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I. INTRODUCTION 

 

Deep space communication systems operate on very long distance and the on-board energy generator capacity is very 

limited which results a very low signal to noise ratio (SNR) at the reception. This is the reason why near Shannon limit 

error correcting codes are used. Nevertheless, to take advantage of this gain, the coherent demodulation is mandatory 

and the carrier phase synchronization must be provided at a more restrictive SNR (𝐸𝑠/𝑁0 ≃ –8 dB for a Turbo-code 

1/6).  

Spectrum resources allocated for deep space missions are limited (X-band at 8 GHz), and in order to optimize the 

spectral efficiency, the Consultative Committee for Space Data System (CCSDS) recommended [1] pre-coded GMSK 

modulation (Gaussian Minimum Shift Keying) with Gaussian filter bandwidth-bit period product 𝐵𝑇𝑏= 0.5 for Category 

B missions (deep space missions) and GMSK 𝐵𝑇𝑏= 0.25 for category A missions (low altitude missions). 

This paper discusses a blind phase detector [2] derived from maximum a posteriori (MAP) criterion and Laurent 

expansion [3] for GMSK modulation. In order to evaluate the performance of this phase detector in a closed loop 

structure at very low SNR, we consider two others simplified versions that have been described in [4] and [5]. We 

develop a comprehensive study of these three different structures in both linear and nonlinear domains. We also present 

the results obtained by computer simulation using low rate error-correction code (Turbo 1/6). The aim of this work is to 

compare the performance of these three phase  detectors and estimate the impact of the simplification that have been 

made to obtain the two simplified versions.  

 

II. SYSTEM DESCRIPTION 

 

Fig.1, illustrates a block diagram of the precoded GMSK communication system. The system consists of a binary data 

source (delivering the information bits 𝑑𝑘), a data precoder, a GMSK modulator and a coherent receiver with carrier 

phase recovery schemes. The clock offset is assumed to be perfectly estimated and equal to zero. 

GMSK is a continuous phase modulation (CPM) having several interesting properties such as constant envelope which 

allows the amplifier to operate in full-saturation mode and maximizes the conversion efficiency without undergoing any 

form of spectral distortion. The pre-coding is used to eliminate the inherent differential decoding and therefore improve 

the bit error rate (BER) of the demodulator.  

 

 
 

          Fig. 1. GMSK communication system 



Using Laurent expansion, the complex base-band envelope of the GMSK 𝐵𝑇𝑏 = 0.5 signal can be represented by a 

superposition of two amplitude-modulation pulses (AMP). 

 

 

𝑆𝐺𝑀𝑆𝐾(𝑡) = √
𝐸𝑏
𝑇𝑏
  ∑{𝑎0,𝑘𝐶0(𝑡– 𝑘𝑇𝑏) + 𝑎1,𝑘𝐶1(𝑡– 𝑘𝑇𝑏)}

𝑁−1

𝑘=0

 

      

                (1) 

where 𝐸𝑏  is the average energy per bit, 1/𝑇𝑏  is the bit rate, {𝑎0,𝑘 , 𝑎1,𝑘} are the data symbols and {𝐶0, 𝐶1} are Laurent 

pulses. The duration of the main pulse 𝐶0(𝑡) is 3𝑇𝑏 while the second pulse 𝐶1(𝑡) has a duration of 𝑇𝑏 . 

 

 

𝑎0,𝑘 =∏𝑗𝛽𝑛 = 𝑗𝛽𝑘𝑎0,𝑘–1

𝑘

𝑛=0

 

      

              (2) 

 𝑎1,𝑘 = 𝑗𝛽𝑘𝑎0,𝑘–2               (3) 

with 𝛽𝑘 = (– 1)
𝑘
𝑑𝑘𝑑𝑘−1, obtained by a differential encoding of the information date bits 𝑑𝑘 as presented in Fig.1. 

