H 1 (⌦ "s ), respectively.

For any " 2]0, 1[ we introduce the jump transmission factor ⌘ " (x) = ⌘(x/") and the symmetric conductivities 

a "f ij (x) = a f ij (x/") and a "s ij (x) = a s ij (x/"),
a k ij ⇠ i ⇠ j ⇠ i ⇠ i 8⇠ 2 R N , a.e. on Y, 8k 2 {s, f }. (3.4) 
Also, we consider ↵ " > 0, g 2 L 1 (⌦) N and Q 2 L 2 (⌦) to be respectively the Rayleigh number, the external body force and the heat source. The nondimensional system which governs the velocity u " , pressure p " , and temperature ✓ " , is the following (see [START_REF] Poliševski | Homogenization of thermal flows: the influence of Grashof and Prandtl numbers[END_REF]):

divu " = 0 in ⌦ "f , (3.5 
)

" 2 u " + ✓ " g = rp " in ⌦ "f , (3.6) 
↵ " u " r✓ " div(a "f r✓ " ) = Q in ⌦ "f , (3.7) div(a "s r✓ " ) = Q in ⌦ "s , (3.8) 
a "f ij @✓ " @x j ⌫ " i = a "s ij @✓ " @x j ⌫ " i = "⌘ " ( "s ✓ " "f ✓ " ) on " (3.9) 
u " = 0 on @⌦ "f , (3.10)

✓ " = ⌧ on @⌦, (3.11) 
where ⌧ 2 H 3/2 (@⌦), inf x2@⌦ ⌧ = 1/2 and sup x2@⌦ ⌧ = 1/2. Because of the nonlinear inertial term, we pass to a homogeneous problem with the following precaution (see [START_REF] Poliševski | Weak continuity in convection problems[END_REF] or [START_REF] Ene | Thermal Flow in Porous Media[END_REF]): Lemma 3.1. For any h > 0, there exists ⌧ h 2 H 2 (⌦) such that:

⌧ h = ⌧ on @⌦ (3.12) | Sr⌧ h | L 2 (⌦)  h|rS| L 2 (⌦) , 8S 2 H 1 0 (⌦). (3.13) 
Setting T " = ✓ " ⌧ h , for some h which will be chosen later, and defining

V "f = {v 2 H 1 0 (⌦ "f ), divv = 0 in ⌦ "f }, (3.14) 
the variational formulation of our problem is: To find (u " , T " ) 2 V "f ⇥ H 1 0 (⌦ \ " ), solution of the system " 2 (ru " , rv) "f ((

T " + ⌧ h )g, v) "f = 0, 8v 2 V "f (3.15) (a "f r(T " + ⌧ h ), rS) "f + (a "s r(T " + ⌧ h ), rS) "s + " Z " ⌘ " [T " ][S]+ +↵ " (u " , Sr(T " + ⌧ h )) "f = (Q, S) L 2 (⌦) , 8S 2 H 1 0 (⌦ \ " ) (3.16)
where (•, •) "k denotes the scalar product in L 2 (⌦ "k ) N , k 2 {s, f }.

Defining F " 2 (V "f ⇥ H 1 0 (⌦ \ " )) 0 by F " (v, S) := (⌧ h g, v) "f + (Q, S) L 2 (⌦) (a "f r⌧ h , rS) "f (a "s r⌧ h , rS) "s ,
we introduce a problem equivalent to (3.15)-(3.16):

To find (u " , ✓ " ) 2 V "f ⇥ H 1 0 (⌦ \ " ) such that hG(u " , ✓ " ), (v, ')i = F " (') for any (v, ') 2 V "f ⇥ H 1 0 (⌦ \ " ), (3.17) 
where the mapping G :

V "f ⇥ H 1 0 (⌦ \ " ) ! (V "f ⇥ H 1 0 (⌦ \ " )) 0 is defined by hG(u, ✓), (v, ')i = h↵ " " 2 (ru " , rv) "f h↵ " (T " g, v) "f + " Z " ⌘ " [T " ][S]
+(a "f rT " , rS) "f + (a "s rT " , rS) "s + ↵ " (u " , Sr(T " + ⌧ h )) "f (3.18)

Remark 3.2. It is obvious from (3.17) that we already know that h↵ " > 0 is a suitable multiplier for the flow equation.

In order to prove the existence theorem for problem (3.17), we remind the following result of Gossez (see [START_REF] Gossez | Remarques sur les Opérateurs Monotones[END_REF]): Theorem 3.3. Let X be a reflexive Banach space and G : X ! X 0 a continuous mapping between the corresponding weak topologies. If hG', 'i

|'| X ! 1 as |'| X ! 1, (3.19) 
then G is a surjection.

