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MIXING RATE IN INFINITE MEASURE FOR Z d -EXTENSION, APPLICATION TO THE PERIODIC SINAI BILLIARD
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We study the rate of mixing of observables of Z d -extensions of probability preserving dynamical systems. We explain how this question is directly linked to the local limit theorem and establish a rate of mixing for general classes of observables of the Z 2 -periodic Sinai billiard. We compare our approach with the induction method.

we use here, we first prove the mixing rate and can deduce from it the asymptotic behaviour of the tail distribution of the first return time (see [START_REF] Dolgopyat | Recurrence properties of planar Lorentz process[END_REF]Thm. 1] and [START_REF] Pène | Back to balls in billiards[END_REF]Prop. 4.2]).

For both methods, the link between tail distribution return time and mixing is given by a renewal equation.

Mixing via induction

The strategy of the proof via induction consists: a) to consider a set Y ⊂ X of finite measure satisfying nice properties; in particular, (µ (Y ∩ {ϕ > n})) n is regularly varying, where ϕ is the first return time to Y : ϕ(y) := inf{n ≥ 1 :

f n y ∈ Y }. b) to prove good estimates for R n : v → 1 Y L n 1 Y ∩{ϕ=n} v
, where L is the transfer operator of u → u • f , which is defined by X Lu.v dµ = X u. • f.v dµ. c) to deduce from the estimates of R n and from the renewal equation:

∀n ≥ 1, T n = n j=1 T n-j R j , with T n : v → 1 Y L n (1 Y v)
an estimate on T n of the following form:

T n ∼ µ(Y ∩ f -n Y )E µ [•1 Y ],
on some Banach space B of functions w :

X → C. d) to deduce: X v.T n u dµ = X v.L n u dµ = X u.v • f n dµ, for every u, v : X → C supported in Y such that v ∈ B and w → Y u.w dµ is in B ′ .
e) to go to the general situation (functions with full support in X) by considering the sets

A k := f -k Y \ k-1 ℓ=0 f -ℓ Y .
2. Z d -extensions: local limit theorem and mixing

We consider from now on the special case where (X, f, µ) is a Z d -extension of a probability preserving dynamical system ( X, f , μ) by ψ :

X → Z d , that is X = X × Z d , f (x, k) = ( f (x), k + ψ(x)) and µ = μ ⊗ λ d , where λ d is the counting measure on Z d . Observe that f n (x, k) = ( f n (x), k + S n (x)), with S n := n-1 k=0 ψ • f k . We set Y := X × {0}.
The crucial idea in this context is to consider a situation where (S n /a n ) n converges in distribution to a stable random variable B and the strategy is then: a) to prove a local limit theorem (LLT):

∀ℓ ∈ Z d , μ(S n = ℓ) = (Φ B (ℓ/a n ) + o(1))a -d n ,
as n → +∞ , where Φ B is the density function of B, and more precisely a "spectral LLT":

Q n,ℓ := P n 1 {Sn=ℓ} • = Φ B (ℓ/a n )E μ[•] + ε n,ℓ a d n , with lim n→+∞ sup ℓ ε n,ℓ = 0 , (2) 
on some Banach space (B, • ) of functions w : X → C, where P is the transfer operator of f (see [START_REF] Pène | Potential kernel, hitting probabilities and distributional asymptotics[END_REF]Lem. 2.6] for a proof of such a result in a general context).

The following identity makes a relation between Q n,0 and the operator T n presented in the previous section:

(T n v)(x, ℓ) = (Q n,0 (v(•, 0)))(x)1 ℓ=0 .
Note that the LLT is already a decorrelation result since: [START_REF] Bunimovich | Statistical properties of Lorentz gas with periodic configuration of scatterers[END_REF] and the definition of P to deduce a mixing result:

X 1 Y .1 Y • f n dµ = µ Y ∩ f -n Y = μ(S n = 0). b) to use
X 1 X×{k} u.(v1 X ×{ℓ} ) • f n dµ = X u(x, k).v( f n (x), ℓ)1 {Sn(x)=ℓ-k} dμ(x) = X v(•, ℓ)P n u(•, k).1 {Sn (•)=ℓ-k} dμ(x) = Φ B (0)a -d n X×{k} u dµ X×{ℓ} v dµ + o(a -d n ) , (3) 
valid for every k, ℓ ∈ Z d and for every u, v such that

u ℓ := u(•, ℓ) ∈ B and such that w → X v k (y)w(y) dμ(y) is in B ′ , with v k (y) := v(y, k), since Φ B is continuous. c) to generalize this as follows: X u.v • f n dµ = ℓ,m X 1 X×{k} u ℓ .(v m 1 X×{m} ) • f n dµ = a -d n   o(1) + k,m Φ B k -m a n X×{ℓ} u dµ X×{m} v dµ   = Φ B (0)a -d n X u dµ X v dµ + o(a -d n ) ,
which holds true as soon as

