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On inconsistency in frictional granular systems

Pierre Alart · Mathieu Renouf

Abstract The numerical simulation of granular systems is often based on 
a discrete element method. The NonSmooth Contact Dynamics (NSCD) ap-
proach allows to solve a large range of granular problems, and specially in-
volving rigid bodies. However we may face with difficulties for achieving suc-
cessfully some simulations. The slow convergence of the nonsmooth solver may 
be attributed sometimes to a ill-conditioned system, but the convergence may 
also fail. The aim of the paper is first to identify the situations leading to 
the inconsistency of the mathematical problem to solve. Some simple granular 
systems are investigated in details. Related theoretical results are recalled and 
applied. A practical alternative is briefly analyzed and tested.

Keywords NonSmooth Contact Dynamics · Frictional granular media · 
Painlevé paradox

Mathematics Subject Classification (2000) 65L08 · 49J52 · 65L80

1 Motivation (based on numerical experiments)

The numerical simulation of complex dynamical systems is an important way 
for studying phenomena that are difficult to investigate experimentally. We 
could then speak about computational granular dynamics as a specific scien-
tific field similarly to the computational fluid dynamics thirty years ago [5].
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The numerical investigation progresses so quickly with respect with the ex-
periments that the comparison between simulations and experiments is often
rather coarse. Moreover the numerical tools may be used beyond their lim-
its of validity because mathematical proofs are not available or are neglected.
We propose to analyse the contributions, but mainly the conditions of use
of the NonSmooth Contact Dynamics (NSCD) approach, developed by J.J.
Moreau [21,23] and M. Jean [16], applied to the granular systems starting
from some numerical experiments. The NSCD method has been developed for
dealing with large collections of packed bodies and then for simulating the be-
haviour of granular materials. The Nonlinear Gauss-Seidel (NLGS) algorithm
is the generic solver applied to the NSCD formulation. This combination al-
lows simulation of the behaviour of a collection of (especially rigid) bodies
involving different and mixed regimes: statics, slow dynamics (solid), fast dy-
namics (fluid). Numerous examples [31,34,19,18,36] illustrate the ability of
the Moreau’s approach for dealing with a large range of granular problems.
The present paper has been motivated by an homage to the contributions of
J.J. Moreau, died in 2014, in the field of nonsmooth mechanics. These contri-
butions at the end of his life concerned the numerical aspects and the appli-
cations focussed on the granular systems. J.J. Moreau wrote a single paper in
a peer-reviewed journal on the theoretical foundations of the nonsmooth con-
tact dynamics [21]. Thereafter he privileged the conferences, often as invited
speaker, for promoting the NSCD approach through instructive numerical ex-
amples and sometimes some theoretical remarks. If the NSCD approach has
been used by a large number of researchers, its theoretical foundations has
been only investigated by few scientists and specially by B. Brogliato and his
team [8,15,1]. The homage was then the occasion to deepen the study of some
theoretical aspects of the NSCD approach in underlining the interest of the
theory and in addressing the limits.
For illustrating the limits of the NSCD approach we focus our attention on
dense granular systems that are strongly confined. In order to respect the ele-
gant rusticity of the Moreau’s approach we restrict the analysis to a collection
of rigid bodies without considering global or local deformations of the grains.
Some simple examples highlight the issue of inconsistencies, i.e. some config-
urations for which no solution exists, as well as indeterminacies, i.e. configu-
rations that lead to non-uniqueness of solutions. We recover here the features
of the Painlevé paradox underlined at the beginning of the twentieth century.
The plurality of solutions has been numerically investigated by Moreau for
an equilibrium and for a granular flow [25], but the inconsistency is only the
subject of some remarks in some papers or conferences [24,25].
However the non existence of solutions is a more important challenge we have
to face. Its occurence may compromise the use of the NSCD approach or
at least suggest a precautionary principle. The main objective of the paper
is to better identify the origins of the numerical difficulties inherent in the
model proposed by the NSCD approach. The second goal is to propose a
simple workaround to the problem of inconsistency. In Section 2, starting
from a NSCD software and numerical experiments, we first identify the sit-
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uations leading to this non existence among them the granular systems sub-
mitted to moving walls. Section 3 is dedicated to the analytical investigation
of simple granular systems for illustrating the origins of non-existence and
ill-conditioning. Some theoretical results are presented in Section 4 and are
applied to the previous examples. Finally a practical alternative is developed
in Section 5. We justify by this way the use of the Coulomb-Orowan frictional
model as a numerical strategy of workaround, even if the shear threshold pa-
rameter is not available.

2 Nonsmooth contact dynamics of a collection of rigid bodies

2.1 Discrete-time contact problem with friction

The equations are directly presented according to a time-stepping integration
scheme and with imposed velocities for some boundary bodies. The variables
are summarized in Table 1. The multicontact system is restricted to a collection
of rigid bodies. The possible configurations of the system are parametrized
through the generalized coordinates of the free bodies, say x, from which derive
the generalized velocities V . The dimension of x is the number of degrees of
freedom. According to classical kinematic analysis the relative velocity vα at
some contact α is given by a relation vα = HT

α V +GTαV
∗, where Hα and Gα

are connectivity mappings. V ∗ denote the prescribed velocities of some bodies,
usually located at the boundary of the granular system. Based on duality
considerations (conservation of the power expressed with local variables or
generalized variables), the representative Rα of the local reaction impulse rα
for the generalized variable system satisfies the relation, Rα = Hαrα.

