
HAL Id: hal-01522546
https://hal.science/hal-01522546v1

Submitted on 15 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Reachability in Divergent Weighted Timed
Games

Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier

To cite this version:
Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier. Optimal Reachability in Diver-
gent Weighted Timed Games. 20th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’17), Apr 2017, Uppsala, Sweden. pp.162-178, �10.1007/978-3-662-
54458-7_10�. �hal-01522546�

https://hal.science/hal-01522546v1
https://hal.archives-ouvertes.fr


Optimal Reachability
in Divergent Weighted Timed Games?

Damien Busatto-Gaston, Benjamin Monmege and Pierre-Alain Reynier

Aix Marseille Univ, LIF, CNRS, France
{damien.busatto,benjamin.monmege,pierre-alain.reynier}@lif.univ-mrs.fr

Abstract. Weighted timed games are played by two players on a timed
automaton equipped with weights: one player wants to minimise the ac-
cumulated weight while reaching a target, while the other has an opposite
objective. Used in a reactive synthesis perspective, this quantitative ex-
tension of timed games allows one to measure the quality of controllers.
Weighted timed games are notoriously difficult and quickly undecidable,
even when restricted to non-negative weights. Decidability results exist
for subclasses of one-clock games, and for a subclass with non-negative
weights defined by a semantical restriction on the weights of cycles. In
this work, we introduce the class of divergent weighted timed games as
a generalisation of this semantical restriction to arbitrary weights. We
show how to compute their optimal value, yielding the first decidable
class of weighted timed games with negative weights and an arbitrary
number of clocks. In addition, we prove that divergence can be decided
in polynomial space. Last, we prove that for untimed games, this re-
striction yields a class of games for which the value can be computed in
polynomial time.

1 Introduction

Developing programs that verify real-time specifications is notoriously difficult,
because such programs must take care of delicate timing issues, and are difficult
to debug a posteriori. One research direction to ease the design of real-time soft-
ware is to automatise the process. We model the situation into a timed game,
played by a controller and an antagonistic environment: they act, in a turn-
based fashion, over a timed automaton [2], namely a finite automaton equipped
with real-valued variables, called clocks, evolving with a uniform rate. A usual
objective for the controller is to reach a target. We are thus looking for a strategy
of the controller, that is a recipe dictating how to play (timing delays and tran-
sitions to follow), so that the target is reached no matter how the environment
plays. Reachability timed games are decidable [4], and EXPTIME-complete [21].

If the controller has a winning strategy in a given reachability timed game,
several such winning strategies could exist. Weighted extensions of these games
? The first author has been supported by ENS Cachan, Université Paris-Saclay. This
work has been funded by the DeLTA project (ANR-16-CE40-0007), and by the SoSI
project (PEPS SISC CNRS).



have been considered in order to measure the quality of the winning strategy for
the controller [9,1]. This means that the game now takes place over a weighted
(or priced) timed automaton [5,3], where transitions are equipped with weights,
and states with rates of weights (the cost is then proportional to the time spent
in this state, with the rate as proportional coefficient). While solving weighted
timed automata has been shown to be PSPACE-complete [6] (i.e. the same com-
plexity as the non-weighted version), weighted timed games are known to be
undecidable [12]. This has led to many restrictions in order to regain decidabil-
ity, the first and most interesting one being the class of strictly non-Zeno cost
with only non-negative weights (in transitions and states) [9,1]: this hypothesis
states that every execution of the timed automaton that follows a cycle of the
region automaton has a weight far from 0 (in interval [1,+∞), for instance).

Less is known for weighted timed games in the presence of negative weights
in transitions and/or states. In particular, no results exist so far for a class that
does not restrict the number of clocks of the timed automaton to 1. However,
negative weights are particularly interesting from a modelling perspective, for
instance in case weights represent the consumption level of a resource (money,
energy. . . ) with the possibility to spend and gain some resource. In this work,
we introduce a generalisation of the strictly non-Zeno cost hypothesis in the
presence of negative weights, that we call divergence. We show the decidability
of the class of divergent weighted timed games, with a 2-EXPTIME complexity
(and an EXPTIME-hardness lower bound). These complexity results match the
ones that could be obtained in the non-negative case from the study of [9,1].

Other types of payoffs than the accumulated weight we study (i.e. total pay-
off) have been considered for weighted timed games. For instance, energy and
mean-payoff timed games have been introduced in [11]. They are also undecid-
able in general. Interestingly, a subclass called robust timed games, not far from
our divergence hypothesis, admits decidability results. A weighted timed game is
robust if, to say short, every simple cycle (cycle without repetition of a state) has
weight non-negative or less than a constant −ε. Solving robust timed game can
be done in EXPSPACE, and is EXPTIME-hard. Moreover, deciding if a weighted
timed game is robust has complexity 2-EXPSPACE (and coNEXPTIME-hard).
In contrast, we show that deciding the divergence of a weighted timed game is
a PSPACE-complete problem.1 In terms of modeling power, we do believe that
divergence is sufficient for most cases. It has to be noted that extending our tech-
niques and results in the case of robust timed games is intrinsically not possible:
indeed, the value problem for this class is undecidable [10].