Here it is the main result of this section.

Theorem 3.4. There exists (u " , T " ) solution of the problem (3.15)-(3.16) for a proper choice of h > 0, that is when h↵ " is smaller than a certain constant, independent of ". Moreover, T " 2 L 1 (⌦) and there exists c > 0 (independent of ") such that

|T " + ⌧ h | L 1 (⌦ "f )  1 2 + c|Q| L 2 (⌦) . (3.20) 
Proof. Using Theorem 3.3 and acting as in the proof of Theorem 5.2.2 [START_REF] Ene | Thermal Flow in Porous Media[END_REF] (Ch 1, Sec. 5), we obtain the first part of the result in a classical way.

In order to prove (3.20) let us define for any t > 0

⌦ t " = {x 2 ⌦, |T " (x) + ⌧ h (x)| > 1/2 + t}, (3.21) ⌦ t "k = ⌦ t " \ ⌦ "k , k 2 {s, f }, (3.22) R " t = sgn(T " + ⌧ h ) max{|T " + ⌧ h | 1/2 t, 0}, (3.23 
) where the inequalities are in the H 1 -sense (see [START_REF] Kinderlehrer | An introduction to Variational Inequalities and Their Applications[END_REF]). We see that

R " t 2 H 1 0 (⌦ \ " ) and rR " t = r(T " + ⌧ h ) in L 2 (⌦ \ " ). (3.24) As for any k 2 {s, f } we have |R " t | 2 L 4 (⌦ t "k )  |P "k R " t | 2 L 4 (⌦)  c|rP "k R " t | 2 L 2 (⌦)  c|rR " t | 2 L 2 (⌦ t "k ) = = c|r(T " + ⌧ h )| 2 L 2 (⌦ "k )  c(a "k r(T " + ⌧ h ), r(T " + ⌧ h )) "k = = c(a "k r(T " + ⌧ h ), rR " t ) "k , (3.25) ↵ " (u " , R " t r(T " + ⌧ h )) "f = ↵ " (u " , R " t rR " t ) "f = 0, (3.26) and " Z " ⌘ " [T " ][R " t ] 0 (3.27)
it follows from (3.16) that 

|R " t | 2 L 4 (⌦ t " )  c|(Q, R " t )|  |Q| L 1 (⌦) |⌦ t " | 3 4 |R " t | L 4 (⌦ t " ) . ( 3 
" (t + h)  c h 4 |Q| 4 L 1 (⌦) 3 
" (t), 8t, h > 0. (3.31)
Applying Lemma B.1 (see [START_REF] Kinderlehrer | An introduction to Variational Inequalities and Their Applications[END_REF], Chap. 2) it follows that there exists c > 0 (independent of ") such that

" (c|Q| L 1 (⌦) ) = 0, that is meas{x 2 ⌦, |T " (x) + ⌧ h (x)| > 1/2 + c|Q| L 1 (⌦) } = 0, ( 3 
.32) and the proof is completed. Remark 3.5. We do not have a uniqueness result, except if we assume that the Rayleigh number ↵ " > 0 is small enough.

Compactness results for bounded Rayleigh numbers

From now on we assume that there exists ↵ > 0 such that

↵ " ! ↵ when " ! 0. (4.1)
First of all, let us notice that in the present case h and ⌧ h are independent of ".

We proceed with the a priori estimates of the solutions. Setting (v, S) = (u " , T " ) in (3.15)-(3.16) and using (2.14)-(2.18) and (3.20), we get

|u " | "f  c, "|ru " | "f  c and |T " | H 1 0 (⌦\ " )  c, (4.2) 
for some c independent of ".

For any k 2 {s, f }, let us introduce the following notations

V 0 (div, ⌦) = {v 2 H(div, ⌦), divv = 0 in ⌦, v • ⌫ = 0 on @⌦} (4.3) 
H 1 per (Y k ) = ' 2 H 1 loc R N k , ' is Y -periodic (4.4) V 0 (Y f ) = {v 2 H 1 per (Y f ) N , divv = 0 in Y f , v = 0 on }. (4.5) H1 per (Y k ) = {' 2 H 1 per (Y k ), ' = 0}, (4.6) 
where for any

' 2 L 1 (⌦ ⇥ Y ), we denote ' = Z Y 'dy. (4.7) 
The estimates (4.2) prove that " f (u " ), " " f (ru " ) and " k (T " ), " " k (rT " ) are respectively bounded in L 2 (⌦) N and L 2 (⌦), for any k 2 {s, f }. A first compactness result follows:

