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In this paper, we develop a numerical approach based on Chaos expansions to analyze the sensitivity and the propagation of epistemic uncertainty through a queueing systems with breakdowns. Here, the quantity of interest is the stationary distribution of the model, which is a function of uncertain parameters. Polynomial chaos provide an efficient alternative to more traditional Monte Carlo simulations for modelling the propagation of uncertainty arising from those parameters. Furthermore, Polynomial chaos expansion affords a natural framework for computing Sobol' indices. Such indices give reliable information on the relative importance of each uncertain entry parameters. Numerical results show the benefit of using Polynomial Chaos over standard Monte-Carlo simulations, when considering statistical moments and Sobol' indices as output quantities.

Introduction

Queueing systems with breakdowns are widely used to model problems occuring in computer, manufacturing systems, and communication networks. Typically, in queueing models the performances measurements are assessed for deterministic parameters values. However, in practice, the exact values of these parameters are not well known (uncertain), and they are generally estimated empirically from few experimental observations. This lack of precise information propagates uncertainties in the output measure and such study is the purpose of this work.

Since the pioneering work of Thiruvengadam [START_REF] Thiruvengadam | Queuing with breakdowns[END_REF] and Avi-Itzhak and Naor [START_REF] Avi-Itzhak | Some queuing problems with the service station subject to breakdown[END_REF], many authors have been investigating the queueing systems with server breakdowns, see for example [START_REF] Cao | Analysis of an M/G/1 queueing system with repairable service station[END_REF][START_REF] Li | Reliability analysis of M/G/1 queueing systems with server breakdowns and vacations[END_REF][START_REF] Wang | Reliability analysis of the retrial queue with server breakdowns and repairs[END_REF] and references therein. In this paper, we choose a functional approach to the analysis of the dependence of performance measures of certain queues, such as the M/M/1 and the M/G/1 queue with breakdowns, with respect to some input parameters. More specifically, denoting the probability of a server breakdown by θ, we seek to compute the stationary distribution of the queue-length process, denoted by π θ . For a fixed value of θ and a finite waiting capacity, π θ can be found numerically by solving π θ Ξ θ = π θ and π θ = 1, where Ξ θ denotes the transition probability matrix of an embedded jump chain. The definition of the embedded jump chain will depend on the type of the queue: for the M/M/1 queue we use the sample-chain, embedded at appropriate Poisson-times, and for the M/G/1 queue we will embed the chain at departure and repair moments; details will be provided later in the paper. In case of a large or infinite waiting capacity, π θ can be obtained via a Laplace-Stieltjes transform [START_REF] Abate | An introduction to numerical transform inversion and its application to probability models[END_REF]. Solving for π θ involves numerical inversion, which can be computationally demanding [START_REF] Shortle | Waiting-time distribution of M/DN /1 queues through numerical Laplace inversion[END_REF]. The computation of π θ is a challenging problem and a variety of approaches have been proposed in the literature for approximately or indirectly solving the stationary distribution. The predominant approach is to obtain either the generating function of π θ or an analytical expression for π θ containing a Laplace-Stieltjes transform, see, for example, [START_REF] Abate | An introduction to numerical transform inversion and its application to probability models[END_REF][START_REF] Baccelli | Queueing systems with breakdowns in data base modeling[END_REF]. Also numerical solutions by means of the matrix geometric method [START_REF] Neuts | Matrix-geometric solutions in stochastic models[END_REF] are available, see [START_REF] Mitrany | A Many-Server Queue with Service Interruptions[END_REF][START_REF] Neuts | A Markovian queue with N servers subject to breakdowns and repairs[END_REF] for details.

In performance analysis, one is not only interested in evaluating the system for specific set of parameters but also in the sensitivity of the performance with respect to these parameters. For example, in a queueing model with breakdowns, the breakdown probability is a parameter of key interest and, in this paper, we will analyze the dependence of π θ on θ, which is significantly more challenging than evaluating π θ for a fixed θ. Most of the time, it is assumed that these stochastic models are solved for fixed parameters values. However, the parameters of the model are determined through insufficient statistical data (a limited number of observations), leading to uncertainty in the assessment of their values. This parametric uncertainty, induced from the incomplete information of the parameter, is called epistemic uncertainty [START_REF] Limbourg | Dependability Modelling under Uncertainty: An Imprecise Probabilistic Approach[END_REF][START_REF] Mishra | An unobtrusive method for uncertainty propagation in stochastic dependability models[END_REF][START_REF] Winkler | Uncertainty in probabilistic risk assessment[END_REF].

In order to estimate the uncertainty of the parameters in the performance measures of the model, two complementary approaches may be used: uncertainty analysis and sensitivity analysis. Uncertainty analysis consists in modelling input parameters as random variables, see, for example, [START_REF] Cacuci | Sensitivity and uncertainty analysis[END_REF][START_REF] Helton | Treatment of uncertainty in performance assessments for complex systems[END_REF][START_REF] Helton | Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty[END_REF]. Then, the sensitivity analysis aims at determining the relative contribution of individual parameters. Several approaches for the propagation of uncertainty have been developed, including interval arithmetic [START_REF] Moore | Methods and Applications of Interval Analysis[END_REF][START_REF] Rocco | Distribution systems reliability uncertainty evaluation using an interval arithmetic approach[END_REF], Taylor series expansion [START_REF] Dhople | A parametric uncertainty analysis method for Markov reliability and reward models[END_REF][START_REF] Granger | Comparative analysis of uncertainty propagation methods for robust engineering design. Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis[END_REF][START_REF] Ouazine | A functional approximation for retrial queues with two way communication[END_REF][START_REF] Shooman | Probabilistic Reliability: An Engineering Approach[END_REF][START_REF] Takhedmit | A parametric uncertainty analysis method for queues with vacations[END_REF], moments [START_REF] Granger | Comparative analysis of uncertainty propagation methods for robust engineering design. Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis[END_REF][START_REF] Mattia | Comparative analysis of uncertainty propagation methods for robust engineering design[END_REF][START_REF] Shooman | Probabilistic Reliability: An Engineering Approach[END_REF], Monte Carlo analysis [START_REF] Granger | Comparative analysis of uncertainty propagation methods for robust engineering design. Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis[END_REF][START_REF] Mattia | Comparative analysis of uncertainty propagation methods for robust engineering design[END_REF][START_REF] Shooman | Probabilistic Reliability: An Engineering Approach[END_REF] . Overviews of these approaches are available in several reviews [START_REF] Winkler | A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems -II: Statistical Methods[END_REF][START_REF] Helton | Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal[END_REF][START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF][START_REF] Iman | An investigation of uncertainty and sensitivity analysis techniques for computer models[END_REF][START_REF] Ionescu-Bujor | A comparative review of sensitivity and uncertainty analysis of large-scale system, I: Deterministic methods[END_REF][START_REF] Ronen | Uncertainty Analysis[END_REF].