[ti, tf ] Time interval (initial / final instant, dt = tf − ti, time step)

xi (resp. x for xf ) Free generalized coordinates at time ti (resp. tf )

V i (resp. V for V f ) Free generalized velocities at time ti (resp. tf )

V ∗ Prescribed velocities at time tf

Rd Given impulses over the time step
R Contact impulses over the time step
g (for g(x)) Normal contact gaps at contacts

v (for vf ) Relative velocities at contacts
r Contact forces or impulses at contacts
H (for H(x)) Contact to grain linear mapping

HT (for HT (x)) Grain to contact linear mapping
M (for M(x)) Inertia matrix

Table 1 General notations

The connectivity mapping H depends implicitly on the generalized co-
ordinates, but this dependency is omitted for convenience. Some kinematic
variables are defined at the final instant tf , but the exponent is suppressed
for underlining that these variables are the unknowns as well as the contact
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impulses over the time step. The fundamental equations are split into three
classes and written in the following according to the global variables related
to the bodies or to the contacts. For more details refer to [21,16].

Dynamics equation. The discretized equation of dynamics invokes the initial
and final generalized velocities in the left-hand side and the given impulses Rd

and the contact impulses R in the right-hand side. The contact impulse on a
given body is provided by the covariant components of the impulses at all the
contacts concerning the body via the admissibility equations, i.e. the integral
over [ti, tf ] of the contact forces,

M (V − V i) = R + Rd. (1)

Admissibility equations. The connectivity mappings H and HT links the gen-
eralized velocities to the relative velocities, and by duality the contact impulses
between covariant and contravariant components,{

v = HT V + GT V ∗ = HT V + v∗,

R = H r.
(2)

Contact behaviour. All the contact laws are formally represented by a relation
between the local relative velocity vα and the contact impulse rα. Some pa-
rameters may be implied in this relation, like the gap, the cumulated sliding,
the wear...

R(v, r) = 0 ⇔ R(vα, rα) = 0, α = 1, ncontact (3)

For instance, the frictional contact law is summarized in the following re-
lationships (gα is the predicted gap, the impulse and the relative velocity are
split into normal et tangential components), if gα > 0, rα = 0

if gα = 0, 0 ≤ vαn ⊥ rαn ≥ 0 and

{
if ‖vαt ‖ = 0, ‖rαt ‖ ≤ µrαn
if ‖vαt ‖ 6= 0, rαt = −µrnvαt /‖vαt ‖

(4)

The reduced dynamics condenses the linear equations (1) and (2) in the
single equation,

W r − v = − vd, (5)

where W := HT M−1 H defines the Delassus operator and the right-hand
side vd is split into two parts,

vd := HT ( V i + M−1 Rd) + v∗. (6)

Finally the system to solve is composed of the linear reduced dynamics (5)
and the frictional contact relationships (3),{

W r − v = − vd

R(v, r) = 0
(7)
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2.2 Nonsmoothness, indeterminacy and inconsistency

A first analysis of the system (7) leads to discriminate the sources of theoretical
and numerical difficulties.

The second line of system (7) concentrates different forms of nonsmooth-
ness. The spatial nonsmoothness refers to the geometrical conditions of inter-
penetration that are expressed as a set of inequalities. The forces (or impulses)
involved for imposing the interpenetration are active or not according to the
contact status; this leads so to an inequality applied to the force. The dry
friction itself is expressed via a threshold for the tangential contact force and
a multivalued relationships between the contact force and the sliding veloc-
ity; we can speak then about nonsmoothness in law. Finally, when we deal
with rigid bodies, collisions may occur leading to velocity jumps reflecting a
temporal nonsmoothness.

The first line of system (7) is the dynamics equation privileging the contact
impulses as the main unknowns. Consequently this linear system may be ill-
posed because the W matrix is often singular, specially for dense granular
media. In a previous work [4] we focussed on the null space of W . We have
proposed an algorithmic answer by reformulating the initial problem with
regularization of the reduced dynamics, introduction of a multiplier and an
additional equation imposing to the right-hand side v − vd to be orthogonal
to the null space. We can relate to this formulation, an algorithm with two
phases, a smooth prediction phase and a nonsmooth correction phase. We
obtained mixed conclusions. The convergence may be drastically improved,
but a drift of the interpenetration is observed. For eliminating this drift, an
elastic prediction may be used, and in this case we recover the drawbacks of the
molecular dynamic method as parasitic vibrational effects or very small time
steps. Moreover this strategy does not resolve the lack of solution of course,
when the right-hand side cannot check simultaneously the contact behavior (3)
and the orthogonality to the null space. The inconsistency has to be specifically
investigated.

Before starting a theoretical investigation, we underline a practical situ-
ation probably impacted by the inconsistency. The sandbox is an analogical
device used by geophysicists to understand the folding of sedimentary layers
due to the shortening. A numerical simulation of a sandbox device, based on
a discrete element representation of the sand layers and the NSCD approach,
has been performed some years ago (cf. Fig. 1). The simulation consists in
moving the left vertical wall with a constant velocity to deform sand layers
in view to reproduce tectonic motions. For simplicity only circular disks are
considered for the full domain. A rigid contact model is chosen because the
main part of the system is composed of weakly loaded particles, either static
before the avalanche front on the right or flowing close to the sloped free sur-
face. Only the corner zone on the left is submitted to a strong load due to the
wall advance.