The property of divergence is also interesting in the absence of time. In-
deed, weighted games with reachability objectives have been recently explored
as a refinement of mean-payoff games [14,15]. A pseudo-polynomial time (i.e.
polynomial if weights are encoded in unary) procedure has been proposed to
solve them, and they are at least as hard as mean-payoff games. In this arti-
cle, we also study divergent weighted games, and show that they are the first

1 Whereas all divergent weighted game are robust, the converse may not be true, since
it is possible to mix positive and negative simple cycles in an SCC.
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Table 1. Deciding weighted (timed) games with arbitrary weights

Value of a game Value of a divergent game Deciding the divergence
Untimed pseudo-poly. [15] PTIME-complete NL (unary), PTIME (binary)
Timed Undecidable [12] 2-EXPTIME, EXPTIME-hard PSPACE-complete

non-trivial class of weighted games with negative weights solvable in polynomial
time. Table 1 summarises our results. We start in Sections 2 and 3 by studying
weighted (untimed) games, before considering the timed setting in Sections 4
and 5. Complete proofs can be found in [17].

2 Weighted games

We start our study with untimed games. We consider two-player turn-based
games played on weighted graphs and denote the two players by Max and Min.
A weighted game2 is a tuple G = 〈V = VMin ] VMax, Vt, A,E,Weight〉 where V
are vertices, partitioned into vertices belonging to Min (VMin) and Max (VMax),
Vt ⊆ VMin is a subset of target vertices for player Min, A is an alphabet, E ⊆
V ×A×V is a set of directed edges, and Weight : E → Z is the weight function,
associating an integer weight with each edge. These games need not be finite in
general, but in Sections 2 and 3, we limit our study to the resolution of finite
weighted games (where all previous sets are finite). We suppose that: (i) the
game is deadlock-free, i.e. for each vertex v ∈ V , there is a letter a ∈ A and a
vertex v′ ∈ V , such that (v, a, v′) ∈ E; (ii) the game is deterministic, i.e. for each
pair (v, a) ∈ V ×A, there is at most one vertex v′ ∈ V such that (v, a, v′) ∈ E.3

A finite play is a finite sequence of edges ρ = v0
a0−→ v1

a1−→ · · · ak−1−−−→ vk, i.e.
for all 0 6 i < k, (vi, ai, vi+1) ∈ E. We denote by |ρ| the length k of ρ. We often
write v0

ρ−→ vk to denote that ρ is a finite play from v0 to vk. The play ρ is said
to be a cycle if vk = v0. We let PlaysG be the set of all finite plays in G, whereas
PlaysMin

G and PlaysMax
G denote the finite plays that end in a vertex of Min and

Max, respectively. A play is then an infinite sequence of consecutive edges.
A strategy for Min (respectively, Max) is a mapping σ : PlaysMin

G → A (re-
spectively, σ : PlaysMax

G → A) such that for all finite plays ρ ∈ PlaysMin
G (respec-

tively, ρ ∈ PlaysMax
G ) ending in vertex vk, there exists a vertex v′ ∈ V such that

(vk, σ(ρ), v′) ∈ E. A play or finite play ρ = v0
a0−→ v1

a1−→ · · · conforms to a strat-
egy σ of Min (respectively, Max) if for all k such that vk ∈ VMin (respectively,
vk ∈ VMax), we have that ak = σ(v0

a0−→ v1 · · · vk). A strategy σ is memoryless
if for all finite plays ρ, ρ′ ending in the same vertex, we have that σ(ρ) = σ(ρ′).
For all strategies σMin and σMax of players Min and Max, respectively, and for all
vertices v, we let PlayG(v, σMax, σMin) be the outcome of σMax and σMin, defined
as the unique play conforming to σMax and σMin and starting in v.
2 Weighted games are called min-cost reachability games in [15].
3 Actions are not standardly considered, but they become useful in the timed setting.
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The objective of Min is to reach a target vertex, while minimising the accumu-
lated weight up to the target. Hence, we associate to every finite play ρ = v0

a0−→
v1 . . .

ak−1−−−→ vk its accumulated weight WeightG(ρ) =
∑k−1
i=0 Weight(vi, ai, vi+1).

Then, the weight of an infinite play ρ = v0
a0−→ v1

a1−→ · · · , also denoted
by WeightG(ρ), is defined by +∞ if vk /∈ Vt for all k > 0, or the weight of
v0

a0−→ v1 . . .
ak−1−−−→ vk if k is the first index such that vk ∈ Vt. Then, we let

ValG(v, σMin) and ValG(v, σMax) be the respective values of the strategies:

ValG(v, σMin) = sup
σMax

WeightG(Play(v, σMax, σMin))

ValG(v, σMax) = inf
σMin

WeightG(Play(v, σMax, σMin)) .

Finally, for all vertices v, we let ValG(v) = supσMax
ValG(v, σMax) and ValG(v) =

infσMin ValG(v, σMin) be the lower and upper values of v, respectively. We may
easily show that ValG(v) 6 ValG(v) for all v. We say that strategies σ?Min of Min
and σ?Max of Max are optimal if, for all vertices v, ValG(v, σ?Max) = ValG(v) and
ValG(v, σ?Min) = ValG(v), respectively. We say that a game G is determined if
for all vertices v, its lower and upper values are equal. In that case, we write
ValG(v) = ValG(v) = ValG(v), and refer to it as the value of v in G. Finite
weighted games are known to be determined [15]. If the game is clear from the
context, we may drop the index G from all previous notations.
Problems. We want to compute the value of a finite weighted game, as well
as optimal strategies for both players, if they exist. The corresponding decision
problem, called the value problem, asks whether ValG(v) 6 α, given a finite
weighted game G, one of its vertices v, and a threshold α ∈ Z ∪ {−∞,+∞}.
Related work. The value problem is a generalisation of the classical shortest
path problem in a weighted graph to the case of two-player games. If weights of
edges are all non-negative, a generalised Dijkstra algorithm enables to solve it in
polynomial time [22]. In the presence of negative weights, a pseudo-polynomial-
time (i.e. polynomial with respect to the game where weights are stored in unary)
solution has been given in [15], based on a fixed point computation with value
iteration techniques. Moreover, the value problem with threshold −∞ is shown
to be in NP ∩ coNP, and as hard as solving mean-payoff games.