Since the seminal work of Ghanem an Spanos in the 90's [START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF] and later generalized by Xiu and Karniadakis [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF], Polynomial Chaos has spread over a broad scientific community, see [START_REF] Sepahvand | Uncertainty quantification in stochastic systems using polynomial chaos expansion[END_REF], [START_REF] Chauvière | Computational modeling of uncertainty in time-domain electromagnetics[END_REF]. Then, due to the specific form of these polynomials, it quickly became apparent that this representation was suitable to compute Sobol' indices [START_REF] Sudret | Global sensitivity analysis using polynomial Chaos expansion[END_REF]. To the best of our knowledge, this is the first atempt to use chaos expansion to investigate the propagation of the epistemic uncertainty through the performance measure of the queueing systems.

The main objective of this work is to develop a numerical procedure to investigate the sensitivity and the propagation of epistemic uncertainty in the input parameters of a queueing systems with unreliable server. As a typical example, a customer arrives at the queueing system according to a Poisson process with rate λ, which we consider as an input parameter of the model. We assume that this parameter is not precisely known and therefore it can be model as a random variable of known probability density function. Clearly, the output measure is a function of this input random variable. The epistemic uncertainty is propagated through a functional relationship of the type Y (ω) = g(λ(ω)) that links the input parameter to the output measures. In this work, special attention is given to the output stationary distribution. From a statistical point of view the quantity of interest may be the moments of the functional stationary distribution. Such quantities can easily be computed from the coefficient of the polynomial Chaos representation of g(λ(ω)). Over the past few years, several techniques have emerged to compute the coefficients of polynomial Chaoses. They can be classified in two main families: intrusives methods and non-intrusive methods [START_REF] Pettersson | Polynomial Chaos methods for hyperbolic partial differential equations[END_REF]. In our context, Y (ω) can be explicitely expressed as a functional relationship and therefore the two approaches are of equal complexity. In this paper, projection method based on the Gauss quadrature rules are used to obtain the chaos coefficients. Then statistical moments and Sobol' sensitivity indices can easily be computed from polynomials chaos expansion.

The paper is organized as follows. The next section, is devoted to restate some basic notions about orthogonal polynomial and Chaos expansion. Then, the Sobol' indices which are an important tool in sensitivity analysis are introduced. Epistemic uncertainty in input parameters of two queueing systems with unreliable server is considered in Section 4. In the first queue, a single input parameter is considered as random. On the other hand, the second queueing system considers four input random variables and a sensitivity analysis is performed. For the two queues, numerical results for the computation of statistical moments are obtained using both chaos expansion and Monte-Carlo simulation. Finally, Section 5 draws some conclusions.

Polynomial Chaos Expansion

Polynomial Chaos expansion shares many elements with power series involving orthogonal polynomials, which are commonly used in the spectral community. This is why the following subsection is devoted to restate some results concerning orthogonal polynomials.

Orthogonal Polynomials: univariate case.

Let V be the real vector space of all polynomials in one variable with real coefficients and let be the positive inner product on V defined as

< u, v >= I u(x)v(x)f (x)dx ∀u, v ∈ V
where f : I ⊂ R → R + is a nonnegative integrable function of x hereinafter referred to as a 'weight function'. The set of polynomials {Ψ n } n≥0 are said to be orthogonal with respect to the weight function f (x), if Ψ n is a polynomials of degree n and

< Ψ n , Ψ m >= I Ψ n (x)Ψ m (x)f (x)dx = h 2 n δ n,m , n, m ∈ N, (2.1) 
where δ n,m is the Kronecker's delta function, and h n are non-zero constants. We recall that, for orthogonal polynomials of degree d = 0, Ψ 0 is always equal to one (Ψ 0 = 1). Furthermore, the system (2.1) is called orthonormal if h n = 1.

The most general way to build such polynomials rely on the three-term recurrence relation

Ψ n+1 (x) = (x -a n )Ψ n (x) -b n Ψ n-1 (x) Ψ 0 (x) = 1, Ψ -1 (x) = 0 (2.2) with          a n = < xΨ n , Ψ n > < Ψ n , Ψ n > , n ∈ N b n = < Ψ n , Ψ n > < Ψ n-1 , Ψ n-1 > , n ∈ N * . ( 2.3) 
(see Gautschi [START_REF] Gautschi | Orthogonal polynomials: computation and approximation[END_REF] for more details). Furthermore, according to Favard's theorem, for a given weight function f , corresponds a unique set of coefficients (a n , b n ) n∈N . From a numerical point of view, the integrals appearing into (2.3) can be evaluated using Fejér quadrature rule, see [START_REF] Rahman | Extended Polynomial Dimensional Decomposition for Arbitrary Probability Distributions[END_REF], for example. Then, taking an orthogonal polynomial basis of degree n, {Ψ 0 , Ψ 1 , . . . , Ψ n }, any sufficiently regular function u : I ⊂ R → R may be represented by its projection Π n u on such basis, i.e.

Π n u(x) = n i=0 u i Ψ i (x), (2.4) 
where the coefficients of the projection can be computed by evaluating u i = <u,Ψ i > <Ψ i ,Ψ i > . Depending on the regularity of the function u and the choice of the polynomial basis, upper bounds of the truncation error u -Π n u can be derived [START_REF] Gottlieb | Numerical analysis of spectral methods: theory and applications[END_REF]. In particular, when u is C ∞ , one can observe the so-called spectral convergence (the truncation error decays exponentially fast with respect to n). The construction of multivariate orthogonal polynomial basis rely on univariate polynomial basis as will be described in the following section.

Orthogonal Polynomials: multivariate case.