 

III. CARRIER PHASE SYNCHRONIZATION LOOP 

 

The received signal  𝑟(𝑡) is defined as follows:  

 

 𝑟(𝑡) = 𝑆𝐺𝑀𝑆𝐾(𝑡)𝑒
𝑗𝜃(𝑡) + 𝑛(𝑡)              (4) 

 

where 𝑛(𝑡) is an additive white Gaussian noise (AWGN) with single-side PSD 𝑁0 W/Hz. The phase difference 𝜙(𝑡) 

between the carrier phase 𝜃(𝑡) and the phase of the receiver oscillator �̂�(𝑡) degrades the system BER performance. 

Therefore, to satisfy the required transmission quality, we need to estimate the carrier phase and use it to optimally 

demodulate the received signal. According to maximum a posteriori (MAP) estimation criterion, the most likely phase 

�̂� is that which maximizes the a posteriori probability 𝑝( �̂�(𝑡)|𝑟(𝑡)). The carrier phase 𝜃(𝑡) is assumed to be uniformly 

distributed over the interval [−𝜋, 𝜋], which means that maximizing  𝑝( �̂�(𝑡)|𝑟(𝑡)) is equivalent to maximizing 

𝑝(𝑟(𝑡)|�̂�(𝑡)) (maximum-likelihood ML estimation).  In the case of GMSK 𝐵𝑇𝑏 = 0.5, 99.97% of the signal energy is 

carried by the first Laurent pulse 𝐶0. Therefore, in order to simplify the receiver complexity, we ignore the second 

pulse 𝐶1. For an AWGN channel the likelihood probability has the form: 

 

 
𝑝(𝑟(𝑡)|�̂�(𝑡)) ∝ 𝑒𝑥𝑝(–

1

𝑁0
∫ 𝑟(𝑡)𝑆𝐺𝑀𝑆𝐾

∗ (𝑡, �̂�(𝑡), �̂�)𝑑𝑡)
𝑇0

0

 
      

             (5) 

where [0, 𝑇0] is the observation interval and {�̂�, �̂�(𝑡)} are the estimates of the parameters that need to be determined. To 

arrive at the blind closed loop carrier phase synchronizer, we consider a sliding window implementation of the MAP 

carrier phase estimator. In other words, we decompose the observation period [0, 𝑇0] into a set of sub-periods with time 

length equal to 𝐾𝑏𝑇𝑏. During the k
th

 sub-observation periods [𝑘𝑇𝑏 , (𝑘 + 𝐾𝑏)𝑇𝑏] we assume that the carrier phase 𝜃(𝑡) is 

constant and equal to 𝜃𝑘. Afterward, at each instant  𝑘𝑇𝑏  we take the natural logarithm of the likelihood probability (5) 

calculated over the time interval 𝑘𝑇𝑏 ≤ 𝑡 ≤ (𝑘 + 𝐾𝑏)𝑇𝑏 and averaged over the data sequence �̂�, differentiate it with 

respect to the estimated phase at this interval �̂�𝑘 and finally use this as an estimation error signal 𝑒𝐵𝑀𝐴𝑃(𝜙𝑘), where 

𝜙𝑘 = 𝜃𝑘– �̂�𝑘: is the phase offset. By tacking 𝐾𝑏 = 4  and considering only the even instants (k is even), we obtain: 

 

 

       𝑒𝐵𝑀𝐴𝑃(𝜙𝑘) =– ∑ ℜ(𝐼𝑙,𝑘) tanh(ℑ(𝐼𝑙,𝑘))

𝑘+2

𝑙=𝑘−2
𝑙∶𝑒𝑣𝑒𝑛 

+ ∑ ℑ(𝐼𝑙,𝑘) tanh(ℜ(𝐼𝑙,𝑘))

𝑘+3

𝑙=𝑘−1
𝑙∶𝑜𝑑𝑑 

 

      

             (6) 

 
𝐼𝑙,𝑘 =

2

𝑁0
√𝐸𝑏/𝑇𝑏     {∫ 𝑟(𝑡)𝐶0(𝑡– 𝑙𝑇𝑏) 

 (𝑘+4)𝑇𝑏

𝑘𝑇𝑏

 𝑑𝑡} 𝑒–𝑗�̂�𝑘    
             (7) 

 

Fig. 2 shows a block diagram for the GMSK blind carrier phase synchronization loop. The system consists of phase 

detector defined by (6), a proportional-integrator loop filter (LF) whose transfer function is described by (8) and a 

numerically controlled oscillator (NCO). 