3 Solving divergent weighted games

Our first contribution is to solve in polynomial time the value problem, for a
subclass of finite weighted games that we call divergent. To the best of our
knowledge, this is the first attempt to solve a non-trivial class of weighted games
with arbitrary weights in polynomial time. Moreover, the same core technique is
used for the decidability result in the timed setting that we will present in the
next sections. Let us first define the class of divergent weighted games:

Definition 1. A weighted game G is divergent when every cycle ρ of G satisfies
Weight(ρ) 6= 0.
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Divergence is a property of the underlying weighted graph, independent from
the repartition of vertices between players. The term divergent reflects that cy-
cling in the game ultimately makes the accumulated weight grow in absolute
value. We will first formalise this intuition by analysing the strongly connected
components (SCC) of the graph structure of a divergent game (the repartition
of vertices into players does not matter for the SCC decomposition). Based on
this analysis, we will obtain the following results:
Theorem 1. The value problem over finite divergent weighted games is PTIME-
complete. Moreover, deciding if a given finite weighted game is divergent is an
NL-complete problem when weights are encoded in unary, and PTIME when they
are encoded in binary.

SCC analysis. A play ρ in G is said to be positive (respectively, negative) if
Weight(ρ) > 0 (respectively, Weight(ρ) < 0). It follows that a cycle in a divergent
weighted game is either positive or negative. A cycle is said to be simple if no
vertices are visited twice (except for the common vertex at the beginning and
the end of the cycle). We will rely on the following characterisation of divergent
games in terms of SCCs.
Proposition 1. A weighted game G is divergent if and only if, in each SCC
of G, all simple cycles are either all positive, or all negative.
Proof. Let us first suppose that G is divergent. By contradiction, consider a
negative simple cycle ρ (of weight −p < 0) and a positive simple cycle ρ′ (of
weight p′ > 0) in the same SCC. Let v and v′ be respectively the first vertices of ρ
and ρ′. By strong connectivity, there exists a finite play η from v to v′ and a finite
play η′ from v′ to v. Let us consider the cycle ρ′′ obtained as the concatenation
of η and η′. If ρ′′ has weight q > 0, the cycle obtained by concatenating q times
ρ and p times ρ′′ has weight 0, which contradicts the divergence of G. The same
reasoning on ρ′′ and ρ′ proves that ρ′′ can not be negative. Thus, ρ′′ is a cycle
of weight 0, which again contradicts the hypothesis.

Reciprocally, consider a cycle of G. It can be decomposed into simple cycles,
all belonging to the same SCC. Therefore they are all positive or all negative.
As the accumulated weight of the cycle is the sum of the weights of these simple
cycles, G is divergent. ut

Computing the values. Consider a divergent weighted game G. Let us start
by observing that vertices with value +∞ are those from which Min can not
reach the target vertices: thus, they can be computed with the classical attractor
algorithm, and we can safely remove them, without changing other values or
optimal strategies. In the rest, we therefore assume all values to be in Z∪{−∞}.

Our computation of the values relies on a value iteration algorithm to find
the greatest fixed point of operator F : (Z∪{−∞,+∞})V → (Z∪{−∞,+∞})V ,
defined for every vector x by F(x)v = 0 if v ∈ Vt, and otherwise

F(x)v =


min

e=(v,a,v′)∈E
Weight(e) + xv′ if v ∈ VMin

max
e=(v,a,v′)∈E

Weight(e) + xv′ if v ∈ VMax .
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Fig. 1. SCC decomposition of a divergent weighted game: {v1, v2, v3, v4} and {v7} are
negative SCCs, {v6} and {v8, v9} are positive SCCs, and {v5} is a trivial positive SCC.

Indeed, this greatest fixed point is known to be the vector of values of the
game (see, e.g., [15, Corollary 11]). In [15], it is shown that, by initialising the
iterative evaluation of F with the vector x0 mapping all vertices to +∞, the
computation terminates after a number of iterations pseudo-polynomial in G
(i.e. polynomial in the number of vertices and the greatest weight in G). For
i > 0, we let xi = F(xi−1). Notice that the sequence (xi)i∈N is non-increasing,
since F is a monotonic operator. Value iteration algorithms usually benefit from
decomposing a game into SCCs (in polynomial time), considering them in a
bottom-up fashion: starting with target vertices that have value 0, SCCs are
then considered in inverse topological order since the values of vertices in an
SCC only depend on values of vertices of greater SCCs (in topological order),
that have been previously computed.

Example 1. Consider the weighted game of Fig. 1, where Min vertices are drawn
with circles, and Max vertices with squares. Vertex vt is the only target. Near
each vertex is placed its value. For a given vector x, we have F(x)v8 = min(0 +
xvt ,−1 + xv9) and F(x)v2 = max(−2 + xv1 ,−1 + xv3 ,−10 + xv5). By a com-
putation of the attractor of {vt} for Min, we obtain directly that v4 and v7
have value +∞. The inverse topological order on SCCs prescribes then to com-
pute first the values for the SCC {v8, v9}, with target vertex vt associated with
value 0. Then, we continue with SCC {v6}, also keeping a new target vertex v8
with (already computed) value 0. For the trivial SCC {v5}, a single application
of F suffices to compute the value. Finally, for the SCC {v1, v2, v3, v4}, we keep
a new target vertex v5 with value 1.4 Notice that this game is divergent, since,
in each SCC, all simple cycles have the same sign.

