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A two-dimensional topological insulator may arise in a centrosymmetric commensurate Néel anti-
ferromagnet (AF), where staggered magnetization breaks both the elementary translation and time

reversal, but retains their product as a symmetry. Fang et al.,

[Phys. Rev. B 88, 085406 (2013)]

proposed an expression for a Zs topological invariant to characterize such systems. Here, we show
that this expression does not allow to detect all the existing phases if a certain lattice symmetry is
lacking. We implement numerical techniques to diagnose topological phases of a toy Hamiltonian,
and verify our results by computing the Chern numbers of degenerate bands, and also by explicitly
constructing the edge states, thus illustrating the efficiency of the method.

Physical phenomena, whose description involves topol-
ogy, have been invariably attracting attention regardless
of whether the word “topology” was actually used at
the time: early examples involve topologically non-trivial
stable defects such as dislocations in crystals, as well as
vortices in superconductors and superfluids. Quantum
Hall Effect and its remarkably precise conductance quan-
tization [I] marked the advent of an entirely new class of
phenomena, related not so much to the appearance in the
sample of finite-size topological objects, but rather to the
electron state of the entire sample changing its topology
in a way, that could no longer be undone by a local per-
turbation. More recently, it was understood that, in fact,
non-trivial topology may appear even in zero magnetic
field: the fact that a commonplace band insulator may
find itself in distinct electron states that cannot be con-
tinuously transformed one into another without a phase
transition, came as a major surprise [2] [3].

These phenomena invite the question of classifying
topologically distinct states of matter: labeling each state
by a set of discrete indices in such a way as to have dif-
ferent sets for any two phases that cannot be continu-
ously transformed one into another without the system
undergoing a phase transition. In the general setting, the
problem remains unsolved.

In fact, open questions are present even in a non-
interacting description of systems that are believed to ad-
mit a Zy (“even-odd”) classification, and thus have only
one topologically trivial and one topologically non-trivial
phase, commonly called topological. Here, we address
one such question, that has recently attracted attention:
diagnosing the topological phase of a Z5 insulating Néel
antiferromagnet.

To put the subsequent presentation in context, we re-
capitulate the key results for the prototypical Zs system:
a paramagnetic topological insulator. Fu and Kane [4]
have shown that the Z5 invariant for such a system can
be defined via the so-called sewing matrix w(k),,,:

W(K)mn = (Vim,—k|O|¥n x), (1)

where the |¥, ) is the Bloch eigenstate of the n-th
band at momentum k. The w(k),,, turns out to be

of particular interest at special momenta I'; such that
—I'; =T'; + G, with G a reciprocal lattice vector. Such
I'; are now commonly called the “time reversal-invariant
momenta” (TRIM). In the Brillouin zone, a I'; is equiva-
lent to its opposite, and thus the w(T';),,, is antisymmet-
ric. Since each band has its Kramers partner, the number
of bands at hand is even, and the above two properties
allow one to define the Pfaffian Pf[w(T;)mn]. As estab-
lished by Fu and Kane [4], the Z topological invariant A
can be expressed in a continuous gauge via the w(T';)mn
as per
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Moreover, in the presence of inversion symmetry, the Eq.
may be recast in terms of the parity eigenvalues £(T';)
of Bloch eigenstates at the TRIM T;:

N
2 =TI (3)

where the ¢ labels the TRIM and the o counts one band
per each pair of the 2NV filled Kramers-partner bands.

Néel antiferromagnetism explicitly violates the sym-
metry with respect to time reversal ©. However, both
the © and the translation T, by half the Néel period in-
vert the local magnetization, and thus the combination
O r = OT, of the two remains a symmetry.

A number of authors [BHIT] attempted to classify the
topological phases that may appear in an antiferromag-
net. However, contrary to the paramagnetic case, the
relevant anti-unitary operator does not square to -1: in-
stead, its action on a Bloch eigenstate |, k) is given
by

O%r|Vnx) = =2, k). (4)
In the presence of inversion symmetry I, the combined
symmetry 10 4 enforces double degeneracy at all mo-
menta in the Brillouin zone. Moreover, the TRIM split
into two kinds: the A-TRIM, where ©%, = 1 — and the
B-TRIM, where ©% . = —1. In three dimensions, it has
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FIG. 1: Square lattice, on which the Hamiltonian is defined.
In the absence of a staggered magnetic field, the primitive
Bravais lattice vectors are aX and a¥. In the presence of
staggered magnetization, the dimerized lattice is defined by
the primitive vectors av/2% and av/2§. In this case, a unit
cell (in blue) comprises two sites, A and B (white and black
dots, respectively).

been argued that the B-TRIM suffice to define a topo-
logical invariant, as the Eq. remains gauge-invariant
as long as the product in the r.h.s. is taken over the B-
TRIM only [7, O, [I1]. Similarly, Fang et al. argued that
in two dimensions, the product of the parity eigenval-
ues ¢ at the two B-TRIM would also be a Z5 topological
invariant.