ℓ u ℓ B < ∞ and ℓ E μ[v ℓ •] B ′ < ∞, since Φ B is
continuous and bounded, where we used again the notations u ℓ := u(•, ℓ) and v m := v(•, m). d) to go from (2) to the study of μ(ϕ > n), where ϕ(x) is the first return time from (x, 0) to Y = X × {0}, using the classical following renewal equation [START_REF] Dvoretzky | Some problems on random walk in space[END_REF]:

1 = n j=0 1 {ϕ>n-j} • f j .1 {S j =0} on X
where j plays the role of the last visit time to Y before time n. Hence, applying P n , this leads to:

1 = n j=0 U n-j Q j,0 , with U k := P k 1 {ϕ>k} • .
This kind of properties has been used in [START_REF] Pène | Asymptotic of the number of obstacles visited by the planar Lorentz process[END_REF] to study the asymptotic behaviour of the number of different obstacles visited by the Lorentz process up to time n, in [START_REF] Pène | Back to balls in billiards[END_REF] to study some quantitative recurrence properties.

Example: Lorentz process

Consider a Z 2 -periodic configuration of obstacles in the plane: O i + ℓ, i = 1, ..., I, ℓ ∈ Z 2 , with I ≥ 2. We assume that the O i are convex open sets, with C 3 -smooth boundary with non null curvature. We assume that the closures of any couple of distinct obstacles O i + ℓ and O j + m are disjoint. The Lorentz process describes the displacement in

Q := R 2 \ ℓ∈Z 2 I i=1 O i,ℓ
of a point particle moving with unit speed and with elastic reflection off the obstacles (i.e. reflected angle=incident angle). We assume that the horizon is finite, i.e. that each trajectory meets at least one obstacle.

We consider the dynamical system (M, T, ν) corresponding to the collision times, where M is the set of reflected vectors, where T : M → M is the transformation mapping a reflected vector to the reflected vector at the next collision time and where ν is the invariant measure absolutely continuous with respect to the Lebesgue measure. For every ℓ ∈ Z 2 , we write C ℓ for the set of reflected vectors which are based on I i=1 (O i + ℓ). Up to a renormalization of ν, we assume that ν(C 0 ) = 1. We call C ℓ the ℓ-cell.

It is well known that (M, T, ν) can be represented as the Z 2 -extension (X, f, µ) of ( X, f , μ) by ψ : X → Z 2 , where X = C 0 , μ = ν(C 0 ∩ •), where f and ψ are such that T (q, v) = (q ′ + ψ(q, v), v ′ ) if (q ′ , v ′ ) = f (q, v) ( f corresponds to T quotiented by the equality of positions modulo Z 2 ). Note that S n (x) := n-1 k=0 ψ • f k (x) is the label of the cell in which the particle starting from configuration x ∈ C 0 is at the n-th reflection time.

The dynamical system ( X, f , μ) is the Sinai billiard [START_REF] Sinai | Dynamical systems with elastic reflections[END_REF][START_REF] Chernov | Chaotic billiards[END_REF]. Central limit theorems in this context have been established in [START_REF] Bunimovich | Statistical properties of Lorentz gas with periodic configuration of scatterers[END_REF][START_REF] Bunimovich | Statistical properties of twodimensional hyperbolic billiards[END_REF][START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF]. In particular (S n / √ n) n converges in distribution, with respect to μ to a centered gaussian random variable B with non-degenerate variance matrix Σ, so Φ B (x) = e -Σx,x 2 /(2π √ det Σ). Let R 0 ⊂ X be the set of reflected vectors that are tangent to I i=1 ∂O i . The billiard map f defines a C

1 -diffeomorphism from X \ (R 0 ∪ f -1 R 0 ) onto X \ (R 0 ∪ f R 0 ). For any integers k ≤ k ′ , we set ξ k ′ k for the partition of X \ k ′ j=k f -j R 0 in connected components and ξ ∞ k := j≥k ξ j k . For any ū : X → R and -∞ < k ≤ k ′ ≤ ∞,
we define the following local continuity modulus:

ω k ′ k (ū, x) := sup ȳ∈ξ k ′ k (x) |ū(x) -ū(ȳ)|.
The following result is established thanks to the use of the towers constructed by Young in [START_REF] Young | Statistical properties of dynamical systems with some hyperbolicity[END_REF]. Proposition 3.1. Let p > 1. There exists c > 0 such that, for any k ≥ 1, for any measurable functions ū, v : X → R such that ū is ξ k -k -measurable and v is ξ ∞ -k -measurable, for every n > 2k and for every ℓ ∈ Z 2 ,

E μ ū 1 {Sn=ℓ} v • f k - Φ B ℓ √ n-2k n -2k X ū dμ X v dμ ≤ ck v p ū ∞ (n -2k) 3 2 
.