For a divergent game G, Proposition 1 allows us to know in polynomial time
if a given SCC is positive or negative, i.e. if all cycles it contains are positive
4 This means that, in the definition of F , a vertex v of Vt is indeed mapped to its
previously computed value, not necessarily 0.
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or negative, respectively: it suffices to consider an arbitrary cycle of it, and
compute its weight. A trivial SCC (i.e. with a single vertex and no edges) will be
arbitrarily considered positive. We now explain how to compute in polynomial
time the value of all vertices in a positive or negative SCC.

First, in case of a positive SCC, we show that:

Proposition 2. The value iteration algorithm applied on a positive SCC with
n vertices stabilises after at most n steps.

Proof (inspired by techniques used in [9]). Let W = maxe∈E |Weight(e)| be the
greatest weight in the game. There are no negative cycles in the SCC, thus there
are no vertices with value −∞ in the SCC, and all values are finite. Let K be
an upper bound on the values |xnv | obtained after n steps of the algorithm.5 Fix
an integer p > (2K + W (n− 1))n. We will show that the values obtained after
n+p steps are identical to those obtained after n steps only. Therefore, since the
algorithm computes non-increasing sequences of values, we have indeed stabilised
after n steps only. Assume the existence of a vertex v such that xn+p

v < xnv . By
induction on p, we can show the existence of a vertex v′ and a finite play ρ from v
to v′ with length p and weight xn+p

v −xnv′ : the play is composed of the edges that
optimise successively the min/max operator in F . This finite play being of length
greater than (2K+W (n−1))n, there is at least one vertex appearing more than
2K +W (n− 1) times. Thus, it can be decomposed into at least 2K +W (n− 1)
cycles and a finite play ρ′ visiting each vertex at most once. All cycles of the
SCC being positive, the weight of ρ is at least 2K+W (n−1)− (n−1)W = 2K,
bounding from below the weight of ρ′ by −(n−1)W . Then, xn+p

v −xnv′ > 2K, so
xn+p
v > 2K+ xnv′ > K. But K > xnv , so xn+p

v > xnv , and that is a contradiction.
ut

Example 2. For the SCC {v8, v9} of the game in Fig. 1, starting from x mapping
v8 and v9 to +∞, and vt to 0, after one iteration, xv8 changes for value 0, and
after the second iteration, xv9 stabilises to value 2.

Consider then the case of a negative SCC. Contrary to the previous case, we
must deal with vertices of value −∞. However, in a negative SCC, those vertices
are easy to find6. These are all vertices where Max can not unilaterally guarantee
to reach a target vertex:

Proposition 3. In a negative SCC with no vertices of value +∞, vertices of
value −∞ are all the ones not in the attractor for Max to the targets.

Proof. Consider a vertex v in the attractor for Max to the targets. Then, if Max
applies a winning memoryless strategy for the reachability objective to the target
5 After n steps, the value iteration algorithm has set to a finite value all vertices, since
it extends the attractor computation.

6 This is in contrast with the general case of (non divergent) finite weighted games
where the problem of deciding if a vertex has value −∞ is as hard as solving mean-
payoff games [15].
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vertices, all strategies of Min will generate a play from v reaching a target after
at most |V | steps. This implies that v has a finite (lower) value in the game.

Reciprocally, if v is not in the attractor, by determinacy of games with reacha-
bility objectives, Min has a (memoryless) strategy σMin to ensure that no strategy
of Max permits to reach a target vertex from v. Applying σMin long enough to
generate many negative cycles, before switching to a strategy allowing Min to
reach the target (such a strategy exists since no vertex has value +∞ in the
game), allows Min to obtain from v a negative weight as small as possible. Thus,
v has value −∞. ut

Thus, we can compute vertices of value −∞ in polynomial time for a negative
SCC. Then, finite values of other vertices can be computed in polynomial time
with the following procedure. From a negative SCC G that has no more vertices of
value +∞ or −∞, consider the dual (positive) SCC G̃ obtained by: (i) switching
vertices of Min and Max; (ii) taking the opposite of every weight in edges. Sets
of strategies of both players are exchanged in those two games, so that the upper
value in G is equal to the opposite of the lower value in G̃, and vice versa. Since
weighted games are determined, the value of G is the opposite of the value of G̃.
Then, the value of G can be deduced from the value of G̃, for which Proposition 2
applies. We may also interpret this result as follows:

Proposition 4. The value iteration algorithm, initialised with x0
v = −∞ (for

all v), applied on a negative SCC with n vertices, and no vertices of value +∞
or −∞, stabilises after at most n steps.

Proof. It is immediate that the vectors computed with this modified value it-
eration (that computes the smallest fixed point of F) are exactly the opposite
vectors of the ones computed in the dual positive SCC. The previous explanation
is then a justification of the result. ut

Example 3. Consider the SCC {v1, v2, v3, v4} of the game in Fig. 1, where the
value of vertex v5 has been previously computed. We already know that v4 has
value +∞ so we do not consider it further. The attractor of {v5} for Max is
{v2, v3}, so that the value of v1 is −∞. Then, starting from x0 mapping v2
and v3 to −∞, the value iteration algorithm computes this sequence of vectors:
x1 = (−9,−∞) (Max tries to maximise the payoff, so he prefers to jump to the
target to obtain −10 + 1 than going to v3 where he gets −1 − ∞, while Min
chooses v2 to still guarantee 0 − ∞), x2 = (−9,−9) (now, Min has a choice
between the target giving 0 + 1 or v3 giving 0− 9).