Theorem 4.1. There exist u 2 L 2 (⌦; V 0 (Y f )), T k 2 H 1 0 (⌦) and S k 2 L 2 ⇣ ⌦; H1 per (Y k ) ⌘ , k 2 {s, f }, with the properties: " f (u " ) 2s * f (u), (4.8) 
" " f ✓ @u " @x i ◆ 2s * f ✓ @u @y i ◆ , (4.9) 
"

k (T " ) 2s * k (T k ), (4.10) 
" k ✓ @T " @x i ◆ 2s * k ✓ @T k @x i + @S k @y i ◆ , i 2 {1, 2, ..., N}. (4.11) 
where 2s * represents the two-scale convergence in L 2 (⌦). Moreover, we have:

ũ 2 V 0 (div, ⌦). (4.12) 
Proof. All the properties can be easily obtained by applying Proposition 1.14 of [START_REF] Allaire | Homogenization and two-scale convergence[END_REF]. We only prove here that T k = 0 on @⌦, for both k 2 {s, f } and u = 0 on ⌦ ⇥ .

Recalling the extension operators introduced by Lemma 2.1, we have

|P "k T " k | H 1 0 (⌦)  c|rP "k T " k | L 2 (⌦)  c|rT " k | L 2 (⌦ "k )  c (4.13) 
which shows that (P "k T " k ) " is bounded in H 1 0 (⌦). Hence, there exists On the other hand,

T 0 k 2 H 1 0 (⌦) such that P "k T " k ! T 0 k weakly in H 1 0 (⌦), (4.14 
k ⇣n x " o⌘ P "k T " k = " k (T " k ) 2s * k (y)T k (x) (4.16)
which obviously implies

T k = T 0 k 2 H 1 0 (⌦). Next, let ' 2 D(⌦, C 1 per (Y f )) N . Denoting ' " (x) = ' ⇣ x, x " ⌘ , it follows 0 = " Z " u " i (' " • ⌫ " ) = Z ⌦ "f (("ru " i )' " + u " i ("div' " )) ! ! Z ⌦⇥Y f ('r y u i + u i div y ') = Z ⌦⇥Y f div y (u i ') = Z ⌦⇥ u i (' • ⌫) (4.17) 
and the result follows.

Remark 4.2. There is in the previous proof a second interpretation of the two limit temperatures, T s and T f ; they are the weak limits of respectively (P "s T " s ) " and (P "f T " f ) " in H 1 0 (⌦). In order to study the asymptotic behaviour of (u " , T " ), we have to recover and estimate the pressure, which was hidden by the variational formulation. For this, let us define F " 2 H 1 (⌦) by

F " (v) = " 2 (ru " , rv) "f + ((T " + ⌧ h )g, v) "f , v 2 H 1 0 (⌦ "f ). (4.18) 
As F " (v) = 0 if divv = 0 in ⌦ "f , from the Tartar's variant of the De Rham Lemma (see Remark 1.9 [START_REF] Temam | Navier-Stokes Equations. Theory and Numerical Analysis[END_REF]), we see that there exists p " 2 L 2 0 (⌦ "f ) such that

F " (v) = hrp " , vi hH 1 ,H 1 0 i(⌦ "f ) , 8v 2 H 1 0 (⌦ "f ), (4.19) 
where

L 2 0 (⌦ "f ) = {p 2 L 2 (⌦ "f ), R ⌦ "f p = 0}, that is " 2 (ru " , rv) "f (p " , divv) "f = ((T " + ⌧ h )g, v) "f , 8v 2 H 1 0 (⌦ "f ). (4.20)
From (4.19) and Theorem 3.1 of [START_REF] Poliševski | Basic homogenization results for a biconnected "-periodic structure[END_REF] easily follows

|rp " | H 1 (⌦ "f )  c" and |p " | "f  c, (4.21) 
for some c > 0 independent of ". Thus, the hypotheses of Theorem 3.2 of [START_REF] Poliševski | Basic homogenization results for a biconnected "-periodic structure[END_REF] are fullfilled and the second final compactness result can be presented. 

The homogenized system

Now, we shall look for the two-scale system verified by the limits u, p, T k and S k , k 2 {s, f }, introduced by the theorems 4.1 and 4.3.