If elastic contacts were used in a molecular dynamics approach the time
step size should be drastically reduced. Indeed, to perform an explicit simula-
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tion controlled by the same final mean violation (i.e 1e-2 times the mean radius
according to 16), the contact stiffness k should be approximatively equal to
2e9 N/m in regards of the force level in the left corner area. According to the
classical equation used in a smooth Discrete Element Method to determine the
time step size (i.e. dtc = (1/N) ∗

√
m/k, where m is the mass of a particle),

such a stiffness value k leads to a time step size ranging from 1e-4 s to 2e-5 s
according to the value of N (from 10 to 50 for reproducing at best a rebound).
Now if we compare with the NSCD time step size (2.5e-2 s in our simulation),
the ratio dt(nonsmooth)/dt(smooth) range from 250 to 1250 approximatively.
If in term of resolution, the resulting number of iterations is close (1000 non-
smooth iterations per step or 1 iteration per step in 1000 steps), we should
proceed in the smooth case to a thousand contact detections in addition.

(c)

(a)

(b)

Fig. 1 Numerical sandbox device composed of 40 000 rigid circular particles: (a) initial
state with a focus on the critical area; (b) final state and (c) zoom within the critical area
at the end of the simulation.

The results have been analyzed in a previous paper [34] using the LMGC90
open source framework [12]. This simulation was one of the most difficult to
achieve and it was performed again recently to investigate more deeply the nu-
merical difficulties. The mechanical problem is characterized by a corner zone
on the left that is strongly confined because it is submitted simultaneously to
a high pressure of the accretionary wedge and to the moving wall. A zoom
is performed on this region in Fig. 1 for underlining some parasitic interpen-
etrations between grains. The simulation of such complex granular systems
presents some numerical convergence difficulties (cf. Fig. 2).

Indeed sometimes the nonsmooth solver does not converge for some time
steps and reaches the prescribed maximal number of iteration (104 in the
present case), but it converges again for the following time steps. Some plateaus
may be even observed on the details of Fig. 15b. This strategy may be admis-
sible if the errors, specially the interpenetrations, are not cumulated during
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Fig. 2 Evolution of the iteration number during the simulation

the time steps. In favorable cases the strongly violated contacts at a certain
moment may be released a few moments later. Only a post-treatment may
validate the numerical strategy a posteriori. But such a situation is not satis-
factory, even if it could be viewed as a self-correction type phenomenon. We
will see in the next section that the residual interpenetration after a release
stage may be sometimes large.

3 Inconsistency in simple granular systems

3.1 Detailed investigation of a simple problem

Let consider an elementary example with a single disk (ρ is its radius, m its

mass, I its inertial moment equal to mρ2

2 for an homogeneous disk) in frictional
contact with two obstacles as represented in Fig. 3. The disk is submitted to the

Fig. 3 A disk in a corner (the simplest example): velocity loading vs impulse loading

gravity in such away the left-side wall is not exactly vertical (gx < 0 gy < 0).
The components of the initial velocity are equal to zero. So, with fixed walls,
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the disk has to stay in the corner. But a velocity, V ∗ > 0, is prescribed to the
vertical wall for pushing the disk. The dynamics is given by the equations,

m(Vx − V initx ) = Rx + dt m gx

m(Vy − V inity ) = Ry + dt m gy

mρ2

2 (ω − ωinit) = Rω

(8)

The admissibility equation defining the relative velocities, v = HTV + v∗,
is then expanded as,

v1n

v1t

v2n

v2t

 =


0 1 0

1 0 ρ

1 0 0

0 −1 ρ



Vx

Vy

ω

 +


0

0

−V ∗

0

 (9)

The reduced dynamics (expanded × 1
m ) is then,

1 0 0 −1

0 3 1 2

0 1 1 0

−1 2 0 3


︸ ︷︷ ︸

W


r1n

r1t

r2n

r2t

︸ ︷︷ ︸
r

−


v1n

v1t

v2n

v2t

︸ ︷︷ ︸
v

=


0

0

V ∗

0

︸ ︷︷ ︸
−v∗

+ dt


−gy
−gx
−gx
gy

︸ ︷︷ ︸
HT

f M−1Rd

(10)

The system to solve (7) is then piecewise linear in a two-dimension model-
ing, with eight unknowns (four impulse components and four relative velocity
components) and sixteen regions of linearity corresponding to contact statuses
deriving from the relationship (4). The global contact status is a couple of sin-
gle status as reported on Table 2 : NC for Non Contact, A for Adherence, Sεi
for Slip in the εi direction of the ith contact (εi = ±1 forward/backward). The
forthcoming analysis is based on the assumptions: V init = 0, µ1 > 1, µ2 > 1.
On Table 2 each linearity region, according to the contact status, provides,
or not, a presumed solution. When an inequality is noted, the corresponding
inequality defining a part the contact status is violated and the presumed so-
lution is then invalidated. For example, in the first status, (NC,NC), in the
table the normal relative velocity v2n of the second contact has to be positive,
but the presumed solution is negative according to the assumption V ∗ > 0.
Mainly the solution is determined by neglecting the smooth part of the right-
hand side by setting dt = 0. From a numerical point of view this consists in
imposing a time step as small as possible. But for some statuses we can con-
clude only by taking into account the (force) external loading; the status is
then indexed by a star like the second line in the table.