The proof for PTIME-hardness comes from a reduction (in logarithmic space)
of the problem of solving finite games with reachability objectives [19]. To a
reachability game, we simply add weights 1 on every transition, making it a
divergent weighted game. Then, Min wins the reachability game if and only if
the value in the weighted game is lower than |V |.

In a divergent weighted game where all values are finite, optimal strate-
gies exist. As observed in [15], Max always has a memoryless optimal strategy,

8



whereas Min may require (finite) memory. Optimal strategies for both players
can be obtained by combining optimal strategies in each SCC, the latter being
obtained as explained in [15].
Class decision when weights are encoded in unary. We explain why de-
ciding the divergence of a weighted game is an NL-complete problem. First, to
prove the membership in NL, notice that a weighted game is not divergent if and
only if there is a positive cycle and a negative cycle, both of length at most |V |,
and belonging to the same SCC. To test this property in NL, we first guess a
starting vertex for both cycles. Verifying that those are in the same SCC can
be done in NL. Then, we guess the two cycles on-the-fly, keeping in memory
their accumulated weights (smaller than W × |V |, with W the biggest weight
in the game, and thus of size at most logarithmic in the size of G), and stop
the on-the-fly exploration when the length of the cycles exceeds |V |. Therefore
testing divergence is in coNL = NL [20,25].

The NL-hardness (indeed coNL-hardness, which is equivalent [20,25]) is shown
by a reduction of the reachability problem in a finite automaton. More precisely,
we consider a finite automaton with a starting state and a different target state
without outgoing transitions. We construct from it a weighted game by distribut-
ing all states to Min, and equipping all transitions with weight 1. We also add a
loop with weight −1 on the target state and a transition from the target state
to the initial state with weight 0. Then, the game is not divergent if and only if
the target can be reached from the initial state in the automaton.

4 Weighted timed games

We now turn our attention to a timed extension of the weighted games. We
will first define weighted timed games, giving their semantics in terms of infinite
weighted games. We let X be a finite set of variables called clocks. A valuation
of clocks is a mapping ν : X → R>0. For a valuation ν, d ∈ R>0 and Y ⊆ X,
we define the valuation ν + d as (ν + d)(x) = ν(x) + d, for all x ∈ X, and the
valuation ν[Y ← 0] as (ν[Y ← 0])(x) = 0 if x ∈ Y , and (ν[Y ← 0])(x) = ν(x)
otherwise. The valuation 0 assigns 0 to every clock. A guard on clocks of X is a
conjunction of atomic constraints of the form x ./ c, where ./ ∈ {6, <,=, >,>}
and c ∈ N. A valuation ν : X → R>0 satisfies an atomic constraint x ./ c if
ν(x) ./ c. The satisfaction relation is extended to all guards g naturally, and
denoted by ν |= g. We let G(X) the set of guards over X.

A weighted timed game is then a tuple G = 〈S = SMin ] SMax, St, ∆,Weight〉
where SMin and SMax are finite disjoint subsets of states belonging to Min and
Max, respectively, St ⊆ SMin is a subset of target states for player Min, ∆ ⊆
S × G(X) × 2X × S is a finite set of transitions, and Weight : ∆ ] S → Z
is the weight function, associating an integer weight with each transition and
state. Without loss of generality, we may suppose that for each state s ∈ S and
valuation ν, there exists a transition (s, g, Y, s′) ∈ ∆ such that ν |= g.

The semantics of a weighted timed game G is defined in terms of the infinite
weighted game H whose vertices are configurations of the weighted timed game.
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A configuration is a pair (s, ν) with a state and a valuation of the clocks. Con-
figurations are split into players according to the state. A configuration is final
if its state is final. The alphabet of H is given by R>0 ×∆ and will encode the
delay that a player wants to spend in the current state, before firing a certain
transition. For every delay d ∈ R>0, transition δ = (s, g, Y, s′) ∈ ∆ and valua-
tion ν, there is an edge (s, ν) d,δ−−→ (s′, ν′) if ν + d |= g and ν′ = (ν + d)[Y ← 0].
The weight of such an edge e is given by d×Weight(s) + Weight(δ).

Plays, strategies, and values in the weighted timed game G are then de-
fined as the ones in H. It is known that weighted timed games are determined
(ValG(s, ν) = ValG(s, ν) for all state s and valuation ν).7

As usual in related work [1,9,10], we assume that all clocks are bounded, i.e.
there is a constant M ∈ N such that every transition of the weighted timed
games is equipped with a guard g such that ν |= g implies ν(x) 6 M for all
clocks x ∈ X. We will rely on the crucial notion of regions, as introduced in
the seminal work on timed automata [2]: a region is a set of valuations, that
are all time-abstract bisimilar. There is only a finite number of regions and we
denote by Reg(X,M) the set of regions associated with set of clocks X and
maximal constant M in guards. For a valuation ν, we denote by [ν] the region
that contains it. A region r′ is said to be a time successor of region r if there
exist ν ∈ r, ν′ ∈ r′, and d > 0 such that ν′ = ν + d. Moreover, for Y ⊆ X, we
let r[Y ← 0] be the region where clocks of Y are reset.