 
 𝐹(𝑠) = 𝐾𝑓 (1 +

𝛼

𝑠
)                (8) 



 

 
Fig. 2. GMSK blind carrier phase synchronization loop 

 

where 𝐾𝑓 is the loop filter gain and 𝛼 is the loop filter integrator constant. These parameters will be set according to the 

mission constraints (Doppler, Doppler rate, phase error variance, acquisition time). 

From the blind MAP (BMAP) detector, the assumptions that lead to the two suboptimal versions of the carrier phase 

loop are as follows: 

 

1) The most part of the phase error (6) energy is concentrated in the terms corresponding to 𝑙 = 𝑘 and 𝑙 = 𝑘 + 1, 

the contribution of the other terms is negligible. 

  

       𝑒𝐵𝑀𝐴𝑃(𝜙𝑘) ≃–ℜ(𝐼𝑘,𝑘) tanh (ℑ(𝐼𝑘,𝑘)) + ℑ(𝐼𝑘+1,𝑘) tanh(ℜ(𝐼𝑘+1,𝑘)) 

 

      

             (9) 

2) At very low SNR, the nonlinear hyperbolic tangent function can be approximated by a linear function 

as tanh(𝑥) ≃ 𝑥. 

 𝑒𝑆𝐷𝐷(𝜙𝑘) =–ℜ(𝐼′𝑘,𝑘)ℑ(𝐼′𝑘,𝑘) +  ℜ(𝐼′𝑘+1,𝑘)ℑ(𝐼′𝑘+1,𝑘)            (10)              

 

3) At high SNR, hyperbolic tangent function can be approximated by the “sign” function as tanh(𝑥) ≃ 𝑠𝑖𝑔𝑛(𝑥). 
 

                                       𝑒𝐻𝐷𝐷(𝜙𝑘) =–ℜ(𝐼′𝑘,𝑘)𝑠𝑖𝑔𝑛 (ℑ(𝐼′𝑘,𝑘)) + ℑ(𝐼′𝑘+1,𝑘)𝑠𝑖𝑔𝑛(ℜ(ℑ(𝐼′𝑘+1,𝑘)) 
        (11) 

 

Once the hyperbolic tangent function is approximated either by the linear function or the function “sign”, the division of 

the 𝐼𝑘’s by 𝑁0/2, which was used to place the 𝐼𝑘’s in the appropriate region of the “tanh” function (linear or constant 

region) based on SNR, becomes useless. Therefore, we introduce the new variables 𝐼𝑘′ = 𝐼𝑘𝑁0/2 and 𝐼𝑘+1
′ = 𝐼𝑘+1𝑁0/2  

which do not depend on SNR. Fig. 3, shows the block diagrams of the two simplified GMSK carrier phase 

synchronization loop based on the low (Fig. 3 (a)) and the high (Fig. 3 (b)) SNR approximation of the nonlinear 

hyperbolic tangent function. The phase detector based on the high SNR approximation is a hard-decision directed 

(HDD) detector while the second one is a soft-decision directed (SDD) detector. After having presented the different 

GMSK phase detectors, we detail in the next part of this papier a comprehensive study covering both linear and 

nonlinear operating domain. Firstly, we need to characterize the phase detectors by the so-called S-curve in order to 

define the equivalent models of these carrier phase loops and correctly set their parameters (equivalent noise bandwidth, 

damping factor…). 