The setting is now the real vector space V d of all polynomials in d variables with real coefficients, together with the positive inner product on V d defined as

< u, v >= I u(x)v(x)f (x)dx ∀u, v ∈ V d , (2.5) 
where, now, f :

I ⊂ R d → R + is a nonnegative integrable function of x =(x 1, x 2, . . . , x d ).
We further assume that the weight function f can be written as the product of univariate weight functions, i.e. f (x 1, x 2, ..,

x d ) = f 1 (x 1 )f 2 (x 2 ) . . . f d (x d )
, where f i :

I i ⊂ R → R + are nonnegative integrable function.
It would be tempting to construct the elements of the multivariate polynomial basis in a similar fashion i.e. as a tensor product of monovariate elements. However, such construction leads to uncomplete basis (all monomials up to a certain degrees are not represented). To ensure that {Ψ 0 (x), Ψ 1 (x), .., Ψ P p d (x)} is a multivariate polynomial basis of degree d with (P p d + 1) elements, the procedure described in the sequel is usually adopted. We first define Ψ α 1 ...α d (x) as the tensor product of the elements of a univariate polynomial basis, of degree n i.e.

Ψ α 1 ...α d (x) = d i=1 Ψ α i (x i ), (2.6) 
where α i ∈ {0, 1, . . . , n}. However, not all the elements of the form (2.6) are retained when constructing the multivariate polynomial basis (that would lead to an uncomplete basis of degree nd with (n + 1) d elements). Instead, for a given degree p, only the elements that satisfy

d i=0 α i ≤ p in (2.6
) are kept and a one to one correspondence between the multi-index (α 0 , . . . , α d ) and the i th element Ψ i (x) of the multivariate basis is set. Proceeding that way, it can be shown that the number of elements of a complete multivariate polynomial basis of degree p is

P p d + 1 = p + d d = (p + d)! d!p! . (2.7)
Similarly to (2.4), any function u : R d → R may be represented by its projection Π p u on such basis, i.e.

Π p u(x) = P p d i=0 u i Ψ i (x). (2.8) 
Having set the basic framework of orthogonal polynomials, we now look into the way they can be efficiently used in the field of probability, where they are usualy refered as Polynomial Chaos (PC).

Polynomial Chaos expansion.

Denote by (Ω, A, P) the probability space, where as usual Ω is the set of all possible outcomes, A is a σ-algebra over Ω, and P is a function A → [0, 1] that gives a probability measure on A. Consider an R d -valued independent random vector

X = (X 1 , • • • , X d ) that describes input uncertainties.
The probability law of X may be defined by the probability density function

f X (x) = d i=1 f i (x i ), (2.9) 
where f i (x i ) is the marginal probability density of X i defined on (Ω i , A i , P i ). Let us now denote L 2 (Ω i , A i , P i ) the space of real random variables with finite second order moments, i.e. such that

E(X 2 i ) = x 2 i f i (x i )dx i < ∞, (2.10) 
where E stands for the mathematical expectation. L 2 (Ω i , A i , P i ) is a Hilbert space which can be provided with a set of complete orthogonal basis {Ψ i j (x)} j≥0 that are consistent with the density of X i . For example, Legendre polynomials are associated with uniform distributions whereas Hermite polynomials are associated with Gaussian distributions. Similarly, L 2 (Ω, A, P) is provided with a set of complete multivariate orthogonal basis {Ψ j (x)} j≥0 which, in turn, is consistent with the density of X. A,P) for i = 1, . . . , ℓ be a mathematical model. For the sake of simplicity, we will consider only one component of this model, denoted by Y , since the same procedure apply identically to all the other components. Since Y is assumed to belong to L 2 (Ω, A, P), it can be represented as [START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF] 

Let Y = (Y 1 , . . . , Y ℓ ) : Ω → R ℓ such that Y i ∈ L 2 (Ω,
Y (X 1 , .., X d ) = z 0 Ψ 0 + ∞ i 1 =1 z i 1 Ψ 1 (X i 1 ) + ∞ i 1 =1 i 1 i 2 =1 z i 1 i 2 Ψ 2 (X i 1 , X i 2 ) + + ∞ i 1 =1 i 1 i 2 =1 i 2 i 3 =1 z i 1 i 2 i 3 Ψ 3 (X i 1 , X i 2 , X i 3 ) + • • • , (2.11) 
which, after some rearranging, can be rewritten in a more convenient way as

Y (X) = ∞ j=0 y j Ψ j (X) (2.12) 
Then, similarly to equation (2.8), this serie is truncated by keeping terms up to a degree p

Y (X) ≈ Π p Y (X) = P p d j=0 y j Ψ j (X). (2.13) Example 2.1. Let X = (X i 1 , X i 2
) be a random normal vector. The functional approximation of the response Y = Y (X) may be approximated with Hermite-Chaos expansions according to (2.13). If we fix the degree of the Chaos expansions to be d = 2, we obtain the series expansion with P 2 2 = 6 terms as follows:

Y ≈ 5 i=0 y i Ψ i (X 1 , X 2 ) (2.14) = y 0 Ψ 00 + y 1 Ψ 10 + y 2 Ψ 01 + y 3 Ψ 11 + y 4 Ψ 20 + y 5 Ψ 02 ,
where

Ψ i 1 i 2 (X 1 , X 2 ) = Ψ i 1 (X 1 )Ψ i 2 (X 2 )
is the product of univariate Hermite polynomials of degree i 1 and i 2 satisfying i 1 +i 2 ≤ 2. Such polynomials can easily be computed according to the recurrence formula (2.2) together with (2.3) with a n = 0 and b n = n. Should we have used Legendre polynomials instead of Hermite's ones, they would be built by taking a n = 0 and b n = n 2 (4n 2 -1) . Table 1 shows the bivariate Hermite polynomial basis constructed from univariate basis {1, X 1 , X 2 1 -1} and {1, X 2 , X 2 2 -1} and the link between the main index j and the multi-index (i 1 , i 2 ). For completness, the same Table also provides bivariate Legendre polynomial basis constructed from univariate basis {1, X 1 , X 2 1 -1/3} and {1, X 2 , X 2 2 -1/3}. [START_REF] Pettersson | Polynomial Chaos methods for hyperbolic partial differential equations[END_REF]. Here we have used the first one which consists in premultiplying (2.13) by Ψ j (X) and by taking the expectation of the resulting product. Using the orthogonality of the PC basis, most of the terms cancel and we end up with

j (i 1 , i 2 ) Ψ i 1 i 2 (Hermite) Ψ i 1 i 2 (Legendre) 0 (0, 0) 1 1 1 (1, 0) X 1 X 1 2 (0, 1) X 2 X 2 3 (1, 1) X 1 X 2 X 1 X 2 4 (2, 0) X 2 1 -1 X 2 1 -1/3 5 (0, 2) X 2 2 -1 X 2 2 -1/3
y j = E(Y (X)Ψ j (X)) = I⊂R d Y (x)Ψ j (x)f (x)dx for j = 0, 1.., P p d .
(2.15)

The above integral can be evaluated through different techniques: going from rough Monte-Carlo sampling simulation to Gaussian quadrature rule or sparse quadrature rules when the dimension d of the input random is high. Here we evaluate such integrals using Gaussian quadrature rules which take the form

I⊂R d Y (x)f (x)dx ≈ Ng 1 i 1 =1 Ng 2 i 2 =1
... 