The expression above, restricted to the B-TRIM only,
appeared to work in the cases studied in the Refs.
[7, @, M1, M2]. Such an expression tacitly implies, that
the parity eigenvalues at the two A-TRIM either change
simultaneously or not at all, and thus do not affect the
Zs invariant. However, if a band inversion were to oc-
cur only at a single A-TRIM, then the full Z5 invariant
of the Eq. would change sign, and this would not
be accounted for by the invariant, involving the parity
eigenvalues at the B-TRIM only.

Below, we use a method developed in a previous
work [12] to illustrate this possibility by a toy Hamil-
tonian.

i) The model — We consider a non-interacting electron
system on a square lattice (of lattice vectors aX and
aY)7 with an s- and a p-wave symmetry orbital on each
site, as in the Bernevig-Hughes-Zhang (BHZ) model [13].
The lattice can de divided into two sub-lattices, A and
B (see Fig.)7 corresponding to the opposite orienta-
tion of magnetization in the z direction. In this case,
the natural lattice vectors for the super-lattice will be
a2k = aX +a¥Y and a\/§§f = —aX + a¥Y. In what fol-
lows, we choose a = % In this case, the TRIM will cor-
respond to (kg,ky) = (0,0), (7, 7),(0,7) and (m,0), the
first two being the B-TRIM and the latter two being the
A-TRIM. The Bloch Hamiltonian H (k) = e~ *kr Hetkr

can be written as:

H(k) = p+ Apr?
—2(C_ +C)(C_0® +S_aY)
— 2(t}, cos(kz) + ty, cos(ky))7*
+2a(8,Cys¥1Y0% — S_C_s"1Y07)
+ ms*o”® (5)

where Cy = cos[(ky £ ky)/2] and Sy =sin[(k; £ ky)/2],
while o, s and 7 are the Pauli matrices acting in the sub-
lattice (A and B), spin and orbital spaces, respectively.
The first term (uy = p+ Ap) originates from the energy
difference of the the s- and p-symmetric orbitals. The
second term corresponds to the nearest-neighbor hop-
ping between the same orbitals, the third — to second-
neighbor hopping. We choose the latter to be anisotropic
and orbital-dependent. This term breaks the Cy symme-
try, as explained later. The following term hybridizes the
two orbitals via the amplitude «, and is of a spin-orbital
nature, it is a third nearest neighbor hopping. This term
is responsible for a gap at half-filling, and thus for bulk
insulating behavior. Finally, the last term describes the
staggered magnetization.

In the following, we choose = 0,Ap = 3,t = 1,t,, =
l,t’y = 0.5, = 2 and m > 0. This choice is made to
render the figures more legible, the same conclusions hold
for more realistic parameters, such that a < ¢/, t; < t.

Upon variation of m, the criterion due to Fang et al.
would predict a single phase transition at m = 6. For
0 < m < 6, the product of the parity eigenvalues over a
half of the filled bands (for every pair of doubly degen-
erate bands, such a product counts only a single parity
eigenvalue) at the B-TRIM equals —1, and thus the sys-
tem should be in a topological phase, while for m > 6
this product is equal to 1, and so the system should be
in the trivial phase.

However, this criterion tacitly assumes that no topo-
logical phase transition may take place via closing the
gap at an A-TRIM. Indeed, this is true if the system
is Cy-symmetric: this symmetry would guarantee that
band inversion could occur only at both of the A-TRIM
simultaneously, thus keeping the topological invariant in-
tact. However, our Hamiltonian explicitly breaks the Cy
symmetry via the terms ¢, and t;, hence the argument
above no longer applies.