 
 

 

(a) Low SNR tanh approximation based carrier loop (b) High SNR tanh approximation based carrier loop 

 

Fig. 3. Sup-optimal versions of the GMSK blind MAP carrier phase synchronizer 



 

IV. S-CURVES DETERMINATION  

 

By definition the S-curve 𝑆(𝜙) is the average value of the phase detector output in the presence of a constant offset 

between the carrier phase and the phase generated by the receiver N.C.O in an open loop structure: 

 

 𝑆(𝜙) = 𝐸[𝑒(𝜙)|𝜙] 
 

           (12) 

The S-curve expressions of the two sup-optimal GMSK 𝐵𝑇𝑏 = 0.5 carrier phase loop using the definition (12) are given 

below. These expression present a contribution of this work since, to the best of our knowledge, they do not exist in the 

literature. For the lack of space, we will not detail the calculation. 

  

𝑆𝑆𝐷𝐷(𝜙) = 𝐸[𝑒𝑆𝐷𝐷(𝜙)|𝜙] = 𝐸𝑏
2(𝑅(0)2– 2𝑅(1)2) sin(2𝜙) 

      

           (13) 

 
𝑅(𝑚) =

1

𝑇𝑏
∫ 𝐶0(𝑡)𝐶0(𝑡–𝑚𝑇𝑏)𝑑𝑡
3𝑇𝑏

0

 
      

           (14) 

 

 
𝑆𝐻𝐷𝐷(𝜙) = 𝐸[𝑒2,𝑘(𝜙)|𝜙] =

1

2
𝑈1(2𝑃1– 1) + 𝑈2(2𝑃2– 1) +

1

2
𝑈3(2𝑃3– 1) 

           (15) 

where 

 

𝑈1 =–2𝑅(1) cos(𝜙) + 𝑅(0) sin(𝜙) ; 𝑃1 =
1

2
𝑒𝑟𝑓𝑐(–√

𝐸𝑏𝑅(0)

2𝑁0
(2𝑅(1) sin(𝜙) + 𝑅(0) cos(𝜙))) 

     

   (16) 

and 

        

 
 

𝑈2 = 𝑅(0) sin(𝜙) ;  𝑃2 =
1

2
𝑒𝑟𝑓𝑐(–√

𝐸𝑏𝑅(0)

2𝑁0
(𝑅(0) cos(𝜙))) 

  

   (17) 

and  

Fig. 4. shows the S-curves of the three considered detectors for the GMSK 𝐵𝑇𝑏 = 0.5. Contrary to the BMAP and the 

HDD detector, the SDD detector S-curve does not depend on the SNR (as expected from the theory). In hardware 

implementation, this property is a very important advantage since we don’t have to estimate the SNR in order to set the 

PLL parameters which depend on the S-curve expression. At very low SNR (𝐸𝑠/𝑁0 < 0) , the three phase detector S-

curves are proportional to 𝑠𝑖𝑛(2𝜙) (semi-sinusoidal detector).  

 

   
(a) BMAP phase detector S-curve  

 

(b) SDD phase detector S-curve (c) HDD phase detector S-curve 

Fig. 4. Phase detectors S-curves 

 

 

 

 

𝑈3  = 2𝑅(1) cos(𝜙) + 𝑅(0) sin(𝜙) ;  𝑃1 =
1

2
𝑒𝑟𝑓𝑐(–√

𝐸𝑏𝑅(0)

2𝑁0
(– 2𝑅(1) sin(𝜙) + 𝑅(0) cos(𝜙))) 

 

  (18) 



V. NONLINEAR ACQUISITION PHASE 

 

In this section we present a new study of the nonlinear acquisition phase of a carrier phase loop having a semi-

sinusoidal phase detector S-curve (𝑆(𝜙) ∝ 𝑠𝑖𝑛 (2𝜙)) which is the case of the three considered phase detectors S-curves 

at very low SNR. This study is based on the phase plan method [6] which is a graphical method for nonlinear system 

analysis. In the literature we find several analyses of sinusoidal carrier phase loop (𝑆(𝜙) ∝ 𝑠𝑖𝑛 (𝜙)) but these results are 

not directly applicable to our case.  