The five last statuses (the two last lines of Table 2) require a detailed
investigation. The four sliding statuses are reported on Table 3 according to
the sign of ε1 and ε2. The presumed solutions are invalidated because at least
one admissibility inequality is not verified.
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Table 2 Presumed solutions according to the contact status

Status Presumed impulses Presumed relative velocities

(NC,NC)


r1n

r1t

r2n

r2t

 =


0

0

0

0



v1n

v1t

v2n

v2t

 =


0

0

−V ∗ < 0

0



(NC,A)∗


r1n

r1t

r2n

r2t

 =


0

0

−dtgx + V ∗

dt
3
gy




v1n

v1t

v2n

v2t

 =


2dt
3
gy < 0

V ∗ + 2dt
3
gy

0

0


(A,NC)

or

(Sε1 , NC)


r1n

r1t

r2n

r2t

 =


0

0

0

0



v1n

v1t

v2n

v2t

 =


0

0

−V ∗ < 0

0



(NC,Sε2 )


r1n

r1t

r2n

r2t

 =


0

0

V ∗

ε2µ2V ∗



v1n

v1t

v2n

v2t

 =


−ε2µ2V ∗

(2ε2µ2 + 1)V ∗

0

3ε2µ2V ∗ > 0



(A,Sε2 )


r1n

r1t

r2n

r2t

 =



3
2
ε2µ2V

∗

1−ε2µ2
< 0

− 1
2

(1+2ε2µ2)V
∗

1−ε2µ2

3
2

V ∗

1−ε2µ2

3
2
ε2µ2V

∗

1−ε2µ2




v1n

v1t

v2n

v2t

 =


0

0

0

−V ∗



(Sε1 , A)∗


r1n

r1t

r2n

r2t

 =



−dtgy
1+ε1µ1

< 0 (ε1 = −1)

−ε1µ1dtgy
1+ε1µ1

ε1µ1dtgy
1+ε1µ1

− dtgx + V ∗

ε1µ1dtgy
1+ε1µ1




v1n

v1t

v2n

v2t

 =


0

V ∗ > 0 (ε1 = +1)

0

0



(Sε1 , Sε2 )


r1n

r1t

r2n

r2t

 =



ε2µ2
1+ε1ε2µ1µ2

V ∗

ε1ε2µ1µ2
1+ε1ε2µ1µ2

V ∗

1
1+ε1ε2µ1µ2

V ∗

ε2µ2
1+ε1ε2µ1µ2

V ∗




v1n

v1t

v2n

v2t

 =


0

1+3ε1ε2µ1µ2+2ε2µ2
1+ε1ε2µ1µ2

V ∗

0

2ε2µ2(1+ε1µ1)
1+ε1ε2µ1µ2

V ∗


(A,A) Indetermination or inconsistency v = 0

Table 3 Sliding statuses and non admissible solutions

ε1 = −1 ε1 = +1

ε2 = −1 r1n < 0 r2n < 0

ε2 = +1
r1n < 0

r2n < 0

v1n > 0

v2n > 0
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Fig. 4 Iteration evolution and final configuration for two cases: µ1 = µ2 = 0.8 (solid line),
µ1 = µ2 = 1.1 (dashed line)

The status (A,A) provides an inconsistent system, Wr = −vd, with an
infinity of solutions (indetermination) for impulses if V ∗ = 0 and with no
solution (inconsistency) if V ∗ 6= 0. Indeed, the null space of W is equal to
the null space of the connectivity operator H. This kernel Ker H is spanned
by the vector N = (1,−1, 1, 1)T . The existence of a solution (and then an
infinity) requires that the right-hand side satisfies NT vd = 0. But NT vd =
NT v∗ = V ∗ 6= 0.

From a numerical point of view an iterative solver, as the Gauss-Seidel
algorithm, gives iterates r(k) close to the null space (r ≈ γ N) whose the
norm tends to infinity and satisfying the contact status (A,A) (| r1t |< µ1 r

1
n

and | r2t |< µ1 r
2
n) because µ1 > 1 and µ2 > 1. Then the iterates stay in the

(A,A) region without converging.

The numerical tests confirm the previous analysis. Two choices of friction
coefficients are studied: case 1 with µ1 = µ2 = 0.8 and case 2 with µ1 = µ2 =
1.1. For the second case the friction coefficients are above the critical value.
The number of iterations is limited to a maximal value equal to 100. For the
second case this maximal value is reached at each time step (dashed line in
Fig. 4a). Fig. 4b shows the configuration of the system after 20 time steps;
the initial position of the disk uses a dotted curve. The solid curve refers to
the case 1 and the dashed curve to the case 2 where the interpenetration is
obvious.

Controlling the moving wall with an impulse loading, instead of a velocity
control, reveals not to be an alternative. In Fig. 3b the moving wall has a mass
mw and an impulse F ∗ is prescribed. The W matrix is then invertible because
of an additional term λ = m

mw
,
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Fig. 5 Two disks in a box, four contacts and the two self-balanced impulses N1 and N2

(kernel of H)

W =


1 0 0 −1

0 3 1 2

0 1 1 + λ 0

−1 2 0 3

 . (11)

Unfortunately the only solution of the system is no motion as great the
magnitude of the prescribed impulse F ∗.

