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Integrating tools to improve finite element models of machine tools via experimental modal data

This paper presents a specific procedure to improve FE models of multi-axis machine tools that integrates well-tested numerical and experimental techniques for this type of mechanical systems: modal analysis and testing, Design of Experiments (DoE), sensitivity analysis and model updating. First, it is shown that experimental modal analysis must be performed by exciting the machine tool along every main direction and in different geometrical configurations to obtain a complete set of mode shapes and to evaluate the variation of critical parameters like stiffness of joints. In addition, it is demonstrated the interest of using lumped-mass models and DoE techniques to set limit values for parameters that describe joints between structural components and connections to the machine foundation. Results confirm that sensitivity based model updating using natural frequencies and MAC values as responses provides improved FE models that match reasonably well with experimental data.

Introduction

Today, machine tool manufacturers devote strong efforts to improve the dynamic behavior of machine tools under different operating conditions and subsequently to ensure the accuracy of the finished workpieces [START_REF] Altintas | Virtual machine tool[END_REF][START_REF] Quintana | Chatter in machining process: A review[END_REF]. This is a complex task because machine tools are comprised of different modules connected by guidance systems and drives that allow the relative movement between modules in accordance with the piece to be machined. As a consequence, dynamic characteristicsnatural frequencies and mode shapesare changed when different machine configurations are defined.

Therefore, the design process of modern machine tools is developed under virtual environments, where the Finite Element Method (FEM) is especially advised. The FEM provides a discretized model of the machine tool which, unfortunately, shows physical uncertainties in material properties and loads, and numerical uncertainties in the modeling and meshing processes, limiting the quality and reliability of the results achieved by this method. In addition, dynamic modeling of the machine tool connections is quite complicated due to their non-linear characteristics, which are functions of the interface pressure, contact area and surface finishes.

In order to solve these problems, in many cases, a prototype of the machine tool is developed to estimate its dynamic characteristics using experimental modal analysis (EMA) and compare them with those of the FE model. EMA is an important tool to study the dynamic behavior of mechanical systems [START_REF] Ewins | Modal Testing: Theory, Practice and Application[END_REF][START_REF] Maia | Theoretical and Experimental Modal Analysis[END_REF]. Using this technique it is possible to obtain information about natural frequencies with an error lower than 1%, which is one of its main advantages, and the corresponding mode shapes and damping factors. In addition, the last ones can only be obtained experimentally.

Therefore, the advantages of EMA make it interesting to validate and improve FE models, so the adapted models may simulate more adequately the dynamic behavior of mechanical systems, such as machine tools. Updating techniques [START_REF] Friswell | Finite Element Model Updating in Structural Dynamics[END_REF][START_REF] Janter | Construction oriented updating of dynamic finite element models using experimental modal data[END_REF] are the most appropriate for achieving this objective, because using them it is possible to modify the FE model so that its dynamic characteristics resemble those obtained experimentally in the frequency range of interest. Garitaonandia et al [START_REF] Garitaonandia | Dynamic model of a centerless grinding machine based on an updated FE model[END_REF][START_REF] Garitaonandia | Modeling procedure of a machining center using updating techniques and substructure synthesis[END_REF], Bais et al. [START_REF] Bais | Studies in dynamic design of drilling machine using updated finite element models[END_REF] and Houming [START_REF] Houming | Dynamic characteristics of conjunction of lengthened shrink-fit holder and cutting tool in high-speed milling[END_REF] have successfully applied these techniques to machine tools.

Nevertheless, when uncertainties in the FE model are large, and lead to a poor correlation with the experimental model, model updating may not provide acceptable results or even do not converge. In this case it is particularly interesting to use, firstly, Design of Experiments (DoE) techniques [START_REF] Montgomery | Design and Analysis of Experiments[END_REF]. DoE looks for optimal combinations of independent variables in a large design space to maximize the amount of information obtained from a limited number of samples. In the field of manufacturing engineering this technique has been applied to select optimal machining conditions on electrical discharge machining [START_REF] Puertas | Analysis of the influence of the EDM parameters on surface quality, MRR and EW of WC-Co[END_REF][START_REF] Haddad | Investigation of cylindrical wire discharge turning (CWEDT) of AISI D3 tool steel based on statistical analysis[END_REF] and high speed milling [START_REF] Vivancos | Optimal machining parameters selection in high speed milling of hardened steels for injection moulds[END_REF]. Recently, Selvakumar et al. [START_REF] Selvakumar | Design and optimization of machining fixture layout using ANN and DOE[END_REF] have used DoE to design an optimum fixture layout for a workpiece setting the position of the locators and clamps as design variables.