The region automaton R(G) of a game G = 〈S = SMin ] SMax, St, ∆,Weight〉
is the finite automaton with states S×Reg(X,M), alphabet ∆, and a transition
(s, r) δ−→ (s′, r′) labelled by δ = (s, g, Y, s′) if there exists a region r′′ time succes-
sor of r such that r′′ satisfies the guard g, and r′ = r′′[Y ← 0]. We call path an
execution (not necessarily accepting) of this finite automaton, and we denote by
π the paths. A play ρ in G is projected on a execution π in R(G), by replacing
actual valuations by the regions containing them: we say that ρ follows path π.
It is important to notice that, even if π is a cycle (i.e. starts and ends in the
same state of the region automaton), there may exist plays following it in G that
are not cycles, due to the fact that regions are sets of valuations.
Problems. As in weighted (untimed) games, we consider the value problem,
mimicked from the one in H. Precisely, given a weighted timed game G, a con-
figuration (s, ν) and a threshold α ∈ Z ∪ {−∞,+∞}, we want to know whether
ValG(s, ν) 6 α. In the context of timed games, optimal strategies may not exist.
We generally focus on ε-optimal strategies, that guarantee the optimal value, up
to a small error ε.
Related work. In the one-player case, computing the optimal value and an ε-
optimal strategy for weighted timed automata is known to be PSPACE-complete
[6]. In the two-player case, much work for weighted timed games (also called
priced timed games in the literature) has been achieved in the case of non-
negative weights. In this setting, the value problem is undecidable [12,10]. To
7 The result is stated in [13] for weighted timed games (called priced timed games)
with one clock, but the proof does not use the assumption on the number of clocks.
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obtain decidability, one possibility is to limit the number of clocks to 1: then,
there is an exponential-time algorithm to compute the value as well as ε-optimal
strategies [7,24,18], whereas the problem is only known to be PTIME-hard. The
other possibility to obtain a decidability result [1,9] is to enforce a semantical
property of divergence, originally called strictly non-Zeno cost: it asks that every
play following a cycle in the region automaton has weight at least 1.

In the presence of negative weights, undecidability even holds for weighted
timed games with only 2 clocks [16] (for the existence problem asking if a strategy
of player Min can guarantee a given threshold). Only the 1-clock restriction has
been studied so far allowing one to obtain an exponential-time algorithm, under
restrictions on the resets of the clock in cycles [13]. For weighted timed games,
the strictly non-Zeno cost property has only been defined and studied in the
absence of negative weights [9]. As already mentioned in the introduction, the
notion is close, but not equivalent, to the one of robust weighted timed games,
studied for mean-payoff and energy objectives [11]. In the next section, we extend
the strictly non-Zeno cost property to negative weights calling it the divergence
property, in order to obtain decidability of a large class of multi-clocks weighted
timed games in the presence of arbitrary weights.

5 Solving divergent weighted timed games

We introduce divergent weighted timed games, as an extension of divergent
weighted games to the timed setting.

Definition 2. A weighted timed game G is divergent when every finite play ρ in
G following a cycle in the region automaton R(G) satisfies Weight(ρ) /∈ (−1, 1).8

The weight is not only supposed to be different from 0, but also far from 0:
otherwise, the original intuition on the ultimate growing of the values of plays
would not be fulfilled. If G has only non-negative weights on states and tran-
sitions, this definition matches with the strictly non-Zeno cost property of [9,
Thm. 6]. Our contributions summarise as follows:

Theorem 2. The value problem over divergent weighted timed games is de-
cidable in 2-EXPTIME, and is EXPTIME-hard. Moreover, deciding if a given
weighted timed game is divergent is a PSPACE-complete problem.

Remember that these complexity results match the ones that can be obtained
from the study of [9] for non-negative weights.
SCC analysis. Keeping the terminology of the untimed setting, a cycle π
of R(G) is said to be positive (respectively, negative) if every play ρ following π
satisfies Weight(ρ) > 1 (respectively, Weight(ρ) 6 −1). By definition, every cy-
cle of the region automaton of a divergent weighted timed game is positive or
8 As in [9], we could replace (−1, 1) by (−κ, κ) to define a notion of κ-divergence.
However, since weights and guard constraints in weighted timed games are integers,
for κ ∈ (0, 1), a weighted timed game G is κ-divergent if and only if it is divergent.
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negative. Moreover, notice that checking if a cycle π is positive or negative can
be done in polynomial time with respect to the length of π. Indeed, the set
{Weight(ρ) | ρ is a play following π} is an interval, as the image of a convex set
by an affine function (see [6, Sec. 3.2] for explanation), and the extremal points
of this interval can be computed in polynomial time by solving a linear problem
[6, Cor. 1]. We first transfer in the timed setting the characterisation of divergent
games in terms of SCCs that we relied on in the untimed setting:

Proposition 5. A weighted timed game G is divergent if and only if, in each
SCC of R(G), simple cycles are either all positive, or all negative.