it) Phase diagram - We use a numerical method in-
spired by the Ref. [I4] and adapted to the AF case in
Ref. [12] to compute the topological invariant of the sys-
tem for several sets of parameters. This method com-
prises two parts. First we obtain a smooth definition
of the eigenstates over the BZ using a parallel transport
method, and then compute the position of the Wannier
charge centers (WCC) as a function of k,. The sum of
the WCC positions over the filled band may not have the
same value for k;, = —m and k, = 7, but the difference
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FIG. 2: The phase diagram, obtained by the WCC method
for p = 0,Ap =3,¢t=1,t, = 1,t;, = 0.5, = 2 and m > 0.
“Topo.” corresponds to the topological phase (an odd jump
of the WCC position), and “Triv.” to the trivial phase (an
even jump). Below we show the total Chern number of the two
lowest energy bands, restricted to the stable subspace spanned
by the four states (| T sA),| T sB),|J pA),| | pB)). The
TI¢ corresponds to the product of half the parity eigenvalues
of the Bloch states at the B-TRIM. For 2 < m < 4, the
phase is trivial while II¢ = —1, showing that II alone cannot
characterize the topology of the phase.

of these two values is an integer [T4HI6]. If this integer is
odd, the system is in a topological phase; if it is even, the
phase is topologically trivial. Keeping all the other pa-
rameters fixed, we vary the strength m of the staggered
magnetization. In the Fig‘.7 we see that for different
values of m the gap closes at a different TRIM — and that
each time the topology of the phase changes (see Fig.).
One may also note that for m ~ 2.25 the gap closes at
non-TRIM points, but this does not change the value of
the Z5 invariant.

We present the obtained phase diagram in the Fig.,
and compare it to the one expected from the criterion
due to Fang et al.. The discrepancies appear when a
band inversion occurs at an A-TRIM, excluded from the
Fang criterion, such as for m = 2 and m = 4. We verified
the above result using the “reconnection phase” method,
described in the Ref. [12]. These results are not presented
here for brevity, but are in complete agreement with the
WCC computation.

The Hamiltonian we discuss is block-diagonal, and can
be separated into two blocks that are related by © 4p-
symmetry. Hence it is possible to work with a single
block, and compute the Chern number of the different
bands. We restrict ourselves to a stable subspace spanned
by the four states (| T sA),| T sB),| | pA),| ] pB)).
We compute analytically the eigenstates as a function of
k. Then, using the Eqgs.(9) and (10) of the Ref [I7], we
integrate the Berry curvature numerically to obtain the
first Chern number. We finally sum over all the filled
bands. The resulting phase diagram is again in perfect
agreement with the WCC and the reconnection phase
computation. Concerning the validity and coherence of
our results, we note that the computation of the Berry
curvature is analytical, and thus, the only error could
come from numerical integration to obtain the Chern
number. The accuracy of our numerical integration is
well controlled and rules out an inconsistency.

Finally, we realized an explicit construction of the edge
states, following the methods discussed in [I8] and [12].
In order to simplify the problem, we chose to work with

a unit cell containing four sites (forming a square) rather
than two. Despite the fact that, with this choice, we
have to work with a 16-band model, we now have hopping
only between nearest-neighbor unit cells, which simplified
finding the edge states. For the same set of parameters as
before, we looked for edge states on an antiferromagnetic
edge (alternating up and down magnetization), at the
energy £ = 0. For m = 1 and m = 5, we found a
single pair of edge states, while we found two pairs for
m = 3 and none at all for m = 7. The parity of the
number of pairs of edge states is thus once again in perfect
agreement with the phase diagram we found (see Fig.

To conclude, in this work we shed new light on
topological phase transitions in centrosymmetric two-
dimensional antiferromagnets. For such systems, one
would like to find an easily computable form of the topo-
logical invariant such as in the Eq. . Fang and co-
authors proposed such a form, but it holds only in the
presence of a symmetry that assures identical behavior at
both of the A-TRIM, as does the Cy symmetry. With-
out the latter, we do not yet have a simple expression for
the topological invariant in an antiferromagnetic insulat-
ing phase. However, we put forward a set of numerical
methods that allow one to capture the topological be-
havior of the system. We verified these results by direct
computation of the Chern number and by the explicit
construction of edge states. Notice that such numerical
methods (WCC and “reconnection phase”) are applica-
ble even when direct computation of the Chern number is
not easily accessible, for example when the Hamiltonian
cannot be block-diagonalized by a fixed change of basis,
as above. Finally, notice that for a three-dimensional
antiferromagnetic insulator, the Refs. [5l [7] proposed a
topological index involving the B-TRIM only. It would
be interesting to verify whether in three dimensions the
absence of symmetry between the A-TRIM could affect
this result as it does in two dimensions.

It is our pleasure to acknowledge discussions with
Alexey A. Soluyanov, whose suggestions helped to
greatly improve this work.
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