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Spectral Methods — Part 2: A comparative
study of reduced order models for moisture

transfer diffusive problems

Suelen Gasparin∗, Julien Berger, Denys Dutykh, and Nathan Mendes

Abstract. This paper explores in details the capabilities of two model reduction tech-

niques – the Spectral Reduced Order Model (Spectral–ROM) and the Proper Generalised

Decomposition (PGD) – to numerically solve moisture diffusion problems. Both tech-

niques assume separated tensorial representation of the solution by a finite sum of function

products. The Spectral–ROM fixes a set of spatial basis functions to be the Chebyshev

polynomials and then, a system of ordinary differential equations is built to compute the

temporal coefficients of the solution using the Galerkin projection method, while the

PGD aims at computing directly the basis of functions by minimising the residual. Both

approaches are compared for three different cases: i) linear transfer; ii) parametric prob-

lems and iii) nonlinear diffusive transfer. Results have highlighted that both numerical

techniques provide accurate solution and enable to reduce significantly the order of the

model, allowing a fast computation of physical phenomena such as the moisture buffer

effects that occur in porous building materials. For the linear and nonlinear cases, the

Spectral–ROM error decreases faster than the one for the PGD. Moreover, fewer modes

are required for the Spectral to compute a solution with equivalent accuracy. However,

for the parametric case, the PGD computed a reduced order model whose outputs depend

not only on the coordinates of space and time x and t , but also on the coordinate of

the parameter belonging to a defined interval. On the other hand, the outputs of the

Spectral–ROM depend only on the coordinates of space and time. The solution of the

parametric problem is obtained by computing the solution for each numerical value of a

given parameter within the defined interval.
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1. Introduction

Moisture in buildings is a subject of major concern as it may affect the energy consump-
tion and demand, besides its impact on the building occupants’ health and on material
durability as well. For the assessment of moisture effects, numerical tools have been devel-
oped to accurately simulate the processes of heat and moisture transfer in buildings. Some
successful applications of hygrothermal prediction tools are presented in [58].

Those tools are built using numerical approaches and discrete representations of the
continuous equations by means of standard and incremental techniques to compute the
solution. Due to stability conditions, most of the approaches are based on implicit schemes
as described in [10, 27, 35, 36, 41, 54, 56]. Nevertheless, these schemes require the solution
of large systems of equations (an order of 10 6 for 3−dimensional problems). Moreover,
when considering nonlinear building material properties, sub-iterations at each time step
are induced, increasing significantly the computational cost as mentioned in [1, 23, 24,
42]. Thus, innovative and efficient ways of numerical simulation are worth of further
investigation.

Recently, in [29], the improved explicit Dufort–Frankel scheme was explored for the
solution of moisture diffusion equation highlighting that the standard stability limitation
can be overcome. Considering a nonlinear case of moisture transfer, it was reported that
the proposed explicit approach needed only 15% of the CPU time required by the Crank–
Nicolson scheme to compute the solution. Even if numerical gains are observed, these
approaches are still based on large original models, whose complexity is of order of p ∼
O ( 10 6 ) or even p ∼ O ( 10 7 ) , in which p is the number of operations of the model.
For this reason, model reduction techniques appear as a very interesting alternative to
substantially reduce the number of operations and save computational resources (CPU
time and memory).

Model reduction techniques aim at decreasing the model order, preserving a satisfactory
accuracy to represent the physical phenomena. In building physics, several model reduc-
tion techniques have been employed. The a posteriori approaches have been used such as
Proper Orthogonal Decomposition (POD) for linear heat and moisture transfer in [48] or
Modal Basis Reduction (MBR) for convective heat transfer problems in [31, 32, 49]. A pri-

ori techniques such as Proper Generalized Decomposition (PGD) have been used in [13] to
treat nonlinear heat and moisture transfer problems. More recently, the a priori Spectral
Reduced Order Model has also presented interesting results in [28]. Therefore, this paper
aims at comparing these two a priori reduced order model techniques, to compute the
moisture diffusive transfer in porous materials. The a posteriori methods are not consid-
ered here due to their inherent extra-computational cost. Several features of the methods
are analyzed in terms of both model order reduction and accuracy of the computed solu-
tion. The investigation is carried for three case studies: (i) linear transfer; (ii) parametric
problems, aiming at computing a model whose solution depends on the material properties
and (iii) nonlinear transfer with moisture dependent material properties.
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Therefore, the manuscript is organized as follows: first, Section 2 presents the description
of the physical phenomena; then Section 3 gives explanation of the PGD and Spectral
reduced order model techniques; and, further sections present the three different case
studies: (i) linear transfer in Section 4; (ii) parametric problem in Section 5 and (iii)
nonlinear transfer in Section 6.