The proof of the reciprocal follows the exact same reasoning as for weighted
games (see Proposition 1). For the direct implication, the situation is more com-
plex: we need to be more careful while composing cycles with each others, and
weights in the timed game are no longer integers, forbidding the arithmetical
reasoning we applied. To help us, we rely on the corner-point abstraction in-
troduced in [8] to study multi-weighted timed automata. It consists in adding a
weighted information to the edges (s, r) δ−→ (s′, r′) of the region automaton. Since
the weights depend on the exact valuations ν and ν′, taken in regions r and r′,
respectively, the weight of such an edge in the region automaton is computed for
each pair of corners of the regions. Formally, corners of region r are valuations
in r ∩ NX (where r denotes the topological closure of r). Since corners do not
necessarily belong to their regions, we must consider a modified version G of the
game G where all strict inequalities of guards have been replaced with non-strict
ones. Then, for a path π in R(G), we denote by π the equivalent of path π
in R(G). In the following, our focus is on cycles of the region automaton, so we
only need to consider the aggregation of all the behaviours following a cycle. In-
spired by the folded orbit graphs (FOG) introduced in [23], we define the folded
orbit graph FOG(π) of a cycle π = (s1, r = r1) δ1−→ (s2, r2) δ2−→ · · · δn−→ (s1, r)
in R(G) as a graph whose vertices are corners of region r, and that contains an
edge from corner v to corner v′ if there exists a finite play ρ in G from (s1, v) to
(s1, v

′) following π jumping from corners to corners9. We fix such a finite play
ρ arbitrarily and label the edge between v and v′ in the FOG by this play: it is
then denoted by v ρ−→ v′. Moreover, since ρ jumps from corners to corners, its
weight Weight(ρ) is an integer, conforming to the definitions of the corner-point
abstraction of [8]. Following [8, Prop. 5], it is possible to find a play ρ in G close
to ρ, in the sense that we control the difference between their respective weights:

Lemma 1. For all ε > 0 and edge v ρ−→ v′ of FOG(π), there exists a play ρ in G
following π such that |Weight(ρ)−Weight(ρ)| 6 ε.

In order to prove the direct implication of Proposition 5, suppose now that G
is divergent, and consider two simple cycles π and π′ in the same SCC of R(G).
9 Notice that if there is a play from (s1, v) to (s1, v

′) in G, there is another one that
only jumps at corners of regions.
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We need to show that they have the same sign. Lemma 2 will first take care of
the case where π and π′ share a state (s, r).

Lemma 2. If G is divergent and two cycles π and π′ of R(G) share a state (s, r),
they are either both positive or both negative.

Proof. Suppose by contradiction that π is negative and π′ is positive. We assume
that (s, r) is the first state of both π and π′, possibly performing cyclic permu-
tations of states if necessary. We construct a graph FOG(π, π′) as the union of
FOG(π) and FOG(π′) (that share the same set of vertices), colouring in blue the
edges of FOG(π) and in red the edges of FOG(π′). A path in FOG(π, π′) is said
blue (respectively, red) when all of its edges are blue (respectively, red).

We assume first that there exists in FOG(π, π′) a blue cycle C and a red
cycle C ′ with the same first vertex v. Let k and k′ be the respective lengths of C

and C ′, so that C can be decomposed as v ρ1−→ · · · ρk−→ v and C ′ as v
ρ′1−→ · · ·

ρ′
k′−−→ v,

where ρi are plays following π and ρ′i are plays following π′, all jumping only
on corners of regions. Let ρ be the concatenation of ρ1, . . . , ρk, and ρ′ be the
concatenation of ρ′1, . . . , ρ′k′ . Recall that w = |Weight(ρ)| and w′ = |Weight(ρ′)|
are integers. Since π is negative, so is πk, the concatenation of k copies of π
(the weight of a play following it is a sum of weights all below −1). Therefore,
ρ, that follows πk, has a weight Weight(ρ) 6 −1. Similarly, Weight(ρ′) > 1. We
consider the cycle C ′′ obtained by concatenating w′ copies of C and w copies of
C ′. Similarly, we let ρ′′ be the play obtained by concatenating w′ copies of ρ and
w copies of ρ′. By Lemma 1, there exists a play ρ′′ in G, following C ′′ such that
|Weight(ρ′′)−Weight(ρ′′)| 6 1/3. But Weight(ρ′′) = Weight(ρ)w′+Weight(ρ′)w =
0, so Weight(ρ′′) ∈ (−1, 1): this contradicts the divergence of G, since ρ′′ follows
the cycle of R(G) composed of w′ copies πk and w copies of π′k

′
of R(G).

We now return to the general case, where C and C ′ may not exist. Since
FOG(π) and FOG(π′) are finite graphs with no deadlocks (every corner has an
outgoing edge), from every corner of FOG(π, π′), we can reach a blue simple cycle,
as well as a red simple cycle. Since there are only a finite number of simple cycles
in FOG(π, π′), there exists a blue cycle C and a red cycle C ′ that can reach each
other in FOG(π, π′). In FOG(π, π′), we let P be a path from the first vertex of C
to the first vertex of C ′, and P ′ be a path from the first vertex of C ′ to the first
vertex of C. Consider the cycle C ′′ obtained by concatenating P and P ′. As a
cycle of FOG(π, π′), we can map it to a cycle π′′ of R(G) (alternating π and π′
depending on the colours of the traversed edges), so that C ′′ is a cycle (of length
1) of FOG(π′′). By the divergence of G, π′′ is positive or negative. Suppose for
instance that it is positive. Since (s, r) is the first state of both π and π′′, we
can construct the FOG(π, π′′), in which C is a blue cycle and C ′′ is a red cycle,
both sharing the same first vertex. We then conclude with the previous case. A
similar reasoning with π′ applies to the case that π′′ is negative. Therefore, in
all cases, we reached a contradiction. ut

To finish the proof of the direct implication of Proposition 5, we suppose
that the two simple cycles π and π′ in the same SCC of R(G) do not share any