A block diagram of the carrier phase loop nonlinear equivalent model is shown in Fig. 5, where 𝜃 and �̂� are the 

instantaneous phases of the carrier signal and that of the N.C.O signal, respectively, 𝑒(𝑡) represents the error signal and 

𝑢(𝑡) the loop filter output (or the N.C.O command signal). 𝐾𝑣 is known as the N.C.O gain.  Note that this analysis has 

been developed in the continuous time domain. However, the transformation (dividing the loop parameters by the 

sampling period) used for the digital transition does not directly influence the behavior of the system and the obtained 

results remain applicable.  

Firstly we consider the case of a phase ramp input, i.e.  

 

 𝜃(𝑡) = Δ𝜔𝑡 + 𝜃0            (19) 

 

where Δ𝜔 = 𝜔𝑖 − 𝜔0 is frequency offset between the carrier signal and the N.C.O signal and 𝜃0 is the phase offset 

at 𝑡 = 0. Using the model above, we can express the differential equation governing the system behaviour in the 

nonlinear phase as: 

  

𝑑2𝜙(𝑡)

𝑑𝜏2
+ 2 cos(2𝜙(𝑡))

𝑑𝜙(𝑡)

𝑑𝜏
 + 𝛼′ sin(2𝜙(𝑡)) = 0 

     

           (20) 

 

where 𝛼′ is the loop filter integrator constant 𝛼 normalized by the loop gain 𝐺 = 𝐾𝑑𝐾𝑓𝐾𝑣 and 𝜏 = 𝐺𝑡. The system 

equation (20) is a second-order nonlinear differential equation which does not have a known analytic solution. 

Therefore, the phase plan method is used to analyse the system nonlinear behaviour. Decomposing (20) in a set of 

equation as follows: 

 

 

{
 

 
𝑑𝜙(𝑡)

𝑑𝑡
= �̇�(𝑡)

𝑑�̇�(𝑡)

𝑑𝑡
=–2 cos(2𝜙(𝑡))

𝑑𝜙(𝑡)

𝑑𝑡
 – 𝛼′ sin(2𝜙(𝑡))

 

     

        (21.a) 

 

        (21.b) 

 

where (𝜙(𝑡), �̇�(𝑡)) are the phase and the frequency error, respectively.  

 

 Equilibrium points : 

By definition, 𝑀(𝜙0, �̇�0) is an equilibrium point for the system described by (21) if it satisfies the following conditions: 

  

{
 

 
𝑑𝜙0(𝑡)

𝑑𝑡
= 0

𝑑�̇�0(𝑡)

𝑑𝑡
= 0

 

     

         

           (22)  

 

         

 

 
 

Fig. 5. Nonlinear carrier phase loop equivalent model 



Then the equilibrium point is defined as follows: 

 

 

{
𝜙0 =

𝑛𝜋

2
, 𝑛 ∈ 2ℤ  

�̇�0 = 0
 

     

           (23) 

 

According to (23), once the locked state is reached, the frequency offset (�̇�) will be completely eliminated but the loop 

could lock on the opposite phase since the points 𝑀(𝜙 = 𝑚𝜋, �̇� = 0),𝑚 = 1,3,5 …, are stable equilibrium points. 

Therefore, a phase ambiguity resolution technique must be used. By dividing (21.b) by (21.a) we obtain  

 

 𝑑�̇�(𝑡)

𝑑𝜙(𝑡)
=–2 cos(2𝜙(𝑡)) –

𝛼′ sin(2𝜙(𝑡))

�̇�(𝑡)
 

     

           (24) 

 

For an initial condition 𝑀(𝜙(𝑡 = 0), �̇�(𝑡 = 0)) the equation (24) allows us to calculate (by using a numerical 

calculator) the tangent at each instant 𝑡0 and thus to obtain point by point the trajectory describing the evolution of the 

phase and the frequency offset during the time. By moving the initial point 𝑀0 and using this approach, we can plot the 

so-called phase plane of the carrier phase loop. Fig.6 shows the phase plane of the carrier phase loop around the 

equilibrium point  𝑀0(𝜙 = 0, �̇� = 0), and during the first period (𝜙 ∈ [– 𝜋/2, 𝜋/2]) for 𝛼′ = 1 (this value corresponds 

to a damping equal to 1/ √2  usually used in practice [7]). 