In model updating, DoE techniques in conjunction with engineering judgment can be used to find a set of starting values of design variables that results in an initial better correlation with the experimental modal data, so subsequent model updating may be more successful.

The purpose of this work is to present different techniques to improve finite element models of multi-axis machine tools and the opportunities to integrate them in order to obtain better results. Hence, machine tool designer may select the adequate strategy, including the most appropriate techniques, according to the characteristics of the machine tool and machining processes. The ultimate goal would be to optimize the design to eliminate stability problems under variable operating conditions and avoid the pernicious effects of chatter vibrations.

Dynamic characteristics of the machine tool

Numerical models

In this section, the dynamic characteristics of the DANOBATGROUP DS630 high speed horizontal machining center are presented. This machine tool has three linear axes and is made up of four main modulesbed frame, column, framework and ramconnected by roller type linear guideways and driven by ball-screws and a linear motor. The major specifications of the machine are shown in table 1: Major specifications of the machine tool First, in order to obtain a first approximation for the values of the connections of the machine tool to the foundation in the two horizontal directions, the system was modeled as a mass-spring system as shown in Fig. 1, where m B and m R represent the mass of the bed frame (4316 kg) and the mass of the rest of the machine (2835 kg), respectively, and K A and K B-C are the stiffness of the connections foundation-bed frame and bed frame-column, respectively. This model can be easily solved to obtain the two mode shapes (figure 1 From figure 1, it can be observed that in the first mode shape the bed frame is fixed and the rest of the machine tool is moving, which is a common behavior. Nevertheless, in the second mode shape the bed frame is moving while the rest of the machine keeps immobile. The natural frequency of this mode depends only on the value of K A . In addition, as it will be shown later, in the experimental modal analysis that mode shape does not appear in the frequency range of interest. Therefore an initial value of K A = 750 N/mm has been selected to move that second mode shape beyond that range.

In the vertical direction, the stiffness assigned to the connection has been 1200 N/mm, since it is determined experimentally when the machine tool is attached to the foundation by means of anchor bolts which are tighten with a torque wrench.

Then, a FE model of the machine has been defined. This model, which consists of 12795 nodes and 14980 elements, is depicted in figure 2. Mainly shell and solid elements have been used in the modeling procedure. Figure 2 also shows the global coordinate system used in the model, where X-axis was defined as the longitudinal axis of the machine, Y-axis as the vertical one and Z-axis as the transverse one.

In addition, linear guideways have been modeled using spring elements, assigning high stiffness values in two directions, perpendicular and transverse to the direction of movement, based on stiffness curves provided by the guideway supplier, and very low stiffness values along directions where the movement is developed. A similar modeling has been followed for ball-screws, although in this case high stiffness values have only been set in the direction of movement [START_REF] Van Brussel | Towards a Mechatronic Compiler[END_REF].

Connections to the foundation have been modeled using also spring elements, and motors and the milling head as lumped masses. This initial configurationfigure 2 A second FE model of the machine tool has been defined centering the column on the bed frame by sliding it along the X axis, and moving forward the ram along Z axis. This configuration has been named CCF (figure 3). In this case, the distance between the milling head and the framework has increased from 615.00 mm (figure 2) to 765.25 mm. 

E, 125 GPa,7100 kg/m3

Young's modulus (E) and mass density () of the framework and ram (cast iron GGG70). Table 2: Main parameter values of the FE models.

Eigenvalues and eigenvectors have been calculated from the assembled mass and stiffness matrices of both numerical models. According to several tests developed under chatter conditions [START_REF] Muñoa | Optimization of Hard Material Roughing by means of a Stability Model[END_REF][START_REF] Muñoa | Interaction between Multiple Modes in Milling Processes[END_REF], the frequency range of interest has been defined as 10 Hz to 120 Hz. The natural frequencies obtained from the FE models are shown in table 3. 

Configuration

Experimental modal analysis

In order to experimentally determine the dynamic characteristics of the machining center, an impact modal test was performed by exciting the system with an instrumented hammer. Translational acceleration responses in the X-, Y-and Z-axes were measured in 75 points using triaxial accelerometers, so accelerance frequency response functions (FRF) corresponding to 225 degrees of freedom were obtained. Fig. 4 illustrates the geometry used in the analysis for CCF configuration; impact force was applied in point 5 along X and Y directions. A similar setup was used for RCC configuration. From the measured FRFs, a polyreference version of the Least Squares Complex Frequency (pLSCF) estimator [START_REF]FEMtoolsTM Modal Parameter Extractor User's Guide[END_REF] was used to extract the system modal parameters. In order to verify whether the estimated poles were valid or spurious, the extraction was carried out on different ways: either using the complete data set of frequency response functions or FRFs from only one direction, selecting different bandwidths and model orders, etc. In this machine tool, this matter has been particularly complex because poles are very close to each other in the bandwith 50-70 Hz and most of them are heavily damped. Table 4 shows natural frequencies and a brief description of the different mode shapes.

Mode order

Natural frequency (Hz)

Damping ratio (%)

Description of the mode shape 

Comparison between FE and experimental modal data

At this point, there are two sets of different results, related to numerical and experimental models. Therefore, it is quite important to evaluate the correspondence between these two models, because it is necessary that both models show a considerable degree of correlation, in order to improve the FE model successfully.

First, geometrical correlation has been developed to match the different coordinate and unit systems used in the models, and then, mode shape correlation has been performed to establish a reliable pairing between numerical and experimental modes. An easy indicator to compare and contrast modal vectors from different sources is the Modal Assurance Criterion [START_REF] Allemang | Investigation of some multiple input/output frequency response experimental modal analysis techniques[END_REF]. The modal assurance criterion (MAC) shows the degree of linearity between two modal vectors as follows:

                      exp exp 2 exp exp ,             T num T num T num num MAC (1)
and it can take on values from 0, showing lack of correspondence between modal vectors, to 1, which means that modal vectors are the same but with different scaling.

Tables 5 and6 From table 5, it can be observed that the correlation is good, with experimental modes 1, 2, 3, and 4, having MAC values greater than 76%, and experimental modes 5, 6, 7 and 8 MAC values between 68% and 75%. Nevertheless, experimental modes 2 and 4, and 7 and 8 are paired with the same numerical modes, 3 and 6 respectively. Also, although these MAC values point out that the correlation between the corresponding numerical and experimental mode shapes is promising, it can be seen that there are some significant differences in the natural frequencies of these mode shapes, so it is necessary to adjust the FE model. In this table, it is shown a slightly better correlation than in the previous one. Mean frequency difference is 4.3% and mean MAC value is 86.5%. Experimental modes 1, 2, 5 and 6 show MAC values greater than 87%, and experimental modes 3, 4, and 7 MAC values between 69% and 76%. However, experimental modes 3 and 4, are paired with the 3rd numerical mode. In addition, there are differences in the frequencies of numerical and experimental mode shapes, up to 6.8%. Therefore, these results confirm that it is necessary to improve the FE model for both configurations.

3 Improvement of the FE model

Selection of candidate design variables

In order to improve the FE model, first it is necessary to select the design variables to work with. There are a large number of design parameters to be considered in this machining center, but in fact the main uncertainties in the FE model are concentrated on:

 stiffness values of the connection elements between main components of the machine tool (fig. 5),  stiffness values assigned to the anchor bolts which attach the machine tool to the foundation (figure 6),  geometrical position and inertia contribution of servo motors, which are modeled as lumped masses, and  material properties of the cast iron modules of the machining center.

A visual analysis of mode shapes shows that their movements are mainly due to the flexibility of connection elements and therefore small changes in the values of material properties would not largely affect them. On the other hand, it is well known that in a dynamic FE model, inertial terms in the mass matrix only affect to higher mode shapes, in this case, beyond the frequency range of interest. So, none of them has been selected as a candidate design variable to be changed. 

Design of experiments (DoE)

In the previous paragraph, design variables have been reduced from four to two groups. Nevertheless, the number of variables is still large: three stiffness values for the joints to the foundation and six stiffness values for the joints between modules of the machining center (table 2). In addition, last ones show great uncertainties, because in fact, a complex element like a guideway is modeled as a simple element like a spring. And, although the manufacturer provides stress-deformation curves, these curves show changing values depending on the load applied, which is also variable along the operational movement of the machining center. Values presented in table 2 for these connections are mean values obtained from the graphics supplied by the manufacturer.

Therefore, in order to apply an updating procedure, it is necessary to set adequate starting points and so, to increment the possibilities to reach a better model. To do so, Design of Experiments (DoE) has been used to randomly select a limited number of samples of the design variables which provides the better information about the responses. In this work, D-criterion [START_REF] De Aguiar | D-optimal designs[END_REF] has been used to select the best combination of design variables.

The D-criterion states that among all design matrices X containing a set of value combinations of design variables, the one that leads to a model matrix that minimizes the determinant of (X T X) -1 is optimal. In statistics, this is equivalent to maximize the determinant of X T X.

At this point, design variables has been studied again by groups, because after the first selection of candidate design variables, nine stiffness parameters are still remaining, and the larger the number of design variables the lesser the quality and effectiveness of the D-criterion. The first group has been the three stiffness values of the elements modeling the anchor bolts, whose initial values were set in 2.1. In this case, the analysis would try to find if horizontal (KX) and transverse (KZ) stiffness values were definite or a small increment would improve correlation results. So, lower limit was taken as 750 N/mm and upper limit as 1000 N/mm. The vertical stiffness (KY) value was also included in the analysis and the range was taken from 1000 N/mm to 1400 N/mm. 500 design trials were tried and from them 50 Doptimal samples were selected.

After computing, any improvement in model responses was observed using the selected samples. Therefore, the initial values were considered as optimal.

Finally, the second group of stiffness variables was selected. The procedure was repeated and in this case results provided an improvement of the FE model, because the mean frequency difference was dropped from 4.4% to 2.9% in CCF configuration and from 4.3% to 2.1% in RCC configuration. Nevertheless, in both cases the fourth paired mode shapes still have large frequency difference. In addition, there have hardly been changes in MAC values. 

Iterative updating based on sensitivity analysis

After the DoE phase, that has closed the numerical and experimental models, it is assumed that the updating procedure will easily provide a better solution. In this work, and iterative procedure based on sensitivity analysis has been used to improve the FE model of the machine tool. Iterative methods [START_REF] Fillod | Parametric correction of regular non-dissipative finite-element models[END_REF][START_REF] Janter | QA-model updating[END_REF] search for optimal changes on specific properties of the finite element model, as mass density, modulus of elasticity, stiffness of connections, etc., that minimize differences between FEM and EMA responses. These techniques provide more flexibility, physical meaning and interpretability than the so-called direct methods [START_REF] Baruch | Optimal weighted orthogonalization of measured modes[END_REF][START_REF] Fissette | Mathematical model update considerations for engineering applications[END_REF], where the individual terms of the system matrices K and M are directly adjusted.

In the finite element method, a sensitivity analysis provides a sensitivity matrix S, whose terms show how a particular response quantity Y changes with respect to a variation of a model parameter P. If there are a set of parameters n, their influence on a set of responses m can be expressed in matrix form as

P S Y     (2) 
where:

j i ij P Y s    , (3) 
Due to its lower computational cost, it is convenient to determine s ij using and analytical approach based on the differentiation of the structural undamped eigenvalue equation [START_REF] Fox | Rates of change of eigenvalues and eigenvectors[END_REF]. Also, in finite element models it is common that there are significant differences between magnitudes of the parameters which are in the denominator of (3). Hence, the values of the sensitivity coefficients s ij will be different by several orders of magnitudes and erroneous conclusions when analyzing S matrix could be extracted. Therefore, it is appropriate to use normalized sensitivities instead, defined as

  j j i norm ij P P Y s     (4) 
Recalling [START_REF] Quintana | Chatter in machining process: A review[END_REF], when applying P to the initial FE model, vector of responses Y FEM will be modified as

P S Y Y Y Y FEM FEM MFEM        (5)
The objective would be to obtain an ideal vector of parameter changes, P ideal , so

EMA exact FEM IDEAL FEM MFEM Y Y Y P S Y Y         (6)
But, in general, it will be impossible to achieve the exact change of the model responses, Y exact . Instead, an optimal vector Y opt will be obtained as

E P S E Y Y opt opt exact         , (7) 
And rearranging ( 6) and ( 7) leads to

  opt FEM EMA P S Y Y E      (8)
Applying a least-squares criterion [START_REF] Morris | Foundations of Structural Optimization: A Unified Approach[END_REF], an optimal solution P opt would be obtaining minimizing the sum of squared terms of vector E. But, if different types of responses are selected, for example, natural frequencies and MAC values, sensitivity levels will be quite different between finite element model parameters, as explained before, and matrix S might be ill-conditioned. Therefore, it is highly recommended to use relative responses differences and relative parameters instead of absolute ones, and normalized sensitivities as well. Moreover, it is possible to apply weighting coefficients w to parameter and response values, expressing the degree of confidence on these terms. So, any component of the error vector E would be expressed as

                        jP j n j iEMA iY j jopt jP j i iEMA iFEM iEMA iY i w P Y w P P w P Y Y Y Y w E 1                    n j j jopt jP ij iEMA iFEM iEMA iY P P w b Y Y Y w 1 (9)
or, in matrix form

  P Y w rel w rel P B Y E      (10) 
In addition, as vector of response differences contains large values and Taylor's expression in ( 2) is truncated after the first term, it is advisable to impose upper and lower bounds to parameter changes. Hence, in order to achieve the desired changes, it will be necessary to develop several iterations.

In this work, natural frequencies and MAC values between paired mode shapes have been selected as responses to perform the updating procedure. It is not convenient to include mode shapes directly because they contain more measurement errors than eigenvalues and are less sensitive to changes in the updating parameters. So, the objective function has tried to minimize differences between numerical and experimental frequencies and brought MAC values to 100%. From table 10, it can be observed that:

 The updating phase proposes changes in the stiffness values assigned to spring elements which represent anchor bolts, while the DoE phase did not modify them.

 Most of the final stiffness values for the rest of the design variables are close to those indicated by the DoE phase. Therefore, mean frequency differences for both configurations are quite good also after DoE step. In addition, those values have been an adequate starting point for the updating phase, which converged quickly to better results.

 Although final stiffness values between configurations are not equal, the differences are not so large. This seems to be physical significance, because both configurations are not so physically different, although, on the other side, their dynamic behavior is quite different.

In addition, tables 11 and 12 show that:

 Mean frequency differences have been considerably improved, diminishing up to less than half the initial ones. In fact, the frequencies of the dominant mode shapes in plane YZ are coincident with the experimental ones. Also, in CCF configuration the frequency of the dominant mode shape in plane XZ is only 1.4 Hz larger than experimental. These results were already reached before the updating phase, i.e., the DoE phase provided interesting results.

 Nevertheless, the frequencies of two mode shapes show great differences with the corresponding experimental ones, 5.0% and 7.4%, which is a poor result.

 MAC values have hardly changed along both steps. Perhaps this observation and the previous one could be an indication that a better initial modeling should have been done.

Multi-model updating

In this case, where several experimental modal analyses are available, related to different configurations of the machine tool, it is possible to update physical parameters of the FE model for all configurations simultaneously. This technique is named as multi-model updating (figure 7). 

            .... (11) 
The previous expression shows z parameter vectors, one for each configuration. But, in this case, the differences between FE models are only due to the changing position of the main components. Therefore, it is possible to establish a unique set of parameters for the complete set of configurations, and hence, expression [START_REF] Montgomery | Design and Analysis of Experiments[END_REF] which is the base expression for iterative updating (2), but taking into account all the configurations. This technique is known as multi-model updating and has been used by Lauwagie [START_REF] Lauwagie | Determination of the in-plane elastic properties of the different layers of laminated plates by means of vibration testing and model updating[END_REF] to identify the elastic properties of layered materials. In this work, this procedure has been applied after the DoE step, but there has not been convergence along the process. This result could have been appeared because the DoE step has already lead to quite good results.

Multi-axis machine tools are complex mechanical systems made up of sliding substructures connected by specific elements, so relative movement is allowed, which causes variable dynamic characteristics. This paper presents a methodology to improve FE models of multi-axis machine tools using, in an integrated way, different experimental and numerical techniques. First, it is demonstrated the convenience to experimentally excite the machine tool along the main directions because mode shapes appeared in the principal planes of the machine. In addition, it is preferable to dispose different geometrical configurations of the machine tool. In that way it is possible to evaluate the varying values of some design variables, as those related to the modeling of joints.

On the other hand, results confirm that the integration of Design of Experiment techniques and sensitivity based model updating provides improved FE models that better represent the machine tool. Although DoE techniques are computational expensive, it has been shown that facilitate starting points to develop a subsequent model updating phase. Even, results reached by means of DoE techniques are quite appropriate.

Iterative updating techniques minimize an error function between measured and numerical data. It is shown that natural frequencies and MAC values between paired mode shapes are the most convenient data type to include in that function, even though MAC values are not improved, because the correspondence between numerical and experimental data is ensured. Also, due to the existence of modal data for several configurations, it is possible to perform a multi-model updating procedure, where FE models for those configurations are simultaneously updated. Nevertheless, in this case, it has not been possible to reach better results after DoE phase. Finally, along the entire process, experience and engineering judgment must complement the numerical procedures in order to obtain physical meaningful changes in the parameters of the FE model.

The methodology presented can be generalized to any multi-axis machine tool and will allow obtaining an improved finite element model which would serve as a starting point to optimize the machine design and eliminate stability problems under operating conditions.
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 1 Figure 1: Mass-spring model of the machine tool (left). Mode shapes (right).
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 2 Figure 2: FE model of the machine tool (RCC configuration).
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 4 Figure 4: Experimental model of the machine tool (CCF configuration).
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 5 Figure 5: Connection between bed frame and column: FE model and photograph.
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 6 Figure 6: Supporting conditions of the machining center: FE model and photograph.
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 7 Figure 7: Flowchart of multiple-configuration strategy (two configurations).

  1. 

	Axis	X	Y	Z
	Stroke (mm)	1000	800	630
	Traverse speed (m/min)	60	60	60
	Acceleration (m/s 2 )	10	10	10
	Drive type	FANUC Linear motor Ball screw + servo motor Ball screw + servo motor
	Guideway	INA RUE55 HL	INA RUE55 HL	INA RUE45 HL
		Table		

Table 2

 2 describes the main parameter values for both FE models.Figure 3: FE model of the machine tool (CCF configuration).

	Parameter(s)	Value(s)	Description
	Stiffness X,Y,Z	750,1200,750 N/mm Connections foundation-bed frame (anchor bolts).
	Stiffness X,Y,Z	1,720,750 N/mm	Connections bed frame-column (guideway).
	Stiffness X,Y,Z	720,1,750 N/mm	Connections column-framework (guideway).
	Stiffness X,Y,Z	560,750,1 N/mm	Connections framework-ram (guideway).
	Lumped mass	120 kg	Spindle motor + coupling
	Lumped mass	5 kg	Milling head
	Stiffness Y	176.7 N/mm	Ball-screw.
	Lumped mass	100 kg	Servo motor Y.
	Stiffness Z	172.7 N/mm	Ball-screw.
	Lumped mass	100 kg	Servo motor Z.

E,

125 GPa,7100 kg/m3 Young's modulus (E) and mass density () of the bed frame and column (cast iron).

Table 3 :

 3 Natural frequencies of the initial models.

		f1	f2	f3	f4	f5	f6
	RCC	35.3	60.9	68.7	72.8	89.7	110.7
	CCF	36.0	53.1	61.7	70.8	82.6	107.6

Table 4 :

 4 Natural frequencies and mode shapes obtained by experimental modal analysis.

	1 -RCC	33.7	4.8	Rotation of the whole structure about the X-axis
	2 -RCC	60.5	3.3	Y-translation of framework and ram. Dominant mode
				shape in plane YZ
	3 -RCC	65.9	6.0	X-translation of the upper part of the machine.
	4 -RCC	69.2 -	3.5	X-translation of the upper part of the machine. Similar to
				3-
	5 -RCC	77.2	5.4	X-translation of the upper part of the machine. Ram is in
				counter phase.
	6 -RCC	84.0	5.1	Rotation of framework and ram about the X-axis.
	7 -RCC	106.5	3.3	Rotation of the whole structure about the Y-axis. Ram is
				in counter-phase.
	1 -CCF	34.6	5.5	Rotation of the whole structure about the X-axis
	2 -CCF	50.8	2.0	X-translation of the upper part of the machine.
	3 -CCF	52.4	7.1	Y-translation of framework and ram. Dominant mode
				shape in plane YZ and heavily damped.
	4 -CCF	57.0	3.6	X-translation of the upper part of the machine. Similar to
				2-CCF but the relative movement of the ram is larger.
				Dominant mode shape in plane XZ.
	5 -CCF	75.3	1.7	Rotation of the upper part of the machine about the Z-axis.
				Ram is in counter phase.
	6 -CCF	79.2	6.1	Rotation of framework and ram about the X-axis.
	7 -CCF	98.9	2.3	Rotation of the whole structure about the Y-axis. Ram is
				in counter-phase.
	8 -CCF	110.2	3.0	Similar to the previous mode shape.

Table 5 :

 5 show frequency differences and MAC values for RCC and CCF configurations. In these tables, MAC values corresponding to paired mode shapes have been highlighted. Mean frequency difference is 4.4% and mean MAC value is 79.7%. Frequencies differences and MAC values for CCF configuration.

	FEA	Freq.	EMA1	EMA2	EMA3	EMA4	EMA5	EMA6	EMA7	EMA8	Diff.
	CCF	(Hz)	34.6	50.8	52.4	57.0	75.3	79.2	98.9	110.2	(%)
	1	36	94.5	0.1	1.7	0.0	0.1	1.8	0.0	0.1	4
	2	53.1	2.5	0.0	79.5	0.3	0.5	4.1	0.0	0.1	1.3
	3	61.7	0.0	76.1	0.0	88.8	7.2	0.4	4.9	4.5	8.2
	4	70.8	0.1	1.5	0.0	3.8	68.7	0.3	3.6	2.3	-6.0
	5	82.6	10.8	0.4	29.1	0.1	1.4	74.6	0.9	0.0	4.3
	6	107.6	0.0	2.7	0.0		4.0	0.2	71.7	72.3	3.9

Table 6 :

 6 Frequencies differences and MAC values for RCC configuration.

	FEA	Freq.	EMA1	EMA2	EMA3	EMA4	EMA5	EMA6	EMA7	Diff.
	RCC	(Hz)	33.7	60.5	65.9	69.2	77.2	84.0	106.5	(%)
	1	35.3	96.5	0.6	0.3	1.1	0.0	2.1	0.1	4.7
	2	60.9	1.5	98.9	1.1	0.8	0.0	1.9	0.1	0.7
	3	68.7	0.0	0.0	76.2	69.3	5.3	0.0	0.9	4.2
	4	72.8	0.1	0.0	28.6	34.9	87.4	1.5	2.6	-5.7
	5	89.7	2.2	0.4	1.4	5.6	1.0	90.7	0.1	6.8
	6	110.7	0.0	0.1	0.0	4.7	0.1	0.0	69.2	3.9

Table 8 :

 8 Table 7 shows final stiffness values and tables 8 and 9 show new frequency differences and MAC values for both configurations. Frequencies differences and MAC values for CCF configuration after DoE.

