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Abstract
This paper introduces Distributed Ledger Register that mimics the behavior of most popular
ledgers such as Bitcoin or Ethereum. Our work is the first to make the connection between the
Distributed Ledger Register and the classical theory of shared registers. We furthermore, propose
an algorithm that emulates the distributed ledger register.
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1 Introduction

In 2008, Satoshi Nakamoto, a pseudonymous author, published a white paper describing the
Bitcoin network, a way to create, distribute and manage a currency that does not rely on a
trusted third party [8]. Since then many crypto-currencies have been proposed, including
the popular Ethereum [10]. In the following we detail the functioning of Bitcoin. Ethereum
follows almost the same pattern with sligthly subtilities which are not relevant for our
study. The Bitcoin network is a peer-to-peer payment network that relies on distributed
algorithms and cryptographic functions to allow entities to pseudonymously buy goods with
digital currencies called bitcoins. Bitcoin mainly relies on three types of data structures (i.e
transactions, blocks and the distributed ledger – also called the blockchain) and three types
of entities (i.e., user, Bitcoin node and miner) to offer such functionalities. A transaction
allows users to transfer bitcoins from a set of input accounts to a set of output accounts.
A block contains a list of transactions, a reference to its parent block (hence the name of
blockchain), and a proof-of-work, that is a nonce such that the hash of the block matches a
given target. We say that a block b is locally valid if it only contains locally valid transactions.
Bitcoin nodes locally maintain a copy of the blockchain, and once validated, propagate newly
transactions and blocks to all the entities of Bitcoin. Blocks are generated by miners, a
subset of the Bitcoin nodes involved in the proof-of-work competition. This competition
may result in multiple blocks referencing the very same parent block, and hence the creation
of several chains. This situation is known as blockchain fork. Bitcoin defines the notion of
best chain (the common history of the ledger on which miners agree), which corresponds
to the longest chain starting from the genesis block of the distributed ledger (this is the
unanimously agreed initial block of the distributed ledger). In the case of Etherium the best
chain is the heaviest one. The level of confirmation of a block b belonging to the best chain
of the distributed ledger is equal to the number of blocks included in the best chain starting
from b. Nakamoto [8] has shown that if the proportion of malicious miners is ≤ 10%, then
with probability ≤ 0.1%, a transaction can be rejected if its level of confirmation in a local
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copy of the blockchain is less than 6. In case of Ethereum this level is 1. We say that a
transaction is deeply confirmed once it reaches such a confirmation level.

Connection between the distributed computing theory and Bitcoin distributed ledger has
been pionnered by Garay et al [4]. The main focus of the distributed community [1–6, 9]
has so far been the distributed ledger agreement aspects. Our paper investigates consistency
properties of the distributed ledger and makes the connection between the distributed ledgers
and the distributed registers theory. In the following we propose the computational model,
the register definition and the algorithm implementing the distributed ledger register.

2 Computing model

We consider a distributed system (Distributed Ledger system) composed of an arbitrary
finite number of users, Bitcoin nodes and miners. We assume that all bitcoin nodes have
capability to mine blocks, thus there are no distinctions between miners and Bitcoin nodes.
We suppose the existence of a protocol managing the arrival, departure and connectivity of
both users and miners in the distributed system. Both users and miners communicate by
exchanging messages through reliable and authenticated channels. It is assumed that the
system has a built-in communication abstraction, denoted broadcast, that provides both
users and miners with an operation denoted broadcast(), and each miner with a matching
operation denoted deliver(). Each entity in the distributed system (user and miner) is a
state machine, enriched with the operations send and receive. Its state (called “local state”)
is defined by the current values of its local variables. A configuration (or global state) of
the Distributed Ledger system (e.g Bitcoin and Ethereum) is composed of the local state
of each entity in the system. The passage of time is measured by a fictional global clock.
Users and miners do not have access at the fictional global time. At each time t, each entity
is characterized by its local state. Both users and miners can suffer arbitrary failures. We
assume that less than a fraction β (i.e. 50%) of the computational power of the system is
owned by faulty miners. No such restrictions hold for faulty users.

3 Distributed Ledger Register

We now define a new type of R/W register, the multi-writer multi-reader register Distributed
Ledger Register, DLR(k) that mimics the behavior of Bitcoin and Etherium distributed
ledgers. This register can be written by any miner and read by any user and miner. Parameter
k represents the deep confirmation level of a block in the distributed ledger. Note that unlike
the classical register definition [7], the DLR(k) register operations span a complex data
structure: B is an ordered sequence of blocks such that the first block and the last block of
the sequence are the genesis and a leaf block of the distributed ledger respectively. Indeed,
recall that in presence of forks, both Bitcoin or Ethereum distributed ledgers are trees of
blocks and not a unique chain. A branch appears when a fork occurs. The value of a DLR(k)
register is a chain from the root of the tree to a leaf. The selection of the root is different
from one ledger to another. In Bitcoin, this selection is based on the length (the longest chain
will be conserved) while in Etherium the selection criterium is based on the chain weight.
Register DLR(k) operations. Register DLR(k) is equipped with a write and read opera-
tions: The DLR(k).write(B) operation allows any writer to try to change the value of DLR(k)
with the input value B. The DLR(k).read() operation allows any reader to determine the
value of DLR(k). In order to specify the level of confirmation of a block, we introduce
the notion of k-valid write. Operation DLR(k).write(B) returns true if DLR(k).write(B) is
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k-valid otherwise it returns abort.
I Definition 1 (k-valid). Operation DLR(k).write(B) is k-valid if and only if ∃t, k > 0 such
that a virtual DLR(k).read() invoked at time t after the invocation of DLR(k).write(B)
returns a chain B′ such that B=prefix(B′) and length(B′) ≥ length(B)+k. Function length(B)
returns the number of blocks that compose chain B. Note that there is a non zero time
between the invocation of the DLR(k).write(B) operation and its return.
DLR(k) register specification. A DLR(k) multi-reader multi-write register is defined by
the following properties.

Liveness. Any invocation of DLR(k).write(B) or DLR(k).read() terminates.
k-coherency. Any DLR(k).read() returns a value B such that B has a prefix B′ where B′

is the value of the register written by the last k-valid DLR(k).write(B′) operation that
happend before DLR(k).read(). Note that for the first read it is assumed that at least
one successful write operation happened before the start of the read.

I Theorem 2. When k > 0 and k is bounded a DLR(k) register is equivalent to a regular
register. When k =∞ a DLR(k) register is equivalent to a safe register.
I Theorem 3. DLR-Algorithm implements a DLR(k) register.

Operation DLR.read () is % issued by a reader %
(01) return(best_chain(T B) )

Operation DLR.write (B) is % issued by a writer %
(02) update_tree(T B, B) ; broadcast (<propose B>)
(03) repeat B′ = DLR.read ()
(04) until length(B′) ≥ length(B) + k
(05) if B= prefix(B′) return true
(06) else return abort
———————————————————–
(07) upon deliver(<propose B>) update_tree(T B, B)

The DLR-Algorithm emulates the distrib-
uted ledger register. Each miner manages one
local variable, called T B, that stores the dis-
tributed ledger. This variable locally serves
to construct the distributed ledger register.
- Function best_chain(T B) returns the best

chain as explained above, and
- Function update_tree(T B, B) fusions T B

with B.
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