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Abstract—We develop a random binning scheme for strong
coordination in a network of two nodes separated by a noisy
channel, in which the input and output signals have to be
coordinated with the source and its reconstruction. In the case
of non-causal encoding and decoding, we propose a joint source-
channel coding scheme and develop inner and outer bounds
for the strong coordination region. While the set of achievable
target distributions is the same as for empirical coordination, we
characterize the rate of common randomness required for strong
coordination.

I. INTRODUCTION

The 5G standard envisions direct device-to-device commu-
nication, which is likely to be a key enabler of the Internet
of Things. In this decentralized network of connected objects,
such as wireless sensors, medical and wearable devices, smart
energy meters, home appliances, and self-driving cars, devices
will communicate with each other while sensing or acting on
their environment. It is essential that these devices, considered
as autonomous decision-makers, cooperate and coordinate
their actions.

From an information theory perspective, two different met-
rics have been proposed to measure the level of coordination:
empirical coordination, which requires the joint histogram
of the actions to approach a target distribution, and strong
coordination, which requires the total variation distance of the
distribution of sequences of actions to converge to an i.i.d. tar-
get distribution [1]. While empirical coordination investigates
the average behavior over time, strong coordination is to be
preferred from a security standpoint, since it guarantees that
the sequence of actions will be unpredictable to an outside
observer. This is a consequence of the fact that statistical tests
will produce identically distributed outcomes for distributions
that are close in total variation.

Strong coordination with error free links has been studied
in [1] and the case in which only the source and the re-
construction have to be coordinated has been considered in
[2]. However, in a realistic scenario where the communication
links are noisy, the signals that are transmitted and received
over the physical channel become a part of what can be ob-
served. One may therefore wish to coordinate both behaviors
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and communication [3]. In this setting, strong coordination is
desirable since the synthesized sequences would appear to be
i.i.d. even from the perspective of a malicious eavesdropper
who can observe the signals sent over the communication
channel [4].

In this paper, we address this problem in a two-node
network comprised of an information source and a noisy
channel, in which both nodes have access to a common source
of randomness. An inner bound for the empirical coordination
region has already been established in [3] and we focus here
on the problem of achieving strong coordination for the same
setting. This scenario presents two conflicting goals: the en-
coder needs to convey a message to the decoder to coordinate
the reconstructed version of the source, while simultaneously
coordinating the signals coding the message. We derive an
inner and an outer bound for the strong coordination region
by developing a joint source-channel scheme in which an
auxiliary codebook allows us to satisfy both goals. Since
the two bounds do not match, the optimality of our scheme
remains an open question. While the set of achievable target
distributions is the same as for empirical coordination, we
show that a positive rate of common randomness is required
for strong coordination.

The remainder of the paper is organized as follows.
Section II introduces the notation, Section III describes
the model under investigation and states the main result.
Section IV proves an inner bound by proposing a random
binning scheme and a random coding scheme that have the
same statistics. Finally, Section V proves an outer bound.

II. PRELIMINARIES

We define the integer interval [a, b] as the set of integers
between a and b. Given a random vector Xn := (X1, . . . , Xn),
we note Xi the first i components of Xn. We note V(·, ·) the
variational distance between two distributions.

We now recall some useful results that we use later.
Lemma 1 (Source coding with side information at the

decoder): Consider an encoder that observes a sequence Xn

and transmits a message M ∈ [1, 2nR] to a decoder that has
access to side information Y n, where (Xn, Y n) is a discrete
memoryless source. If the encoding rate R > H(X|Y ), the
decoder can recover Xn from M and Y n with arbitrarily small
error probability.



Lemma 1 is a consequence of the Slepian-Wolf Theorem
[5, Theorem 10.1].

Lemma 2: Given a discrete memoryless source (An, Bn)
and K = ϕ(Bn) a binning of Bn with 2nR values chosen
independently and uniformly at random, if R < H(B|A), then
we have

lim
n→∞

Eϕ [V (Pϕ
AnK , QKPAn)] = 0,

where Eϕ denotes the average over the random binnings, Pϕ

is the distribution corrisponding to a fixed realization of the
binning and QK is the uniform distribution in [1, 2nR].

Lemma 2 is a consequence of [6, Lemma 3.1] and [7,
Theorem 1].