Ng d i d =1 ω i 1 ω i 2 ..ω i d Y ( x i 1 , x i 2 .., x i d ), (2.16 
y 0 = E(Y (X)), (2.17) 
i.e. the first coefficient of the PC expansion is the expectation of the random response of the system. Similarly, by considering the approximation of

Y 2 Y (X) 2 ≈ P p d i=0 P p d j=0 y i y j Ψ i (X)Ψ j (X), (2.18) 
and taking the expectation on each side, the orthogonality of the PC basis leads to

E(Y (X) 2 ) = P p d i=0 y 2 i , (2.19) 
from which the variance of the random response of the system can easily be deduced. Furthermore, the PC decomposition provides a convenient way of computing Sobol' indices, as explained in the next section.

Sensitivity Analysis

The purpose of sensitivity analysis, is to investigate the influence of each input parameter and their possible interactions onto the output measures. They can be casted into two main families: local analysis based on a local perturbation around an average value and global analysis that consider input parameters as random variables and decompose the output variance into several components. The Sobol' indices belong this last type of family.

Sobol' indices.

As in the previous section, we consider the mathematical model Y = Y (X), where the input parameter X = (X 1 , . . . , X d ) are d independant random variables belonging to L 2 (Ω i , A i , P i ) for i = 1, .., d and similarly, Y is assumed to belong to L 2 (Ω, A, P). In 1993, Sobol [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] proposed an indicator of the influence of the input parameter X i defined by

S i = V (E(Y /X i )) V (Y ) = V i V , (3.1) 
commonly termed 'first order Sobol' indices'.

V i = V (E(Y /X i )) is the conditionnal variance of Y with respect to X i and V = V (Y )
is the total variance of Y . Similarly, sensitivity indices of higher order can be defined by first introducing the following decomposition of the total variance, which is valid for any output Y belonging to L 2 (Ω, A, P)

V = d i 1 =1 V i + 1≤i 1 <i 2 ≤d V i 1 i 2 + 1≤i 1 <i 2 <i 3 ≤d V i 1 i 2 i 3 + • • • + V i 1 ...i d , (3.2) 
where

V i 1 = V (E(Y /X i 1 )) V i 1 i 2 = V (E(Y /X i 1 , X i 2 )) -V i 1 -V i 2 V i 1 i 2 i 3 = V (E(Y /X i 1 , X i 2 , X i 3 )) -V i 1 i 2 -V i 1 i 3 -V i 2 i 3 -V i 1 -V i 2 -V i 3 • • • (3.3) V i 1 ...i d = V - d i=1 V i - 1≤i 1 <i 2 ≤d V i 1 i 2 -• • • - 1≤i 1 <i 2 ...<i d-1 ≤d V i 1 ...i d-1
Then, Sobol' indices of order k are given by

S i 1 ...i k = V i 1 ...i k V . (3.4) 
Although Sobol' indices could be computed by estimating integrals apearing into equations (3.3), such a procedure would be both computationaly expensive and hardly tractable. Instead, computing those indices from the PC representation of the random output Y turns out to be an efficient alternative and has been the method of choice for many years since the seminal work of Sudret [START_REF] Sudret | Global sensitivity analysis using polynomial Chaos expansion[END_REF]. For that, we define by

I i 1 ,i 2 ,...,is (s ≤ d) the set of d-dimensional vectors α = (α 1 , . . . , α d )
with α = 0 and 0 ≤ α 1 ≤ . . . ≤ α d ≤ d that selects elements of the PC basis Ψ α 1 ...α d defined by (2.6) containing solely the variables X i 1 , X i 2 , . . . , X is . This way, the multi-indices defined by I i will select elements of the PC basis depending only on the variable X i . Similarly, I i,j will select elements of the PC basis that depend on X i and X j , to the exclusion of any other variable. With this notation, Sobol's indices of order k are simply given as a function of the PC coefficients as follows:

S i 1 ...i k = 1 V (α 1 ,...,α d )∈I i 1 ,...,i k y 2 α 1 ,...,α d . (3.5) 
For a problem with d input random parameters, it can be shown that (2 d -1) Sobol' indices can be computed for each output random quantity of interest. When the number of input r.v. is large, the number of Sobol' indices grows exponentially and it becomes difficult to draw information from these statistics. This is why, in 1996, Homma and Saltelli [START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF] introduced the total sensitivity indices S T i (i = 1, . . . , d) which measures the total effect of the i th random input parameter. It is defined as the sum of all sensitivity indices S i 1 ...i k (k = 1, . . . , d) for which, one of the indices i 1 , i 2 , . . . , i k is equal to i, i.e.

S T i = d k=1 (i 1 ,...,i k )∈J k i S i 1 ,...,i k ,
where

J k i is the set of k-dimensionel vectors (i 1 , . . . , i k ) with 1 ≤ i 1 < . . . < i k ≤ d
, such that one of its components is equal to i. We can also compute these indices from the PC coefficients as follows:

S T i = 1 - 1 V (α 1 ,...,α d )∈I i y 2 α 1 ,...,α d ,
where I i is the complementary set of I i .

Example 3.1.

The computation of the sensitivity indices for the example 2.1 where, p = 2 and d = 2 gives

S 1 = 1 V (y 2 1,0 + y 2 2,0 ), S 2 = 1 V (y 2 0,1 + y 2 0,2 ), (3.6) 
S 1,2 = 1 V y 2 1,1 , with V = y 2 1,0 + y 2 0,1 + y 2 1,1 + y 2 2,0 + y 2 0,2 (3.7) 
In accordance with (3.2), we see that the variance V of the output can be divided into three parts:

V = S 1 + S 2 + S 1,2 .
The first part S 1 represents the influence of the first input random variable alone; the second S 2 represents the effect of the second one alone whereas S 1,2 accounts for the combined effect of the two input random variables.

Similarly, according to the definition of the total sensitivity indices, we have

S T 1 = S 1 + S 1,2 , and 
S T 2 = S 2 + S 1,2 .

Uncertainty analysis in unreliable queueing models

In this section, we consider the PC expansion for propagating the uncertainty in performance measures of queueing models with breakdowns and repairs, due to epistemic uncertainties in the model input parameters. Section 4.1 studies the M/G/1/N queue with breakdowns, when the perturbation of a single parameter is introduced. Then, section 4.2 addresses the case of the M/M/1/N queue with breakdowns, for multiple random input parameters.

4.1.

The M/G/1/N queue with breakdowns and repairs. Consider a finite capacity M/G/1/N queue with server subject to breakdowns and repairs. Assume that the customers arrive at the system according to a Poisson stream with rate λ, the service times are general and independent identically distributed with mean 1/µ and we denote the service time distribution by F (x). There can be at most N customers in the queue (including the one being served), and customers attempting to enter the queue when there are already N customers present are lost. The service discipline is assumed to be FCFS. At the beginning of each service, there is a probability θ that the server breaks down (and the customer is sent back to the queue) and enters a repair state. The time of repair is exponentially distributed with rate r. The only instant of time when a server can breaks down is right at the beginning of a service. This system is modeled by a Markov chain X = {X n : n ∈ N}, embedded at service completions and completion of a repair and has state space S = {0, 1, . . . , N -1}. Let Ξ = (a i,j ) i,j∈S be the transition probability matrix of the Markov chain X. The matrix Ξ has the following form:

Ξ =                     a 0 a 1 a 2 a 3 • • • a N -2 1 - N -2 k=0 a k a 0 a 1 a 2 a 3 • • • a N -2 1 - N -2 k=0 a k 0 a 0 a 1 a 2 • • • a N -3 1 - N -3 k=0 a k 0 0 a 0 a 1 • • • a N -4 1 - N -4 k=0 a k . . . . . . . . . . . . 0 0 0 0 • • • a 0 1 -a 0                     , (4.1) 
where

a k = θ ∞ 0 e -λx (λx) k k! dF (x) + (1 -θ) r r + λ λ λ + r k , k = 0, . . . , N -2. (4.2)
Note that the Markov chain X is unichain and therefore the stationary distribution exists. Let π denote the stationary distribution of the queue-length process embedded at service completions and completion of a repair in the M/G/1/N queue with breakdowns and repairs (see [START_REF] Abbas | A critical account of perturbation analysis of Markov chains. Markov Process[END_REF] for details). In the sequel, we consider π as a function of the breakdown probability θ, denoted by π(θ). Assume that the probability θ is estimated from insufficient statistical data, and hence has uncertainty associated with it. In the next section, we will discuss a functional approach based on PC expansion for computing the epistemic uncertainty in stationary distribution π(θ), due to epistemic uncertainties in θ.

Epistemic uncertainty in queueing system.

In this model, we will assume that the uncertainty only affects one parameter. To analyze the propagation of epistemic uncertainty, the mean and the variance of the responses will be computed using the PC expansion. Let us consider π(θ) = (π 0 (θ), • • • , π N -1 (θ)) be the random response or the model output of the queueing system. We consider the following perturbation model on the uncertain parameter:

θ(ω) = θ + σ θ ε(ω), (4.3) 
where θ(ω) is a random variable with uniform density on the interval [0, 1]. The parameters θ and σ θ represent the mean and the standard deviation of θ and they can be estimated by statistical methods. ε(ω) can be considered as a random noise inflicted on θ and it modelizes epistemic uncertainty. We assume that ε(ω) is a random variable with uniform distribution on [-1, 1]. Then, the approximation of any component π ℓ (θ) of the stationnary distribution by the PC expansions writes

π ℓ (θ) ≈ P p d i=0 y i Ψ i (θ),
where {Ψ i (θ)} 0≤i≤P p d form an orthonormal Legendre polynomial basis, and y i are the coefficients of the approximating series expansion, see (2.13) .

Numerical results.

In this section, the parameters N , λ and r are deterministic and their values are set to N = 7, λ = 1, r = 0.4, respectively. The only input random parameter is θ and it is given by θ = 0.5 + 0.28 ε, ε ∼ U (-1, 1).

For numerical computations, we propose two types of distribution for the service time, namely, Erlang (E 2 ) and Hyperexponential of second order (H 2 ). Those two distributions are described in the following subsections. 4.1.3. Epistemic uncertainty in the M/E 2 /1 queue with server breakdowns and repairs. In (4.2), the density F ′ (x) = f (x) of the service time is assumed to be Erlang of second order, i.e.

f (x) = µ 1 µ 2 µ 2 -µ 1 (e -µ 1 x -e -µ 2 x )1 [0,+∞) (x),
where the rates µ 1 = 4 and µ 2 = 2.

We determine the stationary distribution vector with respect to the random variable θ(ω) by solving the system π θ Ξ θ = π θ and π θ = 1, where Ξ θ denotes the transition probability given by (4.1). Therefore, the random outputs of interest are the stationary distributions π i , i ∈ {0, . . . , 6}. Their projection is performed on a monovariate PC basis of degree n = 4 and the coefficients are computed using a 6-points Gaussian quadrature rule as explained in section 2.4. Numerical results for the expectations and the variances using a Monte-Carlo simulations of a sample size N M C = 1000 and N M C = 100000 are given in Table 2 and Table 3, respectively. Results are compared with those of the PC expansion. We note that the Monte Carlo simulations (MC in short) converge to the PC results; however the later are obtained at a fraction of the cost of the MC simulations. Similarly moments of higher order (skewness and kurtosis) are given in Tables 4 and5, and the same conclusions can be drawn. Figure 1 show the density of the output stationary distributions for a random uniform input of the form (4.3). The shape of the densities show that they are far from being uniform. Furthermore, the plots are coherent with Tables 4 and5. Indeed, a positive skewness reflects a random variable with higher probabilities in the left part of its support, and vice versa. In this section, the density F ′ (x) = f (x) of the service time is now assumed to be Hyperexponential of second order i.e.

E(π i ) PC MC (N M C = 1000) MC (N M C = 100000) π 0 0.
V (π i ) PC×10 -4 MC×10 -4 (N M C = 1000) MC×10 -4 (N M C = 100000) π 0 1.
f (x) = (γµ 1 e -µ 1 x + (1 -γ)µ 2 e -µ 2 x )1 [0,∞) (x),
where the rates are µ 1 = 3/2, µ 2 = 3; and γ = 0.3. All the other parameters are set as in the previous section, including the random input. Similarly, Tables 6,7, 8 and 9 show the moments of the stationary distributions when the Hyperexponential law is used instead of the Erlang one for the service time. Here also, we can observe the good convergence properties of the PC, showing the robustness of the method independently of the law of the service time.

4.2.

The M/M/1 queue with server breakdowns and threshold-based recovery policy.

Consider a finite capacity M/M/1 queue with server breakdowns and threshold-based recovery policy. If a server provides service for a customer, the server may experience a breakdown, and the repair begins when the number of customers present in the system exceeds some prespecified threshold level q (1 ≤ q ≤ N ). The stream customers arrive at the queue according to a Poisson law of parameter λ. Arriving customers form a single waiting line based on the order of their arrivals Mariginal probability density f πi of of the steady-state vector in M/H 2 /1/7 queue and the server can serve only one customer at a time. There can be at most N customers present at the queue (including the one in service), and customers attempting to enter the queue when N customers are already present are lost. A single server with exponential distributed service times with rate µ is considered. We assume that the server can break down only if the system is not empty. The lengths of breakdowns are identically distributed and follow an exponential distribution with rate α. The duration of reparation of the server is assumed to follow an exponential law with parameter β. After the server being repaired, it switches to working state and continues to provide service until the system becomes empty. The arrival flow customers, service times, breakdown times and repair times are assumed to be mutually independent input random variables. The service discipline is FCFS. A typical state of this system may be denoted by X(t) = {(N (t), Y (t)); t ≥ 0} , where N (t) is the number of customers in the queue at time t, and Y (t) is a random variable representing the server state at time t. If at time t, the server is experiencing a breakdown, then Y (t) = 1; otherwise, the server is in the working state and Y (t) = 0. The stochastic process X(t) is a continuous time Markov chain whose state space S = {(n, 0) : n = 0, . . . , N } ∪ {(n, 1) : n = 1, . . . , N }. The infinitesimal generator matrix Q of the continuous time Markov chain X(t) has the following block-tridiagonal form: 

(θ) in M/E 2 /1/7 queue E(π i ) PC MC (N M C = 1000) MC (N M C = 100000) π 0 0.
V (π i ) PC ×10 -4 MC×10 -4 (N M C = 1000) MC×10 -4 (N M C = 100000) π 0 4.
Skew(π i ) PC MC (N M C = 1000) MC (N M C = 100000) π 0 0.
Q =                A 0 B 0 0 0 0 0 0 0 0 . . . D 1 B 1 F 1 0 0 0 0 0 0 . . . 0 D 2 B 2 F 2 0 0 0 0 0 . . . 0 0 D 3 B 3 F 3 0 0 0 0 .
0 0 0 0 0 0 0 . . . D N E N                , (4.4) 
where

B 0 = λ, A 0 = -λ, D 1 = µ 0 , B i = -(λ + µ + α) α 0 -λ , i = 1, • • • q -1, F j = λ 0 0 λ , j = 1, • • • , N -1, D k = µ 0 0 0 , k = 2, • • • N M s = -(λ + α + µ) α β -(β + λ) , s = q, • • • N -1, E N = -(α + µ) α β -β .
The Markov transition diagram of the process is given below can be performed via a recursive scheme [START_REF] Yang | Cost analysis of a finite capacity queue with server breakdowns and threshold-based recovery policy[END_REF] , or by using matrix analytic methods [START_REF] Neuts | Matrix-geometric solutions in stochastic models[END_REF]. In the sequel, we follow a different method, and we will provide a functional approach based on the PC expansion for obtaining the stationary distribution π m,n in terms of some parameters, which are obtained under the epistemic uncertainties.

4.2.1. Epistemic uncertainty in queueing system.

In this model, we consider the epistemic uncertainty in all the input parameters of the queueing system, λ, µ, α, β. However, now π m,n (θ) is assumed to be the random output response of the model of the queueing system, where θ = [θ 1 = λ, θ 2 = µ, θ 3 = α, θ 4 = β] is the vector that describes the model parameters. We consider an epistemic uncertainty in the input parameter θ of known probability density function. Due to the uncertainty in input parameters, the responses π m,n (θ(ω)) are considered as random variables. The uncertainty analysis of the functional π m,n may be quantified by the computation of its mean and variance and moments of higher order.

Furthermore, we proceed to a sensitivity analysis in order to determine the most sensitive parameters with respect to the performance measures. A convenient way to compute those quantities is to approximate the functional π m,n (θ(ω)) in the form of the PC expansion. The sensitivity analysis introduced in section 3 help us to point out which parameters generate a higher sensitivity with respect to the stationary distribution. We consider the following perturbation models for all the uncertain parameters:

θ j (ω) = θj + σ j ε j (ω), j = 1, • • • , 4
where θ j (ω) is random variable, θj , σ j , are respectively, estimated mean and the standard deviation of the random variable θ j obtained by statistical methods. ε j (ω) is a random noise inflicted on θ i which models epistemic uncertainty. Here, ε j (ω) is assumed to follow a standard normal distribution

. Let θ = [θ 1 (ω) = λ, θ 2 (ω) = µ, θ 3 (ω) = α, θ 4 (ω) = β], π m,n (θ(ω)) and ε = [ǫ 1 , . . . , ǫ 4 ]
be random fields.

The approximation of the measure π m,n (θ(ω)) in the form of multivariate PC expansions is given by:

π m,n (θ) ≈ P p 4 i=0 y i Ψ i (θ),
where Ψ i (θ) is the multivariate orthonormal Hermite polynomial and y i are the coefficients of the approximating series expansion, (2.13).

Numerical application.

As an illustrative example, the queueing system described in section 4.2 is studied. The capacity is set to N = 5 and the threshold is equal to q = 3. In order to study the sensitivity of the queue, we assume that the exact value of all the input parameters, α, β,λ, µ, are not precisely known and we propose the following perturbation on these parameters:

α = α + σ α ε 1 , ε 1 ∼ N (0, 1) β = β + σ β ε 2 , ε 2 ∼ N (0, 1) λ = λ + σ λ ε 3 , ε 3 ∼ N (0, 1) µ = μ + σ µ ε 4 , ε 4 ∼ N (0, 1)
so α, β, λ, µ, are Gaussian random variables. The mean and the standard deviation of these random variables are set respectively to μ = 7.3, λ = 2, α = 3, β = 4, σ α = 0.04, σ β = 0.02, σ λ = 0.04 and σ µ = 0.02.

Table 10 gives the first order Sobol' indices for all the components of the stationary distribution vector. From this table, we see that for all but π 0,1 and π 1,3 , the most influencial input random parameter is λ. efffect of two input random parameter is negligible in comparison with the effect of a single parameter. The same is also true for higher order indices since the total Sobol' indices are almost equal to first order ones, as shown by Table 12. Note that for the components π 0,1 and π 1,3 , it is the parameter α which is most influencial.

When considering π 0,1 and π 1,3 , we can set α as being the only random parameters and when considering all the other components of the stationary distribution, we can consider the parameter λ as sole input random variable. This is what we do as a second numerical experiments. Then, Tables 13 to 16 compare the statistical moments of the stationary distribution vector when the four input parameters are random (first column) to the case where only the most influencial parameter is random (second column). As expected, the two columns of the tables match rather well. 

Conclusion

In this paper, we have developped a numerical approach based on polynomial chaos expansion, to study the sensitivity and the propagation of the epistemic uncertainty in queueing models that occurs with unreliable servers. models of queueing systems have been investigated. In the first model (M/G/1/N queue with breakdowns and repairs), the epistemic uncertainty only affects one input parameter, whereas in the second model (M/M/1/N queue with server breakdowns and threshold-based recovery policy), it affects four parameters. In the latter case, a sensitivity analysis using Sobol' indices is performed. When considering the stationary distribution as output quantity of interest, it was shown that the parameter λ of the Poisson law modelling the customers arrival at the queue, was the most influencial factor. This finding was then confirmed by considering λ as the only random input parameter and by setting the three remaining ones to their average values. In that case, it was shown that the statistical moments of the output measure were relatively insensitive to the other parameters. Finally, comparisons with Monte-Carlo simulations showed the good convergence properties of the chaos expansion.
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Table 1 .

 1 Bivariate Hermite and Legendre Polynomial Basis 2.4. Computing PC coefficients. The way to compute the PC coefficients {y j } 0≤j≤P p d appearing into equation (2.13) can be casted into two different families: projection methods and regression methods

Table 2 .

 2 Expected value of the steady-state vector in M/E 2 /1/7 queue

		0237	0.0230	0.0237
	π 1	0.0413	0.0422	0.0413
	π 2	0.0660	0.0667	0.0660
	π 3	0.1018	0.1026	0.1018
	π 4	0.1557	0.1563	0.1558
	π 5	0.2393	0.2401	0.2392
	π 6	0.3722	0.3719	0.3722

Table 3 .

 3 Variance of the steady-state vector in M/E 2 /1/7 queue

		7753		1.6686	1.7809
	π 1	3.6413		3.6789	3.6423
	π 2	5.2349		5.1333	5.2175
	π 3	5.0800		4.9922	5.0508
	π 4	1.8737		1.8585	1.8732
	π 5	2.1440		2.0101	2.1534
	π 6	58.7699		61.0693	58.7199
		Skew(π i )	PC	MC (N M C = 1000) MC (N M C = 100000)
		π 0	0.5053	0.5429	0.5064
		π 1	0.3565	0.2911	0.3550
		π 2	0.1730	0.1435	0.1701
		π 3	-0.0722	-0.0927	-0.0730
		π 4	-0.5848	-0.6616	-0.5922
		π 5	-0.7140	-0.7968	-0.7036
		π 6	0.0543	0.0692	0.0540

Table 4 .

 4 Skewness coefficient of the steady-state vector in M/E 2 /1/7 queue

	Kurt(π i )	PC	MC (N M C = 1000) MC (N M C = 100000)
	π 0	2.0384	2.1425	2.0341
	π 1	1.8968	1.9122	1.8953
	π 2	1.7864	1.7682	1.7900
	π 3	1.7463	1.7513	1.7495
	π 4	2.0301	2.0290	2.0385
	π 5	2.1921	2.3603	2.1972
	π 6	1.7759	1.8007	1.7724

Table 5 .

 5 Kurtosis coefficient of the steady-state vector in M/E

2 /1/7 queue 4.1.4. Epistemic uncertainty in the M/H 2 /1 queue with server breakdowns and repairs.

Table 6 .

 6 Expected value of the steady-state vector in M/H 2 /1/7 queue

		0397	0.0407	0.0396
	π 1	0.0602	0.0588	0.0602
	π 2	0.0853	0.0847	0.0853
	π 3	0.1179	0.1179	0.1179
	π 4	0.1619	0.1615	0.1619
	π 5	0.2233	0.2238	0.2233
	π 6	0.3118	0.3103	0.3117

Table 7 .

 7 Variance of the steady-state vector in M/H 2 /1/7 queue

		7367	4.5451	4.7370
	π 1	6.7973	6.5517	6.8120
	π 2	7.1124	7.1342	7.1237
	π 3	4.7642	4.5830	4.7726
	π 4	0.7665	0.8177	0.7653
	π 5	5.4708	5.2979	5.4699
	π 6	64.0300	62.3300	64.0396

Table 8 .

 8 Skewness coefficient of the steady-state vector in M/H 2 /1/7 queue

		3481	0.2807	0.3531
	π 1	0.1478	0.2379	0.1474
	π 2	-0.0881	-0.0925	-0.0896
	π 3	-0.4210	-0.4300	-0.4230
	π 4	-1.2389	-1.1806	-1.2381
	π 5	-0.3119	-0.3561	-0.3101
	π 6	0.2751	0.3242	0.2747
	Kurt(π i )	PC	MC (N M C = 1000) MC (N M C = 100000)
	π 0	1.8643	1.9138	1.8624
	π 1	1.7524	1.7200	1.7568
	π 2	1.7297	1.6881	1.7266
	π 3	1.8885	1.8168	1.8935
	π 4	3.3357	3.7223	3.3412
	π 5	1.7598	1.7821	1.7586
	π 6	1.8392	1.8446	1.8372

Table 9 .

 9 Kurtosis coefficient of the steady-state vector in M/H 2 /1/7 queue

Table 11 ,

 11 which gives the second order Sobol' indices, shows that the combined

	π m,n \S θ i	S α	S µ	S β	S λ
	π 0,0	0.3799 0.0366 0.0046 0.5789
	π 0,1	0.7942 0.0047 0.0096 0.1913
	π 1,1	0.0144 0.0038 0.0078 0.9740
	π 0,2	0.0632 0.0160 0.0080 0.9126
	π 1,2	0.1650 0.0003 0.0109 0.8236
	π 0,3	0.0445 0.0473 0.0073 0.9008
	π 1,3	0.7812 0.0151 0.0418 0.1619
	π 0,4	0.0502 0.0264 0.0006 0.9229
	π 1,4	0.3120 0.0124 0.0411 0.6345
	π 0,5	0.0528 0.0198 0.0044 0.9229
	π 1,5	0.1512 0.0085 0.0396 0.8005

Table 10 .

 10 First order Sobol' indices for stationary distribution vector in M/M/1/5 queue with server breakdowns and threshold-based recovery policy π m,n \S θ i ,θ j S α,µ × 10 -8 S α,β × 10 -8 S α,λ × 10 -6 S µ,β × 10 -9 S µ,λ × 10 -8 S β,λ × 10 -7

	π 0,0	0.6972	1.3636	0.2051	1.8411	4.9130	1.1427
	π 0,1	0.0144	2.8434	0.0127	0.4145	0.0016	0.6002
	π 1,1	0.0361	0.0175	0.5309	0.3338	0.0569	1.9217
	π 0,2	0.0516	0.7513	0.0183	0.0181	0.0249	0.8644
	π 1,2	0.0263	0.0365	0.0143	0.0109	0.0013	7.3456
	π 0,3	0.8840	0.0198	0.3924	0.0283	0.4031	0.8201
	π 1,3	9.8593	1.6277	0.3311	0.1568	0.0997	0.0147
	π 0,4	0.1210	7.1050	4.0803	4.9641	0.0012	8.0038
	π 1,4	0.0137	0.0368	0.4395	0.9306	0.6662	8.6512
	π 0,5	0.0113	0.2362	0.5077	0.6212	0.0029	0.1801
	π 1,5	0.0250	0.0959	0.0187	0.0433	0.0010	0.0427

Table 11 .

 11 Second order Sobol' indices for stationary distribution vector in M/M/1/5

	queue with server breakdowns and threshold-based recovery policy
	π m,n \S T θ i	S T α	S T µ	S T β	S T λ
	π 0,0	0.3799 0.0366 0.0046 0.5789
	π 0,1	0.7943 0.0047 0.0096 0.1914
	π 1,1	0.0144 0.0038 0.0078 0.9741
	π 0,2	0.0634 0.0160 0.0080 0.9128
	π 1,2	0.1652 0.0002 0.0109 0.8237
	π 0,3	0.0445 0.0473 0.0074 0.9009
	π 1,3	0.7812 0.0151 0.0419 0.1619
	π 0,4	0.0502 0.0264 0.0005 0.9229
	π 1,4	0.3121 0.0124 0.0411 0.6345
	π 0,5	0.0528 0.0198 0.0044 0.9230
	π 1,5	0.1514 0.0085 0.0396 0.8007

Table 12 .

 12 Total order Sobol' indices for steady-state vector in M/M/1/5 queue with server breakdowns and threshold-based recovery policy

Table 13 .

 13 Expected Value of the stationary distribution in M/M/1/5 queue with server breakdowns and threshold-based recovery policy V (π m,n ) PC ×10 -6 (1 r.v.) PC×10 -6 (4 r.v.)

	E(π m,n ) PC (1 r.v.) PC (4 r.v.)
	π 0,0	0.2639	0.2639
	π 0,1	0.0723	0.0723
	π 1,1	0.1084	0.1084
	π 0,2	0.0495	0.0495
	π 1,2	0.1827	0.1827
	π 0,3	0.0636	0.0636
	π 1,3	0.0927	0.0927
	π 0,4	0.0428	0.0428
	π 1,4	0.0523	0.0523
	π 0,5	0.0261	0.0261
	π 1,5	0.0457	0.0457
	π 0,0	14.711	25.338
	π 0,1	0.7178	0.8879
	π 1,1	2.4845	2.5455
	π 0,2	0.4445	0.4905
	π 1,2	4.2497	5.0989
	π 0,3	0.7925	0.8793
	π 1,3	0.6677	0.8450
	π 0,4	1.4357	1.5550
	π 1,4	0.9757	1.5432
	π 0,5	1.2546	1.3592
	π 1,5	3.4476	4.3111

Table 14 .

 14 Variance of the stationary distribution in M/M/1/5 queue with server breakdowns and threshold-based recovery policy

Table 15 .

 15 To illustrate the applicability of the proposed approach, two Skew(π m,n ) PC (1 r.v.) PC (4 r.v.) Skewness coefficient of the steady-state vector in M/M/1/5 queue with server breakdowns and threshold-based recovery policy Kurt(π m,n ) PC (1 r.v.) PC (4 r.v.)

	π 0,0	0.0350	0.0395
	π 0,1	0.0443	0.0415
	π 1,1	0.0350	0.0371
	π 0,2	-0.0722	-0.0411
	π 1,2	0.0200	0.0362
	π 0,3	-0.0536	-0.0523
	π 1,3	-0.0316	-0.0556
	π 0,4	-0.0011	-0.0042
	π 1,4	-0.0622	-0.0116
	π 0,5	0.0488	0.0576
	π 1,5	0.0374	0.0668
	π 0,0	3.0016	3.0020
	π 0,1	3.0037	3.0046
	π 1,1	3.0016	3.0024
	π 0,2	3.0071	3.0064
	π 1,2	2.9999	3.0023
	π 0,3	3.0041	3.0035
	π 1,3	3.0017	3.0060
	π 0,4	2.9983	2.9979
	π 1,4	3.0044	2.9988
	π 0,5	3.0013	3.0028
	π 1,5	2.9995	3.0052

Table 16 .

 16 Kurtosis coefficient of the steady-state vector in M/M/1/5 queue with server breakdowns and threshold-based recovery policy