Theorem 5.1. For any 2 D(⌦; V

0 (Y f )), k 2 D(⌦) and ' k 2 D(⌦; H1 per (Y k )) we have Z ⌦⇥Y f r y ur y Z ⌦⇥Y f pdiv x = Z ⌦⇥Y f (T f + ⌧ h )g (5.1) X k2{s,f } Z ⌦⇥Y k a k (y)(rT k + r y S k )(r k + r y ' k ) + Z ⌦⇥ ⌘(T s T f )( s f )+ +m↵ Z ⌦ ũ f r(T f + ⌧ h ) = X k2{s,f } Z ⌦⇥Y k Q k , (5.2) 
where

m := |Y f | 2]0, 1[.
Proof. We pass (4.20) and (3.16) to the limit (" ! 0) with specific test functions. In (4.20) we set:

v(x) = " (x) = (x, x/") for x 2 ⌦ "f , 2 D(⌦; V 0 (Y f )) and in (3.16) we set S(x) = k (x) + "' " k (x) for x 2 ⌦ "k , k 2 {s, f }, where k 2 D(⌦) and ' " k (x) = '(x, x/") for x 2 ⌦ "k , ' k 2 D(⌦; C 1 per (Y k )).
Letting " ! 0 on the subsequence ensured by the theorems 4.1-4.3 we find without di culty (5.1); with the techniques of [START_REF] Ene | Model of di↵usion in partially fissured media[END_REF] and [START_REF] Gruais | Heat transfer models for two-component media with interfacial jump[END_REF] we prove the convergences to the all the terms of (5.2), except the nonlinear one, which we treat here. Recalling Remark 4.2, as P "f T " is strongly converging to T f in L 2 (⌦), we have

↵ " Z ⌦ "f u " f r(T " + ⌧ h ) = ↵ " Z ⌦ " f (u " )(P "f T " + ⌧ h )r f ! ! ↵ Z ⌦⇥Y f u(T f + ⌧ h )r f = m↵ Z ⌦ ũ f r(T f + ⌧ h ) (5.3)
Using the estimations (4.2), the other nonlinear term is converging to zero, as follows:

"↵ " Z ⌦ "f u " ' " f r(T " + ⌧ h )  C"|u " | L 2 (⌦ "f ) |r(T " + ⌧ h )| L 2 (⌦ "f ) sup ⌦⇥Y |' f |.
Moreover, (5.2) holds true for any ' k 2 D(⌦; H1 per (Y k )) by density and continuity arguments. The next result is straightforward.

Theorem 5.2. The limits u and S k of the theorems 4.1-4.3 are uniquely determined with respect to p and T k by the following relations: u j (x, y) = w (i) j (y)

✓ (T f + ⌧ h )g i @p @x i ◆ (x) in ⌦ ⇥ Y f , (5.4) 
S k (x, y) = S (i) k (y) @T k @x i (x) in ⌦ ⇥ Y k , k 2 {s, f }, (5.5) 
where w (i) 2 V 0 (Y f ) and S k + y j ), by taking into account (5.5) in (5.2), we obtain:

X k2{s,f } ✓ A k Z ⌦ rT k r k ◆ + ⌘ Z ⌦ (T s T f )( s f )+ +m↵ Z ⌦ ũ f r(T f + ⌧ h ) = X k2{s,f } Z ⌦⇥Y k Q k , (5.9) 
where ⌘ = R ⌘d .

Returning to the initial notations, that is, ✓ k = T k + ⌧ h , k 2 {s, f }, and summarizing the results of the theorems 4.1-4.3 and of the remarks 5.3-5.4, we see that the homogenized system corresponding to (3.5)- (3.11) is the following: divũ = 0 in ⌦, (5.10) B ũ + rp = ✓ f g in ⌦,

(5.11) m↵ ũr✓ f div(A f r✓ f ) + ⌘(✓ f ✓ s ) = mQ in ⌦, (5.12) div(A s r✓ s ) + ⌘(✓ s ✓ f ) = (1 m)Q in ⌦, (5.13) ũ • n = 0 on @⌦, (5.14) ✓ f = ✓ s = ⌧ on @⌦.

(5.15) Like the initial system, it has at least one weak solution, which is unique only when ↵ > 0 is su ciently small.

Theorem 4 . 3 .

 43 There exists p 2 L 2 0 (⌦) = {p 2 L 2 (⌦), R ⌦ p = 0} such that on some subsequence " f (p " ) 2s * f (y)p(x) (4.22)

(i) k 2 k. 7 ) 5 . 3 . 8 ) 5 . 4 .

 2753854 H1 per (Y f ) are the solutions of the well-defined (local) problems:Z + y i )r k = 0, 8 k 2 H1 per (Y k ), k 2 {s, f }. (5Remark Denoting with B the inverse of the positive-definite matrix (R Y f rw (i) rw (j) ) i,j 2 R N ⇥N , we get from (5.4) B ũ + rp = (T f + ⌧ h )g in ⌦.(5.Remark Introducing for k 2 {s, f } the positive-definite matrices A ij =
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