Remark 1: We have,

V(PA, P̂A) ≤ V(PAB , P̂AB), (1)

V(PA, P̂A) = V(PAPB|A, P̂APB|A), (2)

where (1) and (2) have been proven in [8, Lemma 16] and [8,
Lemma 17] respectively.

III. SYSTEM MODEL AND MAIN RESULT

Figure 1. Coordination of signals and actions for a two-node network with
a noisy channel.

Consider the model depicted in Figure 1 in which two agents,
the encoder and the decoder, have access to a shared source of
uniform randomness C ∈ [1, 2nR0 ]. The encoder observes an
i.i.d. source Sn ∈ Sn with distribution P̄S . The encoder then
selects a signal Xn = fn(Sn, C), fn : Sn × [1, 2nR0 ]→ Xn.
The signal Xn is transmitted over a discrete memoryless
channel parametrized by the conditional distribution P̄Y |X .
Upon observing Y n and C, the stochastic decoder selects an
action Ŝn = gn(Y n, C), gn : Yn× [1, 2nR0 ]→ Ŝn. For block
length n, the pair (fn, gn) constitutes a code. We recall the
notions of achievability and the strong coordination region [8].

Definition 1: A pair (P̄SXY Ŝ , R0) is achievable if there
exists a sequence (fn, gn) of encoders-decoders with rate of
common randomness R0, such that the induced joint distri-
bution PSnXnY nŜn is nearly indistinguishable from the i.i.d.
distribution P̄SXY Ŝ , in total variational distance:

lim
n→∞

V
(
PSnXnY nŜn , P̄

⊗n
SXY Ŝ

)
= 0.

The strong coordination region R is the set of achievable pairs
(P̄SXY Ŝ , R0).

In the case of non-causal encoder and decoder, the problem
of characterizing the strong coordination region is still open,
but we establish the following inner and outer bounds.

Theorem 1: Let P̄S and P̄Y |X be the given source and

channel parameters, then R1 ⊆ R ⊆ R2 where:

R1 :=



(P̄SXY Ŝ , R0) :
P̄SXY Ŝ = P̄SP̄X|SP̄Y |X P̄Ŝ|SXY

∃ U taking values in U
P̄SXY UŜ = P̄SP̄U |SP̄X|USP̄Y |X P̄Ŝ|UY

I(U ;S) < I(U ;Y )

R0 > I(U ;SXŜ|Y )

|U| ≤ |S||X ||Y||Ŝ|+ 1


(3)

R2 :=



(P̄SXY Ŝ , R0) :
P̄SXY Ŝ = P̄SP̄X|SP̄Y |X P̄Ŝ|SXY

∃ U taking values in U
P̄SXY UŜ = P̄SP̄U |SP̄X|USP̄Y |X P̄Ŝ|UY

I(U ;S) ≤ I(X;Y )

R0 ≥ I(U ;SXŜ|Y )

|U| ≤ |S||X ||Y||Ŝ|+ 1


. (4)

Remark 2: Even for empirical coordination, the problem
of characterizing the coordination region is still open [3].
The information constraint I(U ;S) ≤ I(U ;Y ) for empirical
coordination [3, Theorem 1] is very similar to ours, as well
as the decomposition of the joint probability distribution
P̄SP̄U |SP̄X|USP̄Y |X P̄Ŝ|UY . The main difference is that strong
coordination requires a positive rate of common randomness
R0 ≥ I(U ;SXŜ|Y ).

Remark 3: Our inner bound is a generalization of the one
in [2] and the proof follows the same strategy inspired by [7].

IV. PROOF OF THEOREM 1: INNER BOUND

First, we define two random schemes each of which induces
a joint distribution.
A. Random binning scheme

Assume that the sequences Sn , Xn, Un,
Y n and Ŝn are jointly i.i.d. with distribution
P̄Sn P̄Un|Sn P̄Xn|UnSn P̄Y n|Xn P̄Ŝn|UnY n . We consider
two uniform random binnings for Un:
• first binning C = ϕ1(Un), where ϕ1 : Un → [1, 2nR0 ]

maps each sequence of Un uniformly and independently
to the set [1, 2nR0 ];

• second binning F = ϕ2(Un), ϕ2 : Un → [1, 2nR̃].