2. Moisture transfer in porous materials

The physical problem involves unidimensional moisture diffusion through a porous ma-
terial defined by the spatial domain Ωx = [ 0 , L ]. The moisture transfer only occurs
according to the liquid and vapor diffusion. The physical problem can be formulated as
[35]:

∂ρ l+v

∂t
=

∂

∂x

(

k l
∂P c

∂x
+ k v

∂P v

∂x

)

, (2.1)

where ρ l+v is the volumetric moisture content of the material and k v and k l are the vapor
and liquid permeabilities.

Eq. (2.1) can be written using the vapor pressure P v as the driving potential. For this,
we consider the physical relation, known as the Kelvin equation, between P v and P c :

P c = R v · T · ln
(

P v

P s(T )

)

,

∂P c

∂P v

=
R v T

P v

.

Thus, we have:

∂P c

∂x
=

∂P c

∂P v

· ∂P v

∂x
+

∂P c

∂T
· ∂T
∂x

.

As we consider the mass transfer under isothermal conditions, the second term vanishes
and we obtain:

∂P c

∂x
=

R v T

P v

· ∂P v

∂x
.

In addition, we have:

∂ρ l+v

∂t
=

∂ρ l+v

∂φ
· ∂φ

∂P v

· ∂P v

∂t
+

∂ρ l+v

∂T
· ∂T
∂t

≃ ∂ρ l+v

∂φ
· ∂φ

∂P v

· ∂P v

∂t
.

Considering the relation ρ l+v = f (φ) = f (P v , T ) , obtained from material properties
and from the relation between the vapour pressure P v and the relative humidity φ , we get:

∂ρ l+v

∂t
= f ′(P v)

1

P s

∂P v

∂t
.
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Eq. (2.1) can be therefore rewritten as:

f ′(P v) ·
1

P s
· ∂P v

∂t
=

∂

∂x

[

(

k l
R v T

P v
+ k v

) ∂P v

∂x

]

. (2.2)

The material properties f , k l and k v depend on the vapor pressure P v . Therefore, we de-

note dm
def
:= k l·

R v T

P v
+ k v as the global moisture transport coefficient and cm

def
:= f ′(P v)

1

P s
the moisture storage coefficient.

At the material bounding surfaces, Robin-type boundary conditions are considered:
(

k l
R v T

P v

+ k v

)

· ∂P v

∂x
= h v,L · (P v − P v,L ) − g l,L , x = 0 , (2.3a)

−
(

k l
R v T

P v
+ k v

)

· ∂P v

∂x
= h v,R · (P v − P v,R ) − g l,R , x = L , (2.3b)

where P v,L and P v,R are the vapor pressure of the ambient air, g l,L and g l,R are the liquid
flow (driving rain) at the two bounding surfaces. We consider a uniform vapor pressure
distribution as the initial condition:

P v = P i
v , t = 0 .

It is important to obtain a unitless formulation of governing equations while performing
mathematical and numerical analysis of given practical problems, due to a certain num-
ber of reasons already discussed in [29]. Therefore, we define the following dimensionless
parameters:

u =
P v

P i
v

, uR =
P v,R

P i
v

, uL =
P v,L

P i
v

, x ⋆ =
x

L
,

t ⋆ =
t

t 0
, c ⋆

m =
cm · L 2

d 0
m · t 0 , d ⋆

m =
dm

d 0
m

, Bi v, L =
h v,L · L
d 0
m

,

Bi v,R =
h v,R · L

d 0
m

, g ⋆
l,L =

g l,L · L
d 0
m · P i

v

, g ⋆
l,R =

g l,R · L
d 0
m · P i

v

.