 

 Lock-in range : 

Assuming that the PLL is initially in locked state (in an equilibrium point of the phase plane). The pull-out frequency 

Ω𝑝𝑜 is defined as the maximum value (in absolute value) of the frequency offset that may arise between the NCO and 

the carrier signal and still the carrier loop is able to relock without slipping any cycle (return to the same equilibrium 

point). Exceeding this frequency, the PLL will slip one or more cycle (pull-in process) before reaching another stable 

equilibrium point (relocking).  The frequency interval [– Ω𝑝𝑜, Ω𝑝𝑜] is known as the lock-in range in the PLL theory. The 

pull-in process can be too slowly and unreliable for many applications.  

Therefore, the lock-in range is a very important parameter to satisfy the required transmission constraints. Using the 

phase plane, the pull-out frequency can be determined as the intersection of the frequency axis and the separatrix 

trajectories (the trajectories plotted in red on Fig.6 dividing the phase plan around the equilibrium point into two parts, 

spiral trajectories and sinusoidal trajectories).  

In order to simplify the loop parameters setting according to the desired performance, we have expressed the PLL pull-

out frequency as a function of the normalized loop filter integrator constant as follows:  

 

 Ω𝑝𝑜 = 1.24𝐺(0.74 + √𝛼
′)            (25) 

 Pull-in Time : 

Starting from an initial frequency offset �̇�0 larger than the pull-out frequency, the time required for the carrier phase 

loop to arrive at an equilibrium stable point (locked state) is known as the pull-in time.  

By making the same assumptions [7] that have been used in the case of the sinusoidal PLL, we derived an approximate 

analytic expression of the pull-in time as follows:   
 

𝑇𝑝𝑢𝑙𝑙 =
�̇�0
2

𝛼𝐺2
 

            

           (26) 

                                     

                                               
 

Fig. 6. Phase plan of a semi-sinusoidal PLL 

�̇�/𝐺 

𝜙/𝜋 



Using (25) and (26) we are able to well configure the carrier phase loop parameters (closed-loop gain and filter loop 

integrator constant) and assure the system performance in terms of acquisition time. 

In the presence of Doppler rate 𝐹𝑟, the system equilibrium stable points become:  
 

 

 

{
𝜙0 =

𝑛𝜋

2
+ 0.5 sin–1 (

2𝜋𝐹𝑟  

𝛼𝐺
) , 𝑛 ∈ 2ℤ  

�̇�0 = 0

 

     

           (27) 

 

In the presence of Doppler rate effect, a second order PLL is not able to perfectly synchronize the receiver N.C.O with 

the carrier signal. Therefore, we have to use a third order PLL (with a second loop filter integrator) or a Doppler 

compensation technique to avoid the non-zero phase offset in tracking phase which degrades the system BER 

performance. In some missions, a threshold of BER degradation can be tolerated. In this case, (27) allows us to define a 

lower bound for 𝐺 and 𝛼.  

 

VI. LINEAR TRACKING PHASE 

 

In tracking phase (near zero phase offset) the phase detector S-curve can be approximated by its slope at the origin 

(𝑑𝑆 𝑑𝜙|𝜙 = 0⁄ ) and the PLL equivalent model become a linear model. The transfer function of the system is defined 

as: 

 

 

Using (28) and the canonical second order system transfer function, we can express the loop parameters as:   

 

 

where 𝜔𝑛 is the natural frequency and 𝜁 is the damping factor. For a second order PLL, the one-side noise equivalent 

bandwidth 𝐵𝐿  is defined by: 

Using the PLL linear model parameters, the pull-in frequency can be rewritten: 

 

 Ω𝑝𝑜 ≃ 0.88𝜔𝑛(𝜁 + 1)            (31) 

And the pull-in time: 

 
𝑇𝑝𝑢𝑙𝑙 ≃

2�̇�0
2

𝜁𝜔𝑛
3 

 
            

           (32) 

 

From (31) and (32), we notice that a sinusoidal PLL has nearly two times larger lock-in range and four times faster pull-

in process than a semi-sinusoidal PLL having the same noise equivalent bandwidth. 

 

Once the tracking phase is reached, we can evaluate the receiver performance and compare the different phase 

detectors. Fig.7 (a) illustrates the phase error variance of the three phase detector in tracking phase for 𝐵𝐿 =

0.05%𝐵𝑟  (𝐵𝑟: Bit rate), this equivalent noise bandwidth is commonly used in practice [9]. For 𝐸𝑠/𝑁0 <–5𝑑𝐵, the 

BMAP and SDD phase detectors have nearly the same performance while ∼ 2dB degradation could be noticed between 

these detectors and the HDD detector.  This degradation comes from the inappropriate approximation of the “𝑡𝑎𝑛ℎ” by 

the function “𝑠𝑖𝑔𝑛” in this range of SNR. Otherwise, for higher SNR (𝐸𝑠 𝑁0 ≥ – 2 𝑑𝐵⁄ ) this approximation gives a 

better performance than the linear one  and the HDD variance curve approaches that of BMAP detector while the SDD 

phase error variance is degrading. Fig.7 (b) shows the system BER performance corresponding to each phase detector 

using a turbo code 1/6 and a frame length of 8920 bits. This FEC requires carrier phase synchronization at very low 

SNR (𝐸𝑠 𝑁0 ≃–0.2 + 10 𝑙𝑜𝑔10(1/6) ≃– 8𝑑𝐵⁄ ) to take advantage of its coding gain. The HDD detector error variance 

loss affects directly the BER with a degradation of 0.1 dB for a BER = 10–5.  

 

 
𝐻(𝑠) =

2𝐺𝑠 + 2𝐺𝛼

𝑠2 + 2𝐺𝑠 + 2𝐺𝛼
 

            

           (28) 

 

 
{
𝐾𝑓 = 𝜉𝜔𝑛/𝐾𝑑
𝛼 = 𝜔𝑛/(2ξ)

 
            

           (29) 

 

 
𝐵𝐿 =

𝜔𝑛
2
 𝜁(1 +

1

4𝜁2
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           (30) 



Fig. 7. GMSK 𝐵𝑇𝑏 = 0.5 carrier phase loops tracking performance 

 

From a point of view of hardware integration, choosing the BMAP phase detector increases the implementation 

complexity. In fact, an automatic gain control (AGC) must be included at each multiplier (6 multipliers for 

GMSK 𝐵𝑇𝑏 = 0.5 against two AGC inside the carrier loop for the SDD and HDD detectors) output (see Fig.2) to 

compensate the power loss caused by the Analog-to-Digital converter when the noise power is important.  

Furthermore, the iterative Cordic algorithm [8] must be used to calculate the nonlinear “𝑡𝑎𝑛ℎ” function and the SNR 

has to be blindly estimated (same for the HDD detector) in order to correctly set the loop parameters as a function of the 

phase detector S-curve. Taking into account the implementation complexity and the obtained performance, The SDD 

detector represents the best candidate for the deep space mission characterized by a very low SNR and Non-data aided 

transmission.  

 

VII. CONCLUSION  

 

In this paper, a blind GMSK carrier phase loop based on the MAP estimation criterion has been presented as well as 

two others simplified versions. The analytic expressions of the S-curves have been derived and compared to computer 

simulations. Using this expressions and the phase plan method, a nonlinear analysis of a semi-sinusoidal carrier phase 

loop was developed and several results were obtained. In order to compare the different phase detectors in the tracking 

phase, an evaluation in terms of phase error variance and BER in turbo coded structure has been carried out and it has 

been shown that at very low SNR (𝐸𝑠/𝑁0 ≃ – 8 𝑑𝐵) the SDD detector performance in tracking phase is 

indistinguishable from that of BMAP detector. Finally, to complete our study, the hardware implementation complexity 

was discussed and it has been proved that the SDD detector is a good trade-off between performance and 

implementation complexity for deep space missions.   
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