Note that if R̃ + R0 > H(U |Y ), by Lemma 1, it is possible
to recover Un from Y n and (C,F ) with high probability
using a Slepian-Wolf decoder via the conditional distribution

Figure 2. The square and the circle represent the outputs of the first binning
C and the dot and the cross the outputs of the second binning F . Given y
and the realizations of C and F , it is possible to recover u.



PSW
Ûn|CFY n

as depicted in Figure 2. This defines a joint
distribution:

P̄SnUnÛnXnY nCFŜn =

P̄SnP̄Un|Sn P̄Xn|UnSn P̄C|Un P̄F |Un P̄Y n|XnP̄Ŝn|UnY nP
SW
Ûn|CFY n.

In particular, P̄Un|CFSn is well defined.
B. Random coding scheme

In this section we follow the approach in [7, Section IV.E]
and [2]. Suppose that the encoder and decoder have access not
only to common randomness C but also to extra randomness
F , where C is generated uniformly at random in [1, 2nR0 ] with
distribution QC and F is generated uniformly at random in
[1, 2nR̃] with distribution QF independently of C. Then the
encoder generates Un according to P̄Un|CFSn defined in Sec-
tion IV-A and Xn according to P̄Xn|SnUn . The encoder sends
Xn through the channel. The decoder gets Y n and (C,F ) and
reconstructs Un via the conditional distribution PSW

Ûn|CFY n
.

The decoder then generates Ŝn letter by letter according to
the distribution PŜn|ÛnY n (more precisely P̄Ŝn|UnY n(ŝ|û,y),
where û is the output of the Slepian-Wolf decoder). This
defines a joint distribution:

PSnUnÛnXnY nCFŜn =

QCQFPSn P̄Un|CFSn P̄Xn|UnSnP̄Y n|XnPSW
Ûn|CFY nPŜn|ÛnY n .

We want to show that the distribution P̄ is achievable for
strong coordination:

lim
n→∞

V
(
P̄SnXnUnÛnY nŜn , PSnXnUnÛnY nŜn

)
= 0. (5)

We prove that the random coding scheme possesses all the
properties of the initial source coding scheme stated in Section
IV-A. Note that
V(P̄SnUnÛnXnY nCF , PSnUnÛnXnY nCF ) (6)

= V(P̄Sn P̄Un|Sn P̄Xn|UnSn P̄C|Un P̄F |Un P̄Y n|XnPSW
Ûn|CFY n ,

QCQFPSn P̄Un|CFSn P̄Xn|UnSn P̄Y n|XnPSW
Ûn|CFY n)

(a)
=V(P̄Sn P̄Un|Sn P̄C|Un P̄F |Un , QCQFPSn P̄Un|CFSn)

(b)
=V(P̄SnCF , PSnQCQF )

where (a) and (b) come from (2). Then if R0 +R̃ < H(U |S),
we can apply Lemma 2 where Bn = Un, K = (C,F ), ϕ =
(ϕ1, ϕ2), An = Sn and find that

lim
n→∞

Eϕ

[
V
(
P̄ϕ
SnCF , QCQF P̄Sn

)]
= 0.

Therefore there exists a fixed binning ϕ′ such that, if we denote
with P̄ϕ′ and Pϕ′ the distributions P̄ and P with respect to
the choice of a binning ϕ′, we have

lim
n→∞

V
(
P̄ϕ′

SnCF , PSnQCQF

)
= 0

which by (6) implies

lim
n→∞

V(P̄ϕ′

SnUnÛnXnY nCF
, Pϕ′

SnUnÛnXnY nCF
) = 0. (7)

From now on, we will omit ϕ′ to simplify the notation.

Now we would like to show that we have strong coordina-
tion for Ŝn as well, but in the second scheme Ŝn is generated
using Ûn and not Un as in the first scheme. Because of Lemma
1, the inequality R̃+R0 > H(U |Y ) implies that Ûn is equal
to Un with high probability and we will use this fact to show
that the distributions are close in total variational distance.
First, we need to establish a technical lemma, whose proof
can be found in the Appendix.

Lemma 3: Let V n and V̂ n such that P{V̂ n 6= V n} → 0
when n→∞. Then for any random variable Wn and for any
joint distribution PWnV nV̂ n we have:

lim
n→∞

V(PWnV nV̂ n , PWnV n1V̂ n|V n) = 0

where 1V̂ n|V n(v|v′) =

{
1 if v = v′

0 if v 6= v′
.