In this way, the dimensionless governing equations are then written as:

c ⋆
m

∂u

∂t ⋆
=

∂

∂x ⋆

(

d ⋆
m

∂u

∂x ⋆

)

, t ⋆ > 0 , x ⋆ ∈
[

0, 1
]

, (2.4a)

d ⋆
m

∂u

∂x ⋆
= Bi v,L · (u − uL ) − g ⋆

l,L , t ⋆ > 0 , x ⋆ = 0 , (2.4b)

− d ⋆
m

∂u

∂x ⋆
= Bi v,R · (u − uR ) − g ⋆

l,R , t ⋆ > 0 , x ⋆ = 1 , (2.4c)

u = 1 , t ⋆ = 0 , x ⋆ ∈
[

0, 1
]

. (2.4d)

Finally, this is the problem of interest considered in this work. The procedure of the
methods used for the problem solution is described in the next section.
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3. Methodology

For the sake of simplicity, without losing the generality, the methods are first explained

considering d ⋆
m and c ⋆

m as constants, noting ν
def
:=

d ⋆
m

c ⋆
m

and thus, considering a linear diffu-

sion equation:

∂u

∂t
= ∇ ·

(

ν∇u
)

, (3.1)

for x ∈
[

− 1, 1
]

. The boundary conditions are:

∂u

∂x
= Bi v,L

(

u − uL ( t )
)

, x = − 1 , (3.2a)

− ∂u

∂x
= Bi v,R

(

u − uR ( t )
)

, x = 1 . (3.2b)

Using a standard discretization method, such as Euler or Crank–Nicolson, to compute
the solution of Eq. (3.1) yields in computing a solution u ( x , t ) for each point of the
discretised spatial and time domains. The following is adopted: Nx and N t , which stand
for the number of elements according to the discretization of the space and time domains.
Thus, the order of the so-called large original model is p = Nx ·N t .

Model reduction aims at decreasing the degrees of freedom present in a numerical model.
It aims at approximating the solution by a lower order model N ≪ p without reducing
drastically the fidelity of the physical model. One of the features is to significantly decrease
the computational resources space (CPU time and memory). The reduced Spectral and
PGD methodologies are described in the next Section.

3.1. Reduced Spectral method

Spectral methods consider a global representation of the solution, which means the de-
rivative at a certain spatial point depends on the solution of the entire domain and not only
on its neighbors [16]. Besides, spectral methods consider a sum of polynomials that suit
for the whole domain, almost like an analytical solution, providing a high approximation of
the solution. Therefore, as its error decreases exponentially, it is possible to have the same
accuracy of other methods but with a lower number of Galerkin modes, which makes
this method memory minimizing, allowing to store and operate a lower number of degrees
of freedom [57].
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3.1.1 Application of the Spectral–ROM

The idea of the spectral method is to assume that the unknown u ( x , t ) from Eq. (3.1)
can be approximatively represented as a finite sum [40, Chapter 6]:

u ( x , t ) ≈ un ( x , t ) =

n
∑

i=0

a i ( t )φ i ( x ) . (3.3)

Here, {φ i ( x )}n
i=0 is a set of basis functions that remains constant in time, {a i ( t )}n

i=0 are
the corresponding time-dependent spectral coefficients, n represents the number of degrees
of freedom of the solution. Eq. (3.3) can be seen as a series truncation after N = n + 1
modes [28]. The Chebyshev polynomials are chosen as the basis functions as they are
optimal in L∞ approximation norm [30]. Therefore, we have:

φ i ( x ) ≡ T i ( x ) .

For more details on Chebyshev polynomials the readers may refer to [16, 50]. As we have
chosen the basis functions, we can compute the derivatives:

∂un

∂x
=

n
∑

i=0

a i ( t )
∂T i

∂x
( x ) =

n
∑

i=0

ã i ( t ) T i ( x ) , (3.4a)

∂ 2un

∂x 2
=

n
∑

i=0

a i ( t )
∂ 2T i

∂x 2
( x ) =

n
∑

i=0

˜̃a i ( t ) T i ( x ) , (3.4b)

∂un

∂t
=

n
∑

i=0

ȧ i ( t ) T i ( x ) , (3.4c)

where the dot denotes ȧ i ( t )
def
:=

da ( t )

dt
. Note that the derivatives are re-expanded in the

same Chebyshev basis function. As a result, coefficients {ã i ( t )} and {˜̃a i ( t )} must be
re-expressed in terms of coefficients {a i ( t )}. The connection is given explicitly from the
recurrence relation of the Chebyshev polynomial derivatives [50].