Proof. The proof of this result is exactly the same as the proof of [14, prop 4.1], by replacing 1 A by ū, 1 B by v, 1 Â and 1 B by respectively û and v such that: û

• π = ū • T k • π and v • π = v • T k • π. With the notations of [14], we have sup t∈[-π,π] 2 P k t P k û ≤ c 0 u ∞ . So that μ(B) 1/p of [14, p. 865] is replaced by ū ∞ v p .
For any u, v : M → R and k ∈ Z 2 , we set as previously:

u k := u(•, k) and v k := v(•, k). Theorem 3.2. Let p > 1 and u, v : X → R measurable such that ℓ∈Z 2 ( u ℓ ∞ + v ℓ p ) < ∞ , (4) 
∀k ≥ 1,

ℓ∈Z 2 ω ∞ -k (v ℓ , •) p < ∞ , (5) 
lim k→+∞ ℓ∈Z 2 ω k -k (u ℓ , •) 1 + ω ∞ -k (v ℓ , •) 1 = 0. ( 6 
)
Then X u.v • f n dµ = Φ B (0) n X u dµ X v dµ + o(n -1 ). (7) 
Proof. It is enough to prove the result for non-negative u, v. We assume from now on that u, v take their values in [0, +∞). Let ℓ ∈ Z 2 and let k be a positive integer. We define u

(k,±) ℓ and v (k,±) ℓ : u (k,-) ℓ (x) := inf ȳ∈ξ k -k (x) u ℓ (ȳ), u (k,+) ℓ (x) := sup ȳ∈ξ k -k (x) u ℓ (ȳ) and v (k,-) ℓ (x) := inf ȳ∈ξ ∞ -k (x) v ℓ (ȳ), v (k,+) ℓ (x) := sup ȳ∈ξ ∞ -k (x) v ℓ (ȳ).
Observe that u

(k,+) ℓ -u (k,-) ℓ ≤ 2ω k -k (u ℓ , •) (8) 
and that v

(k,+) ℓ -v (k,-) ℓ ≤ 2ω ∞ -k (v ℓ , •). (9) 
We then consider u (k,±) , v (k,±) :

X → R such that ∀ℓ ∈ Z 2 , u (k,±) (ℓ, •) ≡ u (k,±) ℓ and v (k,±) (ℓ, •) ≡ v (k,±) ℓ . Note that u (k,-) ≤ u ≤ u (k,+) and v (k,-) ≤ v ≤ v (k,+) (10) 
and so

X u (k,-) .v (k,-) • f n dµ ≤ X u.v • f n dµ ≤ X u (k,+) .v (k,+) • f n dµ . ( 11 
)
We have

X u (k,±) .v (k,±) • f n dµ = ℓ,m∈Z 2 X u (k,±) ℓ 1 {Sn=m-ℓ} v (k,±) m • f n dµ.
Applying Proposition 3.1 to the couples (u

(k,-) ℓ , v (k,-) m
) and (u

(k,+) ℓ , v (k,+) m
), for every ℓ, m ∈ Z 2 , we obtain that

X u (k,±) .v (k,±) • f n dµ - ℓ,m Φ B m-ℓ √ n-2k n -2k X u (k,±) ℓ dμ X v (k,±) m dμ ≤ ≤ ℓ,m∈Z 2 ck v (k,±) m p u (k,±) ℓ ∞ (n -2k) 3 2 
= o(n -1 ), due to (4) and ( 5). Hence

X u (k,±) .v (k,±) •f n dµ = 1 n -2k ℓ,m Φ B m -ℓ √ n -2k X u (k,±) ℓ dμ X v (k,±) m dμ+o(n -1 ).
But Φ B is continuous and bounded by Φ B (0). Hence, due to the Lebesgue dominated convergence theorem, we obtain

X u (k,±) .v (k,±) • f n dµ = Φ B (0) n -2k ℓ,m X u (k,±) ℓ dμ X v (k,±) m dμ + o(n -1 ) = Φ B (0) n X u (k,±) dµ X v (k,±) dµ + o(n -1
).( 12)

Moreover ( 6), ( 8) and ( 9) imply that

lim k→+∞ X |u (k,±) -u| dµ = lim k→+∞ X |v (k,±) -v| dµ = 0.
We conclude by combining this with [START_REF] Melbourne | Operator renewal theory and mixing rates for dynamical systems with infinite measure[END_REF] and [START_REF] Pène | Planar Lorentz process in a random scenery[END_REF].

As a consequence we obtain the mixing for dynamically Lipschitz functions. Let ϑ ∈ (0, 1). We set It is worth noting that, for every η ∈ (0, 1], there exists ϑ > 0 such that every η-Hölder function (both in position-speed) is dynamically Lipschitz continuous with respect to ϑ. 

( u1 C ℓ ∞ + v1 C ℓ ∞ ) < ∞ , (13) 
and

ℓ∈Z 2 (L ϑ (u1 C ℓ ) + L ϑ (v1 C ℓ )) < ∞ . ( 14 
)
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  d ϑ (x, y) := ϑ s(x,y) , where s(x, y) is the maximum of the integers k > 0 such that x and y lie in the same connected component of M \ k j=-k T -j S 0 , where S 0 is the set of vectors of M tangent to ∂Q. The function s(•, •) is called separation time. We set L ϑ (u) := sup x =y |u(x) -u(y)| d ϑ (x, y) for the Lipschitz constant of u with respect to d ϑ .

Corollary 3 . 3 .

 33 Assume that u, v : M → R are bounded uniformly dynamically Hölder (in position and in speed) and that ℓ∈Z 2
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