Since Ûn is equal to Un with high probability, we can apply
Lemma 3 and if we denote Zn := SnXnCF we find:

lim
n→∞

V(P̄ZnY nUnÛn , P̄ZnY nUn1Ûn|Un) = 0, (8)

lim
n→∞

V(PZnY nUnÛn , PZnY nUn1Ûn|Un) = 0. (9)

Then using the triangle inequality, we find that
V(P̄ZnY nUnÛnŜn , PZnY nUnÛnŜn)

= V(P̄ZnY nUnÛn P̄Ŝn|UnY n , PZnY nUnÛnPŜn|ÛnY n) (10)

≤ V(P̄ZnY nUnÛn P̄Ŝn|UnY n , P̄ZnY nUn1Ûn|Un P̄Ŝn|UnY n)

+V(P̄ZnY nUn1Ûn|UnP̄Ŝn|UnY n ,PZnY nUn1Ûn|UnPŜn|ÛnY n)

+V(PZnY nUn1Ûn|UnPŜn|ÛnY n , PZnY nUnÛnPŜn|ÛnY n).

The first and the third term go to zero by applying (2) to (8)
and (9) respectively. Now observe that 1Ûn|Un P̄Ŝn|UnY n =
1Ûn|UnPŜn|ÛnY n by definition of PŜn|ÛnY n . Then by using
(2) again the second term is equal to V

(
P̄ZnY nUn , PZnY nUn

)
that goes to zero by (7) and (1). Hence we have

lim
n→∞

V(P̄ZnUnÛnY nŜn , PZnUnÛnY nŜn) = 0. (11)

Then by using (1) we have proved (5).

C. Remove the extra randomness F
Even though the extra common randomness F is required

to coordinate (Sn, Xn, Y n, Ŝn, Un), we will show that we
do not need it in order to coordinate only (Sn, Xn, Y n, Ŝn).
Observe that by applying (1), equation (11) implies that

lim
n→∞

V(P̄SnXnY nŜnF , PSnXnY nŜnF ) = 0. (12)

As in [7], we would like to reduce the amount of common
randomness by having the two nodes to agree on an in-
stance F = f . To do so, we apply Lemma 2 again where
Bn = Un, K = F , ϕ = ϕ′′2 and An = SnXnY nŜn. If
R̃ < H(U |SXY Ŝ), there exists a fixed binning such that

lim
n→∞

V
(
P̄SnXnY nŜnF , QF P̄SnXnY nŜn

)
= 0. (13)

Remark 4: Note that in Section IV-B we had already chosen
a specific binning ϕ′2. In the Appendix we prove that there
exists a binning which works for both conditions.



Because of (12), (13) implies

lim
n→∞

V
(
PSnXnY nŜnF , QF P̄SnXnY nŜn

)
= 0. (14)

Hence, we can fix f ∈ F such that (Sn, Xn, Y n, Ŝn) is almost
independent of F according to P . To conclude, we need the
following result proved in [7, Lemma 4].

Lemma 4: If limn→∞V
(
PY nPXn|Y n , P ′Y nP ′Xn|Y n

)
= 0

then there exists y ∈ Y n such that

lim
n→∞

V
(
PXn|Y n=y, P

′
Xn|Y n=y

)
= 0.

If f ∈ F is fixed, the distribution PSnXnY nŜn changes to
PSnXnY nŜn|F=f and by Lemma 4 we have

lim
n→∞

V(P̄SnXnY nŜn|F=f , PSnXnY nŜn|F=f ) = 0.

Since P̄SnXnY nŜn|F=f is close to P̄SnXnY nŜn because of
(13), we have

lim
n→∞

V(P̄SnXnY nŜn , PSnXnY nŜn) = 0.

D. Rate constraints

We have imposed the following rate constraints:

H(U |Y ) < R̃+R0 < H(U |S)

R̃ < H(U |SXY Ŝ).

Therefore we obtain:

R0 > H(U |Y )−H(U |SXY Ŝ) = I(U ;SXŜ|Y )

I(U ;S) < I(U ;Y ).