The residual is obtained by replacing the derivatives (3.4b) and (3.4c) in the diffusion
equation (3.1):

R =

∥

∥

∥

∥

∥

n
∑

i=0

[

ȧ i ( t ) − ν ˜̃a i ( t )
]

T i ( x )

∥

∥

∥

∥

∥

−→ min , (3.5)

which is considered a misfit of the approximate solution. The residual is minimized via the
Galerkin technique, which sets Eq. (3.5) orthogonal to the Chebyshev basis functions
〈R , T i 〉 = 0 . Thus, it leads to the following relation between the spectral coefficients:

ȧ i ( t ) − ν ˜̃a i ( t ) = 0 , i = 0, 1, . . . , n− 2 .

Finally, after the projection and expansion of the residual, the result is a system of Ordinary
Differential Equations (ODE), with N − 2 equations to be solved as a function of time. The
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two extra coefficients are obtained by substituting the derivative (3.4a) into the boundary
conditions (3.2):

n
∑

i=0

ã i ( t ) T i (−1) − Bi v,L

n
∑

i=0

a i ( t ) T i (−1) + Bi v, L uL ( t ) = 0 , (3.6a)

−
n
∑

i=0

ã i ( t ) T i ( 1 ) − Bi v,R

n
∑

i=0

a i ( t ) T i ( 1 ) + Bi v,R uR ( t ) = 0 , (3.6b)

with T i (−1) = (−1) i and T i ( 1 ) ≡ 1 (see [50]). Eqs. (3.6a) and (3.6b) are written in an
explicit way, with coefficients an and an−1 expressed in terms of the other coefficients.

Therefore, the original partial differential equation (3.1) is reduced to a system of ODEs
plus two algebraic expressions. For linear problems, the system of ODEs can be explicitly
built. Otherwise, we have a system of Differential–Algebraic Equations. Moreover, the
reduced system of ordinary differential equations has the following form:

ȧ i ( t ) = A a i ( t ) + b ( t ) , i = 0, 1, . . . , n− 2 , (3.7)

where, A ∈ Mat (n−2)×(n−2)(R) , with constant coefficients and with O (n ) ≃ 10. Besides,

b ( t ) ∈ R
(n−2) is a vector coming usually from boundary conditions.

Initial values of the coefficients {a i (t = 0)} are computed by the Galerkin projection
of the initial condition [17]:

a i ( 0 ) =
2

π c i

ˆ 1

−1

u 0 ( x ) T i ( x )√
1 − x 2

dx , i = 0, 1, . . . , n− 2 , (3.8)

where, u 0 ( x ), is the dimensionless initial condition. After solving the reduced system
of ODEs (Eqs. (3.7) and (3.8)), it is possible to compose the solution along with the
Chebyshev polynomial.

Thus, by using the Spectral–ROM approach to build the reduced order model, the time-
dependent coefficients {a i ( t )} are computed by solving the following system:

{

ȧ = A a + b ( t ) ,

a ( 0 ) = a 0 ,
(3.9)

remembering that A ∈ Mat s×s (R) is a constant coefficient matrix, b ( t ) ∈ R
s is a vector

coming from the boundary conditions and a 0 is the vector of initial spectral coefficients.
The main advantage of a Spectral–ROM is that s ≪ p , where p is the number of degrees of
freedom needed to solve problem (3.2) by means of conventional methods (finite-differences,
finite-elements and finite-volumes). We note that the matrix A and the vector b ( t ) might
depend on problem parameters, such as the diffusion coefficient ν :

A = A ( t ; ν ) , and b = b ( t ; ν ) .

Different approaches can be used to solve the ODE System 3.9, depending on the cases
considered. Interested readers are invited to consult [28] for a more profound presentation.
The most straightforward way to use the Spectral–ROM from Eq. (3.9) is to apply a
numerical integration scheme, e.g., an adaptive Runge–Kutta with moderate accuracy,
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since Eq. (3.9) is just a ROM. So, with an embedded error control and not so stringent
tolerances, it can be done very efficiently.