13



states. By strong connectivity, in R(G), there exists a path π1 from the first
state of π to the first state of π′, and a path π2 from the first state of π′ to the
first state of π. Consider the cycle of R(G) obtained by concatenating π1 and π2.
By divergence of G, it must be positive or negative. Since it shares a state with
both π and π′, Lemma 2 allows us to prove a contradiction in both cases. This
concludes the proof of Proposition 5.
Value computation. We will now explain how to compute the values of a
divergent weighted timed game G. Remember that the function Val maps con-
figurations of S ×RX>0 to a value in R∞ = R ∪ {−∞,+∞}. The semi-algorithm
of [9] relies on the same principle as the value iteration algorithm used in the
untimed setting, only this time we compute the greatest fixed point of operator
F : RS×R

X
>0

∞ → R
S×RX>0
∞ , defined by F(x)(s,ν) = 0 if s ∈ St, and otherwise

F(x)(s,ν) =


sup

(s,ν)
d,δ−−→(s′,ν′)

d×Weight(s) + Weight(δ) + x(s′,ν′) if s ∈ SMax

inf
(s,ν)

d,δ−−→(s′,ν′)
d×Weight(s) + Weight(δ) + x(s′,ν′) if s ∈ SMin

where (s, ν) d,δ−−→ (s′, ν′) ranges over the edges of the infinite weighted game asso-
ciated with G (the one defining its semantics). Then, starting from x0 mapping
every configuration to +∞, we let xi = F(xi−1) for all i > 0. Since x0 is piece-
wise affine (even constant), and F preserves piecewise affinity, all iterates xi are
piecewise affine with a finite amount of pieces. In [1], it is proved that xi has at
most a number of pieces linear in the size of R(G) and exponential in i.10

First, we can compute the set of configurations having value +∞. Indeed,
the region automaton R(G) can be seen as a reachability two-player game S(G)
by saying that (s, r) belongs to Min (Max, respectively) if s ∈ SMin (s ∈ SMax,
respectively). Notice that if Val(s, ν) = +∞, then for all ν′ ∈ [ν],Val(s, ν′) =
+∞. Therefore, a configuration (s, ν) cannot reach the target states if and only if
(s, [ν]) is not in the attractor of Min to the targets in S(G). As a consequence, we
can compute all such states of S(G) with complexity linear in the size of R(G).

We then decompose R(G) in SCCs. By Proposition 5, each SCC is either
positive or negative (i.e. it contains only positive cycles, or only negative ones).
Then, in order to find the sign of a component, it suffices to find one of its simple
cycles, for example with a depth-first search, then compute the weight of one
play following it.

As we did for weighted (untimed) games, we then compute values in inverse
topological order over the SCCs. Once the values of all configurations in (s, r)
appearing in previously considered SCCs have been computed, they are no longer
modified in further computation. This is the case, in particular, for all pairs (s, r)
that have value +∞, that we precompute from the beginning. In order to resolve
10 For divergent games with only non-negative weights, the fixed point is reached after

a number of steps linear in the size of the region automaton [9]: overall, this leads
to a doubly exponential complexity.
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a positive SCC ofR(G), we apply F on the current piecewise affine function, only
modifying the pieces appearing in the SCC, until reaching a fixed point over these
pieces. In order to resolve a negative SCC of R(G), we compute the attractor for
Max to the previously computed SCCs: outside of this attractor, we set the value
to −∞. Then, we apply F for pieces appearing in the SCC, initialising them
to −∞ (equivalently, we compute in the dual game, that is a positive SCC),
until reaching a fixed point over these pieces. The next proposition contains the
correction and termination arguments that where presented in Propositions 2,
3, and 4 for the untimed setting:
Proposition 6. Let G be a divergent game with no configurations of value +∞.
1. The value iteration algorithm applied on a positive SCC of R(G) with n states

stabilises after at most n steps.
2. In a negative SCC, states (s, r) of R(G) of value −∞ are all the ones not in

the attractor for Max to the targets.
3. The value iteration algorithm, initialised with −∞, applied on a negative

SCC of R(G) with n states, and no vertices of value −∞, stabilises after at
most n steps.
By the complexity results of [1, Thm. 3], we obtain a doubly exponential time

algorithm computing the value of a divergent weighted timed game. This shows
that the value problem is in 2-EXPTIME for divergent weighted timed game. The
proof for EXPTIME-hardness comes from a reduction of the problem of solving
timed games with reachability objectives [21]. To a reachability timed game,
we simply add weights 1 on every transition and 0 on every state, making it
a divergent weighted timed game. Then, Min wins the reachability timed game
if and only if the value in the weighted timed game is lower than threshold
α = |S| × |Reg(X,M)|.

In an SCC of R(G), the value iteration algorithm of [1] allows us to compute
an ε-optimal strategy for both players (for configurations having a finite value),
that is constant (delay or fire a transition) over each piece of the piecewise affine
value function. As in the untimed setting, we may then compose such ε-optimal
strategies to obtain an ε′-optimal strategy in G (ε′ is greater than ε, but can be
controlled with respect to the number of SCCs in R(G)).
Class decision. Deciding if a weighted timed game is divergent is PSPACE-
complete. The proof is an extension of the untimed setting NL-complete result,
but this time we reason on regions, hence the exponential blowup in complexity:
it heavily relies on Proposition 5, as well as the corner-point abstraction to keep
a compact representation of plays.

6 Conclusion
In this article, we introduced the first decidable class of weighted timed games
with arbitrary weights, with no restrictions on the number of clocks. Future work
include the approximation problem for a larger class of weighted timed games
(divergent ones where we also allow cycles of weight exactly 0), already studied
with only non-negative weights by [10].
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