V. PROOF OF THEOREM 1: OUTER BOUND

Consider a code (fn, gn) that induces a distribution
PSnXnY nŜn that is ε-close in L1 distance to the i.i.d. dis-
tribution P̄⊗n

SXY Ŝ
. Let the random variable T be uniformly

distributed over the set [1, n] and independent of the induced
joint distribution PSnXnY nŜnC . The variable T will serve as
a random time index. The variable ST is independent of T
because Sn is an i.i.d. source sequence [1]. Then we have

0
(a)

≤ I(Xn;Y n)− I(C, Sn;Y n)

≤ I(C,Xn;Y n)− I(C, Sn;Y n)

= I(Xn;Y n|C)− I(Sn;Y n|C) + I(C;Y n)− I(C;Y n)

= H(Y n|C)−H(Y n|XnC) +H(Sn|Y nC)−H(Sn|C)

(b)

≤
n∑

t=1

(
H(Yt)−H(Yt|Xt)+H(St|St−1YtY∼tC)−H(St)

)
(c)

≤
n∑

t=1

(H(Yt)−H(Yt|Xt) +H(St|Y∼tC)−H(St))

(d)

≤ nH(YT )−nH(YT |XT , T )+nH(ST |Y∼TCT )−nH(ST |T )

(e)
= nH(YT )− nH(YT |XT ) + nH(ST |Y∼TCT )− nH(ST )

= nI(XT ;YT )− nI(ST ;Y∼T , C, T )

where (a) comes from the Markov chain Y n−Xn− (C, Sn)
and (b) comes from the following facts: conditioning doesn’t
increase entropy, P̄Y |X is a memoryless channel, the chain
rule for the conditional entropy and Sn is an i.i.d. source
independent of C. Recall that we note Y∼t the vector (Yi)i 6=t,
i ∈ [1, n], where the component Yt has been removed. The
inequalities (c) and (d) come from the fact that H(YT |T ) is
smaller or equal to H(YT ) since conditioning doesn’t increase
entropy and (e) from the memoryless channel P̄Y |X and the
i.i.d. source P̄S .

For the second part of the converse, we need to establish a
technical result first. The proof is in the Appendix.

Lemma 5: Let PXn such that V
(
PXn , P̄⊗nX

)
≤ ε, then we

have
n∑

t=1

I(Xt;X∼t) ≤ nf(ε)

where f(ε) goes to zero as ε does.
Then we have

nR0 ≥ H(C) ≥ H(C|Y n) ≥ I(SnXnŜn;C|Y n)

=

n∑
t=1

I(StXtŜt;C|St−1Xt−1Ŝt−1Y∼tYt)

=

n∑
t=1

I(StXtŜt;CS
t−1Xt−1Ŝt−1Y∼t|Yt)

−
n∑

t=1

I(StXtŜt;S
t−1Xt−1Ŝt−1Y∼t|Yt)

≥
n∑

t=1

I(StXtŜt;CY∼t|Yt)

−
n∑

t=1

I(StXtŜt;S
t−1Xt−1Ŝt−1Y∼t|Yt)

(a)

≥
n∑

t=1

I(StXtŜt;CY∼t|Yt)− nf(ε)

=nI(STXT ŜT ;CY∼T |YTT )− nf(ε)

=nI(STXT ŜT ;CY∼TT |YT )− nI(ST , XT , ŜT ;T |YT )−nf(ε)

≥nI(STXT ŜT ;CY∼TT |YT )− nI(ST , XT , ŜT , YT ;T )− nf(ε)

(b)

≥ nI(STXT ŜT ;CY∼TT |YT )− 2nf(ε)

where (a) follows from the following chain of inequalities
n∑

t=1

I(StXtŜt;S
t−1Xt−1Ŝt−1Y∼t|Yt)

≤
n∑

t=1

I(StXtŜt;S∼tX∼tŜ∼tY∼t|Yt)

≤
n∑

t=1

I(StXtŜtYt;S∼tX∼tŜ∼tY∼t) ≤ nf(ε)

and f(ε) is defined in Lemma 5. Finally, the proof of (b)
comes from [9, Lemma VI.3].
We identify the auxiliary random variables Ut with (C, Y∼t)



for each t ∈ [1, n] and U with (C, Y∼T , T ). For each
t ∈ [1, n] the following two Markov chains hold: (St, Xt) −
(C, Y∼t, Yt)− Ŝt and Yt −Xt − (C, Y∼t, St). Since U = Ut

when T = t, we also have (S,X) − (U, Y ) − Ŝ and
Y −X−(U, S). The cardinality bound comes from [9, Lemma
VI.1].

APPENDIX

A. Proof of Lemma 3

We denote the event that V̂ n is equal to V n with A :=
{V n = V̂ n}. We know that P{A} tends to 1. We can write
the joint distribution PWnV nV̂ n as

P {A}PWnV nV̂ n|A + P {Ac}PWnV nV̂ n|Ac .

Hence, we have

V(PWnV nV̂ n , PWnV n1V̂ n|V n) ≤ P {Ac} ‖PWnV nV̂ n|Ac‖
L1

+ ‖P {A}PWnV nV̂ n|A − PWnV n1V̂ n|V n‖
L1

where the first term is equal to (1− P {A})PWnV n1V̂ n|V n

and goes to 0 since P {A} tends to 1 and the second term
goes to 0 since P {Ac} does.
B. Proof of Remark 4

We want to prove that there exists a binning which works
for both the conditions in Section IV-B and Section IV-C. If we
denote with Eϕ1ϕ2

and Eϕ2
the expected value with respect to

the random binnings, for all ε, there exists n̄ such that ∀n ≥ n̄

Eϕ1ϕ2

[
V
(
P̄ϕ1ϕ2

SnFC , QFQC P̄Sn

)]
<
ε

2

Eϕ2

[
V
(
P̄ϕ2

SnXnY nŜnF
, QF P̄SnXnY nŜn

)]
<
ε

2

which implies by Markov’s inequality

Pϕ1ϕ2

{
V
(
P̄ϕ1ϕ2

SnFC , QFQC P̄Sn

)
< ε
}
>

1

2
(15)

Pϕ2

{
V
(
P̄ϕ2

SnXnY nŜnF
, QF P̄SnXnY nŜn

)
< ε
}
>

1

2
.

In Section IV-B and IV-C we have chosen the binnings
(ϕ′1, ϕ

′
2) and ϕ′′2 respectively such that

lim
n→∞

V
(
P̄

ϕ′1ϕ
′
2

SnFC , QFQC P̄Sn

)
= 0

lim
n→∞

V
(
P̄

ϕ′′2
SnXnY nŜnF

, QF P̄SnXnY nŜn

)
= 0.

It follows from (15) that the intersection of the two sets is
non-empty, therefore there exists a binning ϕ∗2 that satisfies
both conditions.
C. Proof of Lemma 5

The following result has already been proved in [10, Lemma
2.7].

Lemma 6: Let P and Q two distributions on X such that
V(P,Q) = ε and ε ≤ 1/2, then

|H(P )−H(Q)| ≤ ε log
|X |
ε
.

We also need this lemma proved in [7, Lemma 3.2’].

Lemma 7: If V(PXPY |X , QXQY |X) ≤ ε then
P{x ∈ X |V(PY |X=x, QY |X=x) ≤

√
ε} ≥ 1− 2

√
ε.

Now, consider the set

B := {x ∈ Xn−1|V(PXt|X∼t=x, P̄X) ≤ ε}.

By Lemma 7, P{B} ≥ 1− 2
√
ε. Observe that

H(X)−H(Xt|X∼t)

= H(X)−
∑

x∈Xn−1

PX∼t
(x)H(Xt|X∼t = x)

≤
∑

x∈Xn−1

(PX∼t
(x)H(X)− PX∼t

(x)H(Xt|X∼t = x))

=
∑
x∈B

(PX∼t
(x)H(X)− PX∼t

(x)|H(Xt|X∼t = x))

+
∑
x∈Bc

(PX∼t
(x)H(X)− PX∼t

(x)|H(Xt|X∼t = x)) .

Hence by Lemma 6

|H(Xt|X∼t = x)−H(X)| ≤ ε log
|X |
ε
.

Let δ := ε log |X |ε , then the first term is bounded by∑
x∈B

PX∼t
(x)δ ≤ δ,

while the second term is smaller than

P{Bc} (H(Xt) +H(X)) ≤ 2
√
ε (2H(X) + δ) .

Again, by Lemma 6, we have

|H(Xt)−H(X)| ≤ δ.

Finally, I(Xt;X∼t) = H(Xt)−H(X)+H(X)−H(Xt|X∼t)
is smaller than f(ε) = 2

√
ε(2H(X) + δ) + 2δ.
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