		Variable	Connection	Initial Values	Final values	Diff. (%)	
		Stiffness KY	Bed frame-column	720			720	0.0	
		Stiffness KZ	Bed frame-column	750			350	53.3	
		Stiffness KX	Column-framework	720			270	-62.5	
		Stiffness KZ	Column-framework	750			350	-53.3	
		Stiffness KX	Framework-ram	560			80	-85.7	
		Stiffness KY	Framework-ram	750			750	0.0	
				Table 7: Stiffness values after DoE.		
	FEA	Freq.	EMA1	EMA2	EMA3	EMA4	EMA5	EMA6	EMA7	EMA8	Diff.
	CCF	(Hz)	34.6	50.8	52.4	57.0	75.3		79.2	98.9	110.2	(%)
	1	35.4	94.6	0.1	1.7	0.0	0.1		1.8	0.0	0.1	2.3
	2	52.4	2.6	0.0	79.8	0.3	0.5		4.0	0.0	0.1	0
	3	58.4	0.0	75.3	0.0	88.1	8.1		0.4	4.2	4.6	2.5
	4	70.5	0.1	1.3	0.0	2.2	68.1		0.3	3.9	2.3	-6.4
	5	77.2	10.6	0.4	28.5	0.1	1.4		76.0	1.0	0.0	-2.5
	6	102.5	0.0	2.7	0.0	4.2	4.3		0.2	72.5	72.4	3.6

Table 9 :

 9 Frequencies differences and MAC values for RCC configuration after DoE.

Table 10 :

 10 Table 10 shows final stiffness values and tables 11 and 12 show new frequency differences and MAC values for both configurations. Stiffness values after updating.

		Variable			Connection	Initial Values	Final values after DoE	Final values RCC	Final values CCF
		Stiffness KX			Anchor bolts	750	750			1125	975
		Stiffness KY		Anchor bolts	1200	1200			1300	1090
		Stiffness KZ			Anchor bolts	750	750			1100	750
		Stiffness KY	Bed frame-column	720	720			600	650
		Stiffness KZ		Bed frame-column	750	350			330	230
		Stiffness KX	Column-framework	720	270			610	650
		Stiffness KZ	Column-framework	750	350			320	370
		Stiffness KX			Framework-ram	560	80			65	68
		Stiffness KY		Framework-ram	750	750			590	710
	FEA	Freq.	EMA1	EMA2	EMA3	EMA4	EMA5	EMA6	EMA7	EMA8	Diff.
	CCF	(Hz)	34.6		50.8	52.4	57.0	75.3		79.2	98.9	110.2	(%)
	1	34.7	94.4		0.1	1.4	0.0	0.1		1.7	0.0	0.1	0.0
	2	52.4	2.8		0.0	79.8	0.3	0.5		4.0	0.0	0.1	0.0
	3	58.4	0.0		75.4	0.0	87.8	8.2		0.4	3.6	5.0	2.5
	4	71.5	0.1		1.5	0.0	2.8	66.2		0.3	3.2	1.9	-5.0
	5	77.7	11		0.4	28.5	0.1	1.4		75.8	1.0	0.0	-1.9
	6	100.3	0.0		2.9	0.0	5.1	4.5		0.2	73.2	71.5	1.4

Table 11 :

 11 Frequencies differences and MAC values for CCF configuration after updating. Mean frequency difference: 1.8%. Mean MAC value: 79.6%.

	FEA	Freq.	EMA1	EMA2	EMA3	EMA4	EMA5	EMA6	EMA7	Diff.
	RCC	(Hz)	33.7	60.5	65.9	69.2	77.2	84.0	106.5	(%)
	1	34.6	96.5	0.5	0.3	1.1	0.0	2.3	0.1	2.7
	2	60.5	1.5	98.5	1.1	0.7	0.0	2.7	0.1	0.0
	3	66.0	0.1	0.0	80.4	78.7	28.1	0.2	1.9	0.2
	4	71.5	0.1	0.0	5.2	9.6	82.7	1.9	1.6	-7.4
	5	83.7	0.7	0.6	1.4	4.8	1.0	89.7	0.1	-0.4
	6	105.1	0.0	0.0	0.1	4.1	0.2	0.0	69.3	-1.3

Table 12 :

 12 Frequencies differences and MAC values for RCC configuration after updating. Mean frequency difference: 2.0%. Mean MAC value: 86.2%.
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