3.2 Heuristic investigation of slightly more complex problems

The previous example suggests defining a critical friction coefficient beyond
which the intersection of Coulomb cones and the null space is not reduced only
to null vector. In the next example with 2 disks the null space is generated by
two elements N1 and N2 represented in Fig. 5. The critical friction coefficient
may be yet easily determined for each contact with respect to the θ angle,
µ1
crit = 1, µ2,3,4

crit = tan( θ2 ). We restrict the study to a numerical investiga-
tion. We test a set of friction coefficients beyond the critical values: µ1 = 1.3
and µ2,3,4 = 0.28 > µ2,3,4

crit = tan( π12 ). We observe that the critical friction
coefficient may be relatively small.

The simulation is performed with two versions of the algorithm. A first
version of the NLGS algorithm does not use an initialization of the contact
impulses; the impulse is reset to zero at each time step; it is called with-
out memory. The second version, called with memory, initializes the impulses
with the values obtained for the previous time step. The two versions provide
different evolutions. In Fig. 6 the saturation of the iteration number to the pre-
scribed maximal value (300) occurs for the two versions during the first 13 time
steps corresponding to an increase of the normal impulse with memory (solid
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Fig. 6 Two disks in a box: evolution of the iterations and the normal impulse at the contact
between the two disks - algorithms without memory (dashed line) and with memory (solid
line)

line) and a stagnation without memory (dashed line). After this first stage the
convergence is restored according to two different regimes: a fast convergence
with memory, a slow convergence without memory. Such a behavior is easily
explained by the evolution of the configuration in Fig. 7. During the first stage
the θ angle increases until the friction coefficient becomes below the critical
value. Without memory, the two disks stay in contact with a decreasing con-
tact impulse, but with an important residual interpenetration. With memory,
the contact impulse increases drastically until removal of the wedge leading to
an artificial increase in the kinetic energy of the second disk (cf. the position
of the disk at the final configuration).

Such behaviors allow to explain the analysis of the results on the sandbox
simulation in Section 1. The temporary inconsistency of the system combined
with an incomplete resolution may lead either to increasing parasitic interpen-
etrations, or to residual interpenetrations when the system becomes consistent
again, or to an artificial kinetic energy restitution.

From a numerical point of view the existence of a null space is not the
only drawback. In Fig. 8, with three disks, the self-balanced impulse network
is geometrically localized in a corner; in fact a single disk is really confined;
the system is globally ”slack”. Thus the algorithm converges even if the con-
vergence is slow for the first time step with 1350 iterations for a stopping
criterion similar to previous tests. The prescribed velocity of the moving wall
does not solicit the self-balanced impulse network. The mathematical problem
is not really ill-posed but only ill-conditioned. The first time step provides high
magnitude impulses in the four first contacts leading to the loosening of the
system for the next time steps as illustrated in Fig. 8.

Fig. 9 presents an other configuration with three disks and three walls
leading to a jamming characterized by an impulse network increasing in the
kernel of the H operator geometrically depicted on the figure. The system is
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Fig. 7 Two disks in a box: evolution of the interpenetration and final configurations -
algorithms without memory (dashed line) and with memory (solid line)

Fig. 8 Three disks in a box: ”slack” system. Friction coefficients equal to 0.7. First time
step configuration (dashed curves) with impulses at contacts (blurred), final configuration
(solid curves).

globally ”confined” and, contrary to the ”slack” case, the self-balanced impulse
network crosses the whole system; the problem is then inconsistent anew.

4 Related theoretical results and applications

The inconsistency in the dynamics of systems involving Coulomb friction was
a matter of controversy during the first quarter of the twentieth century. It was
observed that some initial value problems could admit several solutions or no
solution and also that the behavior of the investigated system depended on its
constants on a discontinuous way. At the time Painlevé [29] considered these
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Fig. 9 Three disks in a box: ”confined” system. Friction coefficients equal to 0.3. Jammed
system with increasing impulses in the null space, no convergence and large interpenetra-
tions.

findings as contradicting the very bases of Physics. This controversy is known
as the Painlevé paradoxes, even if this expression is considered by Moreau [25]
as a disquieting locution. Indeed, as mentioned initially by Lecornu [20], veloc-
ities jumps allow to escape from inconsistant configurations and the physical
phenomenon is a dynamical analogue to the locking effect, well known in the
statics of mechanisms with dry friction. The dynamic locking differs from the
static locking because the magnitude of inertial forces tends to infinity. Dy-
namic locking, that Moreau proposes to call frictional paroxysm, is commonly
observed in practice. The example of the chattering motion of a piece of chalk
at an angle against a blackboard, so that a dotted line is drawn, was already
put forward by Delassus [11] and numerically investigated by Moreau with a
NSCD algorithm. More recently, Génot and Brogliato introduce, for this ex-
ample, a critical friction coefficient below the contact forces of which remain
bounded [15]. The literature about the Painlevé paradoxes is too vast to be
reproduced here, but we can refer to a recent review paper [10]. Moreover
all these analysis concern the formulation continuous in time for small size
systems. For simple problems with a single body the locking may be resolved
by a temporary enrichment of the model, taking into account elasticity for
instance. Such a approach is not practicable for a large number of degree of
freedom as in a granular system, for which the occurence of jamming may be
very frequent and the discretization of deformable grains is computationally
expensive. Moreover the elasticity of the grains does not allow to use the large
time steps inherent to the NSCD approach. The time step has to be drastically
reduced for reproducing the wave propagation.

The next section investigates the dynamical frictional problem in finite
dimension with discretized time.
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4.1 Existence theorems (about an old problem)

The above results consider the problem continuous in time. But we restrict
our investigation to the problem on a single time step. The precursor work
is due to Klarbring and Pang [17] on a static problem. From a mathematical
point of view the system to solve (12) is similar to ours, constituted by the
equations (1), (2) and (3). However the mass matrix M is replaced by the
stiffness matrix K, and the velocities (generalized V and relative v) by the
displacements (generalized u and relative v).K u = Hr + f

v = HTu + v∗

R(r, v) = 0
(12)

Using the present notation Acary et al [2] rewrite the existence assump-
tion given by Klarbring and Pang [17] as reported in (13). The existence is
guarantied if a scalar product implying f and v∗ is non negative for all pair
(u, r) satisfying some relations: rigid-body motion, self-balanced forces, ad-
missibility condition without prescribed displacement and frictional contact
behavior. This condition involves the data in term of the external force f and
the prescribed displacement v∗.

Existence ⇐
{
f
v∗

}T{u
r

}
≥ 0 ∀(u, r)/

K u = Hr = 0
v = HTu
R(r, v) = 0

(13)

We can derive a result for the dynamical problem introduced at the begin-
ning and rewritten in (14). We recover the mass matrix and the admissibility
conditions in terms of velocities.M V = Hr + Rd + MV i,

v = HTV + v∗,
R(r, v) = 0

(14)

Because the mass matrix is positive definite, the rigid-body motion is null.
Thus the scalar product that we have to check non negative is reduced to v∗

times r for all self-balanced forces r and zero relative velocities satisfying the
frictional contact conditions. This condition is equivalent to v∗ belongs to the
dual cone to the intersection of the null space of H and the cartesian product
of the Coulomb’s cones denoted here L as noted in (15).

Existence ⇐ v∗T r ≥ 0 ∀(0, r)/
{
Hr = 0
R(r, 0) = 0

⇔ v∗ ∈ (KerH ∩ L)∗ (15)

Acary et al [2] proved a similar condition, without using a quasi-variational
inequality formulation but the tools of the convex optimization. In the dynam-
ical version, the external loading in term of impulse Rd, to compare with f in
(12) is no more taken into account in the existence condition (15).
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4.2 Application

It is instructive to apply the previous existence condition to the simple example
of the section 3.1. In this case the null space is generated by the vector k =
(1,−1, 1, 1)T representing the self-balanced impulses as drown in Fig. 3, i.e.
two opposite vectors, KerH = {λk ;λ ∈ R}. If the friction coefficients
µ1 and µ2 are greater than one (the corresponding cones are drawn in Fig.
3), the intersection KerH ∩ L is given by the positive half-space of the
null space, KerH ∩ L = {λk ;λ ≥ 0}. The dual cone is then defined as
(KerH ∩ L)∗ = {w ∈ R4 ; kTw ≥ 0}. We have to check if the scalar
product k times v∗ is non negative. Using the expression given in (9), this
scalar product is equal to −V ∗. If the wall is pulled (if V ∗ is negative), the
criterion is satisfied and the existence is assured. If the wall is pushed (if V ∗

is positive), the criterion is not satisfied and the existence is not assured. Let
remark that this criterion does not take into account the external loading
(here the gravity). Indeed, if we inverse the direction of the gravity, even if the
criterion is not satisfied, a solution is possible.

5 A simple workaround

Acary and Cadoux propose in [3] an algorithm for checking the criterion com-
putationally. This may be useful for large-scale problems. But if the criterion
is not satisfied, what is the alternative to run the simulation? Moreover, even
if the criterion is satisfied, the problem may be well-posed but ill-conditionned
as underlined in Fig. 8 in section 3.2 and the computational time thus becomes
prohibitive.

5.1 An enriched friction model: the Coulomb-Orowan law

From a mechanical point of view, when the contact impulses increase dras-
tically, the whole model has to be revisited. A rigid model for the bodies is
questionnable as soon as the grains are either sufficiently deformed or dam-
aged. The deformation or damage may be global or local. However the elastic
deformation is not a realistic response for a collection of hard grains like ballast
stones for instance, for which the grain shape and the wear of the sharp corners
is a more important phenomenon. Mathematically such a model enrichment
does not seem to be an adequate solution for overcoming inconsistency or in-
determination; Moreau in a conference dedicated to the plurality of solutions
[22] remarks that ”the occurrence of elasticity does not evade these difficul-
ties”. From a mechanical viewpoint, the fracture of grains is more relevant
than the deformation of grain in the context of the dynamical behavior of a
large collection of bodies. The fracture occurs at two levels.

At the macroscopic level, the grains may break in two or more parts. The
description of such a phenomenon requires a sophisticated modeling. It would
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have been necessary to start with non circular particles because the fracture
will generate in any case non circular sub-particles. It may be based on a
finite element method to describe the grain as a continuous medium; then
a distribution of the elastic stress in the grains is available, and a cohesive
zone model is performed to predict the decohesion zones [30]. In the context
of a discrete element method, an other approach consists in computing the
mean stress per rigid grain, in checking a fracture criterion per grain and in
performing an heuristic fragmentation profile, according to the number of the
contact points, leading to a decomposition of the grain into sub-grains [9].
In a variant the grains are discretized a priori into rigid subgrains and the
fracture criterion is checked at all the internal interfaces [27]. Such strategies
are expensive in implementation efforts and in term of computational time
since it has to be coupled with the (nonsmooth) dynamics of a large collection
of bodies.

At the microscopic level, i.e. at the contact area scale, the frictional contact
law may be modified for accounting for the asperity flattening, the asperity
fracture, or more generally a ploughing friction process. The simplest way is to
consider the Orowan model [28], in which Coulomb law holds for low contact
pressures on the one hand and the tangential friction stress is constant for
high normal pressures on the other hand. In the same spirit, different models
have been studied, specially for metal forming, by adding roughness contrast
between contacting bodies [6] or a third body [35]... Here we adopt a simple
Coulomb-Orowan model without smooth transition between the two regimes.
The tangential forces are bounded by a Tresca type model for high pressures.
An illustration is provided in Fig. 10 where the Coulomb cones are replaced
by pen-type sets. Such a model requires the Tresca sliding threshold as a new
parameter that characterizes the contact between particles in addition to the
friction coefficient for the weak normal forces. This parameter may depend on
several material and geometrical factors as the roughness and the curvature
of the contacting surfaces. In any case it is not easy to identify this parameter
for granular media; we cannot refer publicly to an industrial report which
consists of an attempt for determining a friction law depending on the wear in
ballast grains. In the following simple examples, the Tresca threshold is chosen
without reference to a real value but only for testing the ability of the model
to overcome the wedging processes.

5.2 Numerical experiments and acceleration attempts

First we apply the Coulomb-Orowan model to the simplest example. The im-
proper interpenetration due to the inconsistency, observed in Fig. 4, is avoided
as shown in Fig. 10. The Tresca threshold is activated for the second contact
(impulse in grey on the figure). The convergence requires 18 iterations for the
first time step, 6 for the second step and a single iteration for the following
steps.
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Fig. 10 A disk in a corner with pen-type sets (Coulomb-Orowan law) and final configuration
(saturated threshold at the second contact in grey)

The Coulomb-Orowan model is then applied to the ”confined” system with
three disks. The wedging process, illustrated in Fig. 9, is again overcome as
shown in Fig. 11. The saturation of the Tresca threshold is reached at the two
first contact on the smallest disk. The convergence requires 173 iterations for
the first time step, around 40 for the following steps.

Fig. 11 Three disks in a box (”confined” system). Initial and final configurations with the
Coulomb-Orowan law (saturated threshold at the two first contacts in grey)

The evolution of the impulse iterates for the first step is given in Fig. 12.
The slow convergence is typical of the Gauss-Seidel algorithm. However the
previous theoretical analysis of Section 4 suggests that the impulse iterates
evolve close to the null space of the H operator; this is confirmed by the
iterate trajectories until some trajectories cross the boundary of the pen-type
set when the Tresca threshold is reached. Acceleration procedures may be
derived from this remark. Without giving details the procedure consists of
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three steps: first detecting the alignment of the iterates with the kernel of
H, then determining the intersection with the pen-type set, finally jumping to
this point and starting agin from this one. Two versions have been carried out.
The global acceleration procedure detects the alignment on the full system.
The local acceleration procedure performs this detection contact per contact
using the projection of the null space on the subspace of the impulses of the
current contact.

Fig. 12 Three disks in a box (”confined” system). Evolution of the impulse iterates at each
contact.

Fig. 13 shows the implementation of these procedures on the confined sys-
tem with three disks for the first contact. The iteration number decreases with
these acceleration procedures, but the decrease is not so important because
once the procedure is activated, the convergence rate of the Gauss-Seidel al-
gorithm is recovered. In other words the acceleration is provisory. For more
complex systems the acceleration procedures perturb the algorithm leading to
the divergence. This explains that the details of the procedures are not given.

5.3 Return on the sandbox simulation

Finally, the Coulomb-Orowan model is applied to the sandbox system and
compared to the solution obtained with the classical Coulomb friction model.
The Coulomb friction coefficient is equal to 0.7.

The Tresca threshold is applied on the normal component of the contact
force and is expressed in Newton. Two different values have been used: 104 N
and 106 N . The higher value corresponds to the mean value of the contact
force within the sample.
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Fig. 13 Three disks in a box (”confined” system). Evolution of the impulse iterates at
contact 1 with Coulomb-Orowan, the global acceleration and the local acceleration.

Fig. 14 Three disks in a box (”confined” system). Gap between the iterate trajectory
and the null space with Coulomb, Coulomb-Orowan, the global acceleration and the local
acceleration.

Figure 15a presents the evolution of the number of iterations obtained with
the Coulomb and the Coulomb-Orowan models. During the simulation process
using the Coulomb friction model, the algorithm reaches several times the
prescribed number of iterations (fixed here to 104). This value are reached also
during consecutive time steps as shown by the plateaus in Fig.15b. When the
Coulomb-Orowan friction model is used, a different behavior is observed. For
the higher threshold value, the maximal number of iterations is reached at the
first step only. Then, the convergence is better on the whole process: the mean
number of iterations is equal to 325 (in comparison with around 1 000 iterations
for the Coulomb model). For the smaller threshold value, the maximal number
of iterations is never reached and the mean number of iterations is equal to 110.
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Fig. 15 Comparison of the evolution of iteration number (semilogarithmic representation)
obtained for simulation using Coulomb friction and Coulomb-Orowan friction with two dif-
ferent thresholds (104 and 106).

Thus, as observed in the previous simple numerical experiments, the Coulomb-
Orowan friction model can improve the convergence of the algorithm.

In complement of previous observations, the evolution of the mean vio-
lation is checked. Rather than to observe such an evolution on the whole
system, an attention is given on the corner region close to the moving wall
defined in Fig. 1a. Results are illustrated in Fig. 16a. They show that the
mean violation increases for the three simulations. The mean violation value
is quasi-equivalent for the Coulomb friction and the Coulomb-Orowan friction
with a high threshold. It is reduced by a half for the Coulomb-Orowan friction
with a low threshold.

Indeed, this reduction of the mean violation leads to some variation in the
system properties. Figure 16b presents the contact force distribution (or pdf
function [31]) within the system. It appears that the pdf function obtained
with the Coulomb-Orowan friction with a low threshold is different of the two
others friction models.

To summarize, the Coulomb-Orowan friction requires much less iterations
than the Coulomb model. The mean violation is not reduced with a con-
vergence criterion expressed in term of averaged quantities [16]. But it may
influence the global mechanical properties of the considered system. If an ex-
perimental value of a Tresca threshold is not available, the mean value of the
contact force seems a relevant value to define the Tresca threshold used in the
Coulomb-Orowan model. Certainly such a recommendation is based on a first
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Fig. 16 (a) Evolution of the mean violation and (b) contact force distribution for the
Coulomb and the Coulomb-Orowan models.

analysis on one confined system, but this seems to be pertinent because, as
shown in [31], the mean value of the contact force separates the weak con-
tact network and the strong contact network. The strong contacts concentrate
the large normal forces dealing with the interpenetration and constitute the
”load-bearing” network as underlined in [32].

6 Conclusion

The occurence of inconsistency of the modelling has been identified in granular
systems and illustrated on simple examples. A theoretical direct investigation
has been performed on these examples and a link between the kernel of the
Delassus operator and the cartesian product of the Coulomb cones provides
an existence theorem.
The Coulomb-Orowan friction model constitutes a practical alternative to the
classical Coulomb law and a simple workaround to the non existence problem.
It was tested on simple examples for overcoming the inconsistency. The rel-
evancy of such a approach as a numerical remedy has been investigated on
a sandbox process. The numerical results prove that the convergence is re-
stored at each time step and the convergence rate is significantly improved.
We can even give a recommendation for choosing a pertinent Tresca threshold
when such a parameter is not experimentally available. However we are not
theoretically sure that the inconsistency of the problem is always avoided. We
need a theoretical study providing an existence theorem in this case. More-
over the Coulomb-Orowan model is not a remedy to the ill-conditioning. The
ill-conditioning of a non smooth system of equations and inequations is diffi-
cult to quantify. The linear part of the system, given by the Delassus operator
W , is commonly very ill-conditioned because this operator is singular, i.e. its
condition number is infinite. Even if the null space of W is not solicited by the
solution impulse network, as in the example of Fig. 8, the convergence may be
very slow.
The attempt of acceleration procedures is not conclusive. This fact confirms
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the difficulty to improve the convergence of iterative solvers on nonsmooth
systems as reported in [33] for conjugate gradient type methods or in [36] for
domain decomposition strategies. The ill-conditioning of such non smooth sys-
tems proves to be a very difficult topic.
The Coulomb-Orowan model leads to a smoother evolution of the contact
impulse network. The relaxation of the wedging effects erases the possible dy-
namic crises observed in granular packings. Indeed such crises are revealed
by acoustic emissions in some experiments. The simulation of such dynamic
effects requires to add an elastic behavior of the grains or at least a restitution
coefficient at the impacts. The notion of formal velocity proposed by Moreau,
as a convex combination of the left velocity and the right velocity, allows to
reproduce binary shocks, from inelastic to perfectly elastic shocks. But it is
not able to simulate the propagation of shocks generated by elastic waves in a
collection of rigid bodies with simultaneous multiple contacts. Some attempts
of modeling the collisions of several rigid bodies lead to complex models diffi-
cult to identify [13,14] or restricted to simple systems as granular chains [26].
Such a topic is a forecoming challenge.
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2. V. Acary, F. Cadoux, C. Lemaréchal and J. Malick, A formulation of the linear discrete
Coulomb friction problem via convex optimization, Zeitschrift für angewandte Mathematik
und Mechanik, 91(2), 155–175 (2011)

3. V. Acary and F. Cadoux, Applications of an existence result for the Coulomb friction
problem, Recent Advances in Contact Mechanics, Springer, 45–66 (2013)

4. P. Alart, How to overcome indetermination and interpenetration in granular systems
via nonsmooth contact dynamics. An exploratory investigation, Computer Methods in
Applied Mechanics and Engineering, 270, 37–56, (2014)

5. J.D. Anderson and J. Wendt, Computational fluid dynamics, 334. Springer, (1995)
6. B. Avitzur and Y. Nakamura, Analytical determination of friction resistance as a function

of normal load and geometry of surface irregularities, Wear, 107(4), 367–383 (1986)
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27. D.-H.Nguyen, E. Azéma, P. Sornay, F. Radjai, Bonded-cell model for particle fracture,
Phys. Rev. E 91, 022203 (2015)

28. E. Orowan, The calculation of roll pressure in hot and cold flat rolling, Proceedings of
the Institution of Mechanical Engineers, 150(1), 140–167 (1943)
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