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1 ABSTRACT 

SYSIPHE is an airborne hyperspectral imaging system covering all atmospheric transmission 
bands from 0.4µm to 11.5µm. The ground sampling distance is 0.5m over a 500m swath, with 
higher resolution available in the visible and NIR. SYSIPHE is flown on a Do-228 aircraft operated 
by DLR. The system also comprises a real-time processing capability and a ground post-
processing chain. The main information products are georeferenced images of spectral radiance, 
spectral emissivity and reflectance as well as a surface temperature map.  

After a certification campaign in 2013, qualification airborne campaign for military applications was 
carried out during the summer of 2015, and this system is now available to external users, 
representing a significant enhancement of airborne sensing capabilities in Europe. After a brief 
description of the system and of the 2015 campaign, we present some experimental results from 
this airborne campaign. 

Keywords: Remote sensing, infrared, multispectral, hyperspectral, airborne, SYSIPHE, 
SIELETERS, ODIN, thermal infrared, spectroscopy, Fourier transform 

2 INTRODUCTION 

SYSIPHE is an airborne hyperspectral imaging system covering all atmospheric transmission 
bands from 0.4µm to 11.5µm: visible, NIR, SWIR, MWIR and LWIR. The ground sampling distance 
is 0.5m over a 500m swath, with higher resolution available in the visible and NIR. The imaging 
system, developed by Onera and Norsk Elektro Optikk, is flown on a Do-228 aircraft operated by 
DLR. The SYSIPHE system also comprises a real-time processing capability developed by FFI in 
collaboration with NEO and a ground post-processing chain, the STAD, developed by Onera. The 
main information products are georeferenced images of spectral radiance, spectral emissivity and 
reflectance as well as a surface temperature map.  

SYSIPHE represents a significant enhancement of airborne sensing capabilities in Europe. The 
system is now available to external users, after having completed its first flight campaign 
successfully in 2013, and a qualification airborne campaign for Defense applications was done 
during the summer of 2015. In the next section, we give a brief description of the system. We then 
present the 2015 campaign, with experimental images and results.  

. 
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3 THE SYSIPHE SYSTEM 

3.1 System architecture 

SYSIPHE is an airborne hyperspectral imaging system, built in collaboration between France and 
Norway, supported by French and Norwegian ministry of defense (FFI and DGA). It is unique by 
having a very wide spectral coverage, from 0.4µm to 11.5µm in the atmospheric transmission 
bands, combined with a high spatial resolution: 0.5m ground sampling distance over a 500m 
swath. 

To achieve this unique performance, SYSIPHE is composed of three instruments, one dispersive 
spectrometer for the visible domain (VIS [0.4-0.8 µm]), Near InfraRed domain (NIR [0.8-1.4 µm]) 
and ShortWave InfraRed domain (SWIR [1.4-2.5 µm]), developed by the Norsk Elektro Optikk in 
Norway (NEO), and two Fourier transform spectrometers (FTS) for the MidWave InfraRed domain 
(MWIR [3–5.2 µm]) and the LongWave InfraRed domain (LWIR [8-11.5 µm]) , developed by the 
French aerospace laboratory Onera. These three instruments are integrated on the same aircraft, 
a DO-228 operated by DLR in Germany. By having imagers for all bands in the same aircraft, 
associated to inertial measurement units, SYSIPHE can produce georeferenced images of spectral 
radiances acquired at the same time in the same environment with more than 500 spectral bands 
covering the whole spectral domain. 

 

The SYSIPHE system also integrates a ground processing chain, the STAD, developed by Onera 
to register the georeferenced hyperspectral images provided by each instrument and to produce 
outputs as spectral radiance, ground spectral reflectance, and surface temperature maps. All these 
products are georeferenced. 

 

3.2 The visible-near infrared instrument (HySpex ODIN-1024) 

HySpex ODIN-1024 [1] (Figure 1) is the visible and shortwave infrared part of the SYSIPHE 
system. It consists of two pushbroom imaging spectrographs based on transmissive gratings. 
These two modules share a common fore-optics and a common slit, to ensure perfect registration 
between the VNIR (Visible-NIR) and the SWIR images. The spectral sampling varies from 3.0nm in 
the VNIR to 6.1nm in the SWIR. In its current configuration in SYSIPHE, Odin has a passively 
damped mount, without active stabilization. An onboard spectral and radiometric calibration source 
enables in-flight checking of the spectral and radiometric calibration stability, which has proven to 
be excellent. 

 

 

Figure 1. The HySpex ODIN-1024 spectral imager installed into the aircraft. 
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Table 1: Main technical specifications for HySpex Odin-1024  

Parameter VNIR SWIR 
Spectral range 400-1000nm 950-2500nm 
Spectral resolution 3.0nm 6.1nm 
Pixel FOV 0.25/0.125mrad 0.25mrad 
Total across track FOV 15° 15° 
Spatial resolution 1024/2048px 1024px 
F-number F1.64 F2.0 

 

3.3 The MWIR/LWIR instrument (SIELETERS) 

SIELETERS [2] is the infrared component of SYSIPHE. It is composed of two distinct Fourier 
transform spectrometers, one for the MWIR and one for the LWIR. The spectral resolution, taken to 
be 1.2/(2*MPD), where MPD is the Maximum Path Difference of the interferometer, is 11 cm-1 in 
the MWIR and 5 cm-1 in the LWIR. Both instruments are cryogenically cooled to achieve high 
performance absolute measurements, and both are imaging static Fourier transform spectrometers 
(ISFTS) [3,4]. 

  
Table 2: Main technical specifications for SIELETERS  

Parameter MWIR LWIR 
Spectral range 3.0 – 5.2 µm 8.1-11.5 µm  
Spectral MWIR resolution 11 cm-1 5 cm-1 
Pixel Fov 0.25mrad 0.25mrad 
Total across track FOV 15° 15° 
Spatial resolution 1016px 1016px 
F-number F4.0 F3.0 

 

 

Each instrument is installed on a specific gyro-stabilized platform based on the Leica Geosystems 
PAV80 to control the line of sight (LOS), in the Nadir direction during recording. The control loop 
system controls the different phases of the flight (take-off, landing, transit flight, and recording) and 
the coupling between the two stabilized platforms. On one stabilized platform, an independent high 
precision Inertial Measurement Unit (IMU, PosPac 610 from Applanix) was installed, working in 
open-loop mode, to check, and to improve the quality of the LOS control for postprocessing. Figure 
2 shows the two SIELETERS instruments, each on their own stabilization platform unit. 
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Figure 2. The SIELETERS spectral imagers 

 

3.4 The processing and archiving system (STAD) 

The last component of SYSIPHE is the processing and archiving system. It collects the products 
from ODIN and SIELETERS and verifies their completeness (presence or absence of files in the 
product and the presence or absence of specific information in the file headers like for example the 
definition of the projection system). The inter-instrument registration module of the STAD provides 
a single georeferenced hyperspectral radiance image covering the whole spectral domain. The 
STAD then performs atmospheric correction, in order to produce an estimation of spectral 
reflectance, emissivity and temperature of the scene.  

Atmospheric correction is based on two modules, one to estimate the spectral reflectance in the 
VNIR and SWIR spectral domain, and the other one to estimate both spectral reflectance and 
temperature of the surface in the thermal infrared spectral domain. For the VNIR-SWIR domain, 
this module uses the Cochise software [5,6] supported by the ONERA/DOTA. For the MWIR-LWIR 
domain, a dedicated autonomous method (without need of additional atmospheric measurement) 
has been developed. It is based on neural network [8,9] used to estimate the atmospheric 
thermodynamic parameters from the hypercubes acquired by the Sieleters system. The radiative 
atmospheric terms are then assessed with the radiative transfer code MODTRAN [10] and the 
emissivity/temperature separation is done by a spectral smoothness algorithm. 

All the data are collected in a database searchable by a dedicated GUI based on GeoNetwork.  

The SYSIPHE system normally offers two product levels for the users: 
• The georeferenced spectral radiance images at the sensor level covering the whole 

spectral range (from visible to LWIR- band) ; 

• The target spectral reflectance/emissivity after atmospheric correction and the related 
temperature image. 

The STAD products include hyperspectral image, quality matrix image and optional temperature 
image. Each image is associated with a header file in the ENVI (Environment for Visualizing 
Images) format and an ASCII header file containing information supplied by each module (version, 
data input, intrinsic parameter values, … ). The image format is BSQ (Band SeQuential).  

Figure 3 illustrates the SYSIPHE post-processing scheme and the different product levels which 
can be delivered to the users depending of their applications. 
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Figure 3 : SYSIPHE post-processing scheme and products levels 

 

 

4 2015 SYSIPHE QUALIFICATION CAMPAIGN  

4.1 The August 2015 qualification airborne campaign 

The data acquired during the 2013 airborne campaign could not address all the verification 
needed to validate the Sysiphe system, especially the verification of the spectro-radiometric 
calibration of the instruments and the atmospheric correction software included in the STAD. A 
new airborne campaign was carried out in August 2015 where measurements in clear sky 
conditions were done. 

This campaign was located in the South of France, over the military base of Canjuers. A 
ground truth target array was deployed consisting of many different surfaces (Figure 4) such as 
grey linoleum, black and white targets, polystyrene, sand, painted concrete, etc. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 4: Targets and reference ground surfaces for ground truth measurements. (a) black and 
white panels, (b) linoleum panels, (c) polystyrene panel, (d) painted concrete, (e) sand, (f) clay. 
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In parallel, military scenarios were deployed in the Canjuers base to acquire full bandwidth 
hyperspectral images with SYSIPHE. Figure 5 illustrates some of the types of targets that were 
present. 

 

 

Figure 5: Examples of targets used during the campaign. 

 

The aircraft was located on the French Navy Air base of Hyères. 

This qualification campaign was highly successful thanks to participation of all the different 
teams involved in the campaign, around 50 persons in total. The system flew 7 times without any 
failure, including a night flight. Different meteorological conditions were encountered, including 
clear sky, partially cloudy and windy, opening new studies on the robustness of hyperspectral 
products as a function of the weather conditions. 

 

   

  

4.2 ODIN and SIELETERS image registration performance 

The two spectral images are georeferenced in the WGS84 - UTM 32 North coordinate system, 
with a spatial resolution of 0.5m x 0.5m for ODIN and SIELETERS. The STAD processing shows 
that the intra-instrument registration resulting from the ODIN and SIELETERS processing is good 
(less than 1 pixel). Figure 6 shows a sample flight line by Sieleters (georeferenced image) and 
ODIN (RGB georeferenced composition). Observe that the ODIN line traces a slightly curved path, 
since there is no active stabilization of ODIN in the present configuration of SYSIPHE. The scene 
geometry remains correct, after the georeferencing step, and the coregistration with SIELETERS is 
good. 
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In order to globally assess the georeferencing precision, the images are compared to a reference 
georeferenced mosaic image built based on BD ORTHO® imagery provided by IGN, the French 
mapping agency. The BD ORTHO® includes color orthophoto with spatial resolution of 0.5m 
covering France in the Lambert 93 projection system. The georeferencing precision of ODIN is 
about 1 to 2 pixels. These residual errors are linked to the use of a 30m DTM resolution and the 
use of Google Earth to do the boresight calibration for ODIN georeferencing and orthorectification. 
There may also be contributions from the intrinsic error of the GDAL and QGIS tools used to 
manage the projection of the 2 images on the same window. The georeferencing precision of 
SIELETERS is also about 1 to 2 pixels. But during the STAD registration tests, SIELETERS image 
did not reach this georeferencing precision because the static parameters of Sieleters line of sight 
were not fully optimized. The geolocalisation accuracy was around 4-5 pixels, therefore we can 
observe, before the STAD processing, a misregistration between ODIN and SIELETERS as shown 
in Figure 7. This is now corrected. 

An image-based inter-instrument registration is then done taking ODIN product as reference. The 
registration process is applied to the 1.55µm spectral image for ODIN and the 4.7µm spectral 
image for SIELETERS. This method includes two stages: estimation of the deformation model 
between the two products based on a geometric correlation and then application of the deformation 
model on the SIELETERS product with a resampling tool. The result is illustrated in Figure 8.  

The global evaluation of the inter-instrument registration performance on several flight lines 
indicates a precision better than 0.3 pixel, showing the very good quality of the inter-instrument 
STAD registration.  

 

 

 

 

Figure 6: Quicklooks of ODIN image (bottom) and SIELETERS image (top) over Canjuers village  
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Figure 7: Misregistration detail between the ODIN band at 1.55 µm and the SIELETERS band at 
4.7 µm. The Sieleters image is superimposed (red square) on the ODIN image. 

 

 

Figure 8: STAD registration result illustration by superimposition of the 4.7 µm spectral band over 
the 1.55 µm spectral band of ODIN.  

 

 

4.3 Reflectance first results from ODIN data 

The ODIN spectral image acquired over the ground truth workshop set up near the stadium of 
Canjuers village was used to verify the calibration of the inflight instrument and the performance of 
the atmospheric correction.  

The atmospheric characterization included a RPG-Hatpro millimeter wave radiometer to assess the 
atmospheric vertical profile (pressure, temperature and humidity) and a Cimel sun photometer to 
retrieve the aerosol type and visibility. 
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The upwelling spectral radiance at the ground level, measured on linoleum grey tarps 
simultaneously with the overflight, was then propagated to the ODIN entrance pupil using 
COMANCHE [5] radiative transfer simulations and compared to its laboratory calibration. 

To overcome a radiometric discrepancy between the measurement and simulation, a spectral gain 
was systematically applied to ODIN acquisitions (see Figure 9).  This effect is caused by a 
calibration discrepancy at the shortwave end of the ODIN spectrum. This discrepancy has been 
resolved and will eliminate the need for this temporary recalibration step in the future. 

 
 

 

Figure 9: Spectral gain to be applied on ODIN data 

The spectral characterization of ODIN data was done using the same dataset. It revealed a 
negligible spectral shift of 0.2 nm all over the ODIN bandwidth and field of view, and it confirmed a 
VNIR and SWIR resolution respectively equal to 4.2 nm and 9.2 nm. 

The atmospheric correction was then done using COCHISE code [5], [6] starting by the estimation 
of the columnar water vapor map followed by the reflectance estimation process. 

22 different ground materials measured with an ASD spectrometer were compared to the retrieved 
ODIN reflectance hypercube. The Empiric Line Method (ELM) based on the two linoleum tarps 
dedicated to the calibration assessment was also processed. The global error on the reflectance 
product is presented on Figure 10. 
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Figure 10 : Global error on the reflectance over the whole set of targets 

 

The global error compared to the ELM results shows good accordance in the visible, and over 
most part of the SWIR band. Differences can be noticed in the 1.5 to 1.8 µm band. This difference 
is not explained today and is under investigation. The other difference near 2.5µm is due to the 
very close value of the reflectance of the 2 linoleum patterns. 

However, we can say that the performance of ODIN instrument coupled to the Cochise 
atmospheric process is good, after applying a gain factor to the ODIN radiance, as shown in Figure 
11. 
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Figure 11 : ground truth spectra (red curves) compared to ELM results (orange), Cochise 
correction directly with ODIN spectra (dark), with ODIN data recalibrated (blue) and ODIN data 

recalibrated and spectrally shifted (green) for 4 kinds of materials  : grey linoleum (up-left), 
polystyrene (up right) concrete (down left) and stadium (down right). Be aware with the scale of the 

reflectance adapted to the dynamic of the curves 

 

4.4 Spectral radiance validation of Sieleters data 

The SIELETERS spectral image acquired over the ground truth workshop installed near the 
Canjuers village has been processed and compared to spectral radiance measured on ground. 
The ground measurements were done synchronously with the Sieleters acquisition. The ground 
radiances were then propagated to the entrance window of Sieleters instrument through the 
atmosphere and convolved with the Sieleters instrument shape response. 

 

 

Figure 12 : Sieleters image extraction at wavelengths of 4.8µm (top) and 10.75µm (bottom) over 
the ground truth site at Canjuers 
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A spectral NEDR was estimated for the MWIR and the LWIR instrument using the response of 
10x10 pixels on one of the linoleum targets. Figure 13 shows the NEDR, indicating a low level of 
radiometric noise. Nevertheless, the comparison with ground truth spectra highlights oscillations in 
the mean of the inflight spectra, and an important dispersion, as we can see on Figure 14 and 
Figure 15 for two kinds of material. Globally, the shapes of the spectra are well respected as the 
radiance level, but the oscillations have to be reduced to improve the spectral quality. The causes 
of those oscillations are not completely understood. The main hypothesis addresses the non-
uniformity correction of infrared image which is not good enough and also due to twinkling pixels. 
An important thing to know is that the Sieleters instruments do not have on-board calibration. A 
combination of laboratory calibration data and the in-flight images are used to re-estimate the gain 
and background correction to be applied. The main difficulty is to estimate gain and background 
with the presence of the fringes on the images (because it is a static Fourier transform instrument), 
and the spatial temperature variation of the scene. An improved non uniformity correction is in 
progress and new tests of the spectral quality will be done soon.  

 

 
Figure 13: spectral noise equivalent radiance for MWIR and LWIR instrument estimated on a 
10x10 pixels of linoelum pattern. 

 

Figure 14 : green concrete spectra for MWIR and LWIR. The curves presents the ground truth 
(green), the mean spectra (blue) and plus or minus two sigma (red) 
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Figure 15 : polystyrene spectra for MWIR and LWIR. The curves presents the ground truth (green), 
the mean spectra (blue) and plus or minus two sigma (red) 

 

4.5 Application uses 

 

As an example of unclassified processing results, the surface reflectance retrieved from one Odin 
flight line was used to perform classification. Several methods were tested: (i) a non-supervised 
approach, (ii) a spectral matching technique used along with a spectral library, and (iii) a 
supervised classifier. The spectral library was constructed from the spectral data base MEMOIRES 
from ONERA. The supervised method was run using a ground truth that was constructed by the 
operator by selecting a few pixels of the classes of interest. 

The results provided by the non-supervised method are unconvincing, as the classes are 
unlabeled and do not correspond to the expected materials. The second method provides a more 
comprehensive classification map, as materials such as tile roofs are well extracted. However, the 
main limitation of this approach is the lack of representativeness of the spectral library, as it does 
not include all materials existing in the processed image. Eventually, the supervised method 
provides interesting results as it is seen in Figure 16. The evaluation of the quality of the 
classification will be improved soon with the availability of new information on the area of study. 
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Figure 16: supervised classification map obtained from Odin reflectance map (on the left). RGB 
image of the scene is presented on the right. 

 

5 CONCLUSION 

The SYSIPHE development program is completed. The two instruments have been successfully 
developed, together with the ground processing and archiving system (STAD), forming a system 
with unparalleled capability and performance. The two instruments are flight certified and 
completed acceptance campaign in September 2013. Thanks to the second campaign done in 
August 2015, the qualification of the system for defense needs is in progress and the system 
performs well. 

The data from this last campaign are very useful to continue to improve the first results obtained, 
especially for the SIELETERS instrument. This campaign allows demonstrating the interest of 
hyperspectral data for military needs. 

We are also pleased to announce that system SYSIPHE is opened to the wider defense and 
scientific community as a unique tool for airborne data collection campaigns. 
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