3.2. Proper Generalised Decomposition

The Proper Generalised Decomposition (PGD) is also a model reduction method. It
originates in the radial space-time separated representation proposed by Ladevèze in
1985 [38]. In 2006, the separated representations were extended to the multidimensional
case by Chinesta and co-workers [6]. Interested readers may see [21, 22] for additional
details on the method as well as [20] for an introduction. This strategy has been suc-
cessfully applied and validated for various industrial applications. For instance, the PGD
method was applied to quantum mechanics (Schrödinger equation) [5], kinetics theory
(Fokker–Planck equation non-Newtonian fluids) [7, 51], phase separation in hetero-
geneous mixtures (Langer equation) [39], virtual surgery (forces, vibrations, etc.) [44],
nonlinear stochastic problems (Burgers equation, 2D nonlinear diffusion problems) [45],
multi-scale and multi-physics problems (visco-plasticity, damage, etc.) [14, 43], computa-
tional fluid dynamics (anisotherm Navier–Stokes problems) [26], and, more recently to,
heat and moisture transfer in building materials [13].

The PGD solution to problem Eq. (3.1) is sought as a separated representation of func-
tions of time t and space x :

u ( x , t ) ≃
M
∑

i=1

F i ( x ) G i ( t ) . (3.10)

The order of PGD ROM scales with p = M ·
(

Nx + N t

)

.

3.2.1 Iterative resolution

Solving problem (3.1) numerically using the PGD method consists in calculating modes
(F i , G i) iteratively from i = 1 to M . The first mode (F 1 , G 1) is initialised in order to
satisfy the initial and boundary conditions in all zones. At enrichment step m < M , we
assume that a former approximation of u ( x , t ) is known and the new couple F m+1 ( x ) =
R ( x ) and Gm+1 ( t ) = S ( t ) has to be calculated according to:

u ( x , t ) =

m
∑

i=1

F i ( x )G i ( t ) + R ( x )S ( t ) . (3.11)

Eq. (3.11) is introduced into Eq. (3.1). Thanks to the separated representation of the
solution u ( x , t ) for dimensions t and x (Eq. (3.10)), we get:

dS

dt
R − ν S

d 2R

dx
=

m
∑

i=1

dG i

dt
F i − ν G i d

2F i

dx 2
+ Resm+1 , (3.12)
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where Resm+1 is the residual of Eq. (3.1) because Eq. (3.11) is an approximation of the
solution.

3.2.2 Computing R (t) and S (x)

We are at step m searching for the new couple R and S by solving Eq. (3.12). To
compute them, Eq. (3.12) will be successively projected on R and S . For this, we note the
scalar product 〈 •, •〉 y in the domain Ω y , defined by:

〈 f , g 〉 y =

ˆ

Ω y

f g dy ,

evaluated numerically using the discrete values of functions f and g and a trapezoidal
approximation for the integral. Here, the scalar product is defined for both time and space
domains.

Eq. (3.12) is projected on R , assuming 〈Resm+1, R 〉 x = 0 to obtain:

α 1
dS

dt
− β 1 S = γ 1 , (3.13)

with:

α 1 = 〈R ,R 〉 x , β 1 =

〈

R , ν
d 2R

dx 2

〉

x

, γ 1 =
m
∑

i=1

〈R ,−F i 〉 x
dG i

dt
+

〈

R , ν
d 2F i

dx 2

〉

x

G i .

Eq. (3.12) is now projected on S , assuming 〈Resm+1 , S〉 t = 0 and gives:

α 2 R + β 2
d 2R

dx 2
= γ 2 , (3.14)

with:

α 2 =

〈

S ,
dS

dt

〉

t

, β 2 = 〈S , S 〉 t , γ 2 =
m
∑

i=1

〈

S ,−dG i

dt

〉

t

F i + 〈S ,G i 〉 t
d 2F i

dx 2
.

After theses projections, to solve Eqs. (3.13) and (3.14), an alternating direction fixed-point
algorithm is used. The stopping criterion, assuming the algorithm has converged, is:

∥

∥

∥
R q − R q−1

∥

∥

∥
6 η 1 and

∥

∥

∥
S q − S q−1

∥

∥

∥
6 η 1 ,

where q is the index of iteration of the fixed-point algorithm and η 1 is a tolerance parameter
chosen by the user.

3.2.3 Convergence of the global enrichment

Functions R and S have just been computed by a fixed-point algorithm. The PGD basis
is enriched, noting F m+1 = R and Gm+1 = S the new modes. The field of interest u
can be written as:

u ( x , t ) =
m
∑

i=1

F i ( x ) G i ( t ) + R ( x ) S ( t ) =
m+1
∑

i=1

F i( x ) G i ( t ) .



Spectral Methods — Part 2 13 / 35

The enrichment of the PGD solution stops when the norm of the residual
∣

∣

∣

∣Resm+1
∣

∣

∣

∣ is
assumed negligible with respect to η 2, another tolerance parameter chosen by the user:

∥

∥

∥
Resm+1

∥

∥

∥
=

∥

∥

∥

∥

∥

m
∑

i=1

dG i

dt
F i − ν G i d 2F i

dx 2

∥

∥

∥

∥

∥

6 η 2 .

3.3. Comparison of the numerical solution

To compare and validate the proposed methods, the error between the solution u ( x , t ),
obtained by one of numerical the methods, and the reference solution u ref , is computed as
a function of x by the following formulation:

ε 2 ( x )
def
:=

√

√

√

√

1

N t

N t
∑

j=1

(

u num
j ( x , t ) − u ref

j ( x , t )
)2

,

where N t is the number of temporal steps. The global uniform error ε∞ is given by the
maximum value of ε 2 ( x ) :

ε∞

def
:= sup

x ∈

[

0 , L
]

ε 2 ( x ) .

The computation of the reference solution u ref ( x , t ) is detailed in further Sections.

4. Linear transfer in porous material

The first case of linear moisture transfer is considered from [11, 53] to analyze the
moisture buffer effects in a 500-mm aerated concrete under isothermal condition, at a
temperature of 23 ◦C . The vapor permeability is dm = 3 ·10−11 s and its moisture storage
is cm = 1.85 · 10−4 kg/m3/Pa [11]. The uniform initial vapor pressure in the material is
P i

v = 842 Pa , corresponding to a relative humidity of 30%. The total time of simulation
corresponds to 120 h . The left boundary is set to a constant vapor pressure, identical
to the initial condition. At the right boundary, the relative humidity varies sinusoidally
between 33% and 75%, with a period of 24 h . The convective vapor transfer coefficient
is set to 2 · 10−8 s/m .

The solution of the problem has been computed for a discretization of ∆x ⋆ = 5·10−3 and
∆t ⋆ = 10−1 . The physical phenomena are well represented, as illustrated in Figure 1(a)
with the time evolution of the relative humidity at x = 0.47m . The variations follow
the ones of the right boundary conditions and, the diffusion process goes towards the
periodic regime. It can be noted a good agreement between the two reduced order models.
Furthermore, the vapor pressure profile is shown in Figure 1(b) for t = {20 , 80 , 120} h ,
enhancing the good accuracy of the solution to represent the physical phenomenon.
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The absolute error of the reduced order model is of the order of O
(

10−4
)

, as illustrated
in Figure 2(a). The methods are compared with a reference solution, which has been
computed using the Matlab open source toolbox Chebfun [25]. To give a solution with this
order of accuracy, the PGD needed 22 modes, while the Spectral only required 9 modes. It
corresponds to 21 and 7 degrees of freedom, respectively. Figure 2(b) presents the error ε∞

as a function of the number of modes. As we increase the number of modes, the solution
of the Spectral–ROM converges faster than the PGD solution because the convergence
of the Spectral method is exponential. To illustrate the convergence of the solution, the
profile of the vapor pressure for the last time instant of simulation is represented with
different numbers of modes in Figures 3(a) and 3(b) for the PGD and the Spectral–ROM,
respectively.

The reduced system of ODEs, of size 7 is implemented in Matlab, and the spectral
coefficients {an ( t )} are computed for any intermediate time instants by the solver ODE45
[55]. These spectral coefficients are shown in Figure 4(a). It can be seen that the first
coefficients have the highest magnitude making the solution to converge with a few modes
(an order of 10), which happens thanks to the fact that the Chebyshev polynomials have
excellent approximation properties for smooth function. In addition, the last coefficient
determines the magnitude of the residual, implying that the error will not be lower than
the magnitude of the last coefficient an , as explained in [28]. A brief comparison with an
analytical solution, built on Fourier decomposition [47], reveals that the eigenvalues of
the Spectral method decrease faster, as shown in Figure 4(b). Note that eigenvalues of the
analytical solution do not have to coincide with the ones of the Spectral method since the
basis functions are not the same for the Chebyshev polynomials and the trigonometric
ones.

Regarding the PGD, Figures 5(a) and 5(b) present the first modes, depending on time
and space, respectively. They do not have a physical meaning and constitute a separated
representation of the solution. Their tensorial product enables to compute the solution of
the problem. It is a similar approach for the Spectral–ROM, where the coefficients an ( t )
are multiplied by the Chebyshev polynomials.
Remarks on a posteriori POD method

Here, the purpose is to compare the PGD and Spectral model order reduction to the well-
established POD approach. For this, the reference solution u obtained with the Chebfun

package was used to compute the correlation matrix R , with elements {r ik} given by:

r ik =

N t
∑

j=1

u ( x i , t j ) u ( x k , t j ) .

Then, the singular values λ of the correlation matrix are computed. A truncation is
operated in the eigenvectors basis to define φ i the spatial basis function composed of
the Q eigenvectors of the correlation matrix r . Thus, the solution of the POD reduced
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Figure 1. (a) Relative humidity at the right boundary as function of time, and
(b) pressure vapor profiles for t = {20 , 80 , 120} h .

order model (POD–ROM) approximates the solution of the problem by:

u ( x , t ) ≈ uQ ( x , t )
def
:=

Q
∑

i=0

a i ( t )φ i ( x ) ,

where Q is the number of modes corresponding to the model order reduction. For this case
study, Figure 6(a) shows the convergence of the solution obtained with a POD reduced
order model. Moreover, Figure 6(b) presents the error with the reference solution as a
function of the modes Q . The solution of the POD–ROM converges faster than the PGD
and Spectral approaches. Only Q = 5 modes are sufficient to compute a solution accurate
to the order O (10−3) , which is lower than the one for the PGD or Spectral–ROM for the
same accuracy. However, as underlined in the Introduction section, the POD approach is
a posteriori. To build the POD reduced order model, a preliminary computation of the
solution was required, which is a non-negligible restriction.

5. Computing parametric solution using reduced order
models

Challenging problems appear from practical applications of building performance assess-
ment. Consider, for instance, the analysis of the wall behavior in terms of heat and mass
transfer, as a function of different parameters such as thermal inertia, vapor permeability,
insulation thickness, among others. In the context of environmental issues and thermal
regulations, the wall behavior may be optimized as a function of those parameters. Several
studies of parametric simulations are presented in the literature. In [3, 4, 9, 15, 34, 46, 59],
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Figure 2. (a) Error as a function of x (m) and (b) error as a function of the
number of modes.
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Figure 3. Vapor pressure profiles for different number of modes (a) for the

PGD and (b) for the Spectral–ROM.

numerical methods are used to determine the optimum insulation thickness of different wall
configurations. In [8], the influence of wall thermal inertia on the energy consumption was
investigated by using the EnergyPlus program for 24 construction types. In [37], the MBV
of five hemp concrete materials were assessed using a numerical method. Those parametric
simulations are based on models using numerical methods due to almost no restriction in
terms of boundary conditions, geometry, material properties, among other considerations.
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Figure 4. (a) Spectral coefficients as sets of time and, (b) Eigenvalues of the
Analytical and of the Spectral solution corresponding to the first modes.
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Figure 5. (a) Fm tensor function; (b) Gm tensor function.

Nevertheless, for parametric studies, they require large numbers of simulations. Indeed,
the numerical model is not dependent on the parameters of interest. Thus, a computation
of the numerical model is required for each value of the parameters within their domain of
variation, demanding a high calculation cost, even after the dramatic evolution of computer
hardware since the 1970’s. Therefore, reduced order model can be used to perform efficient
parametric studies with a limited computational costs.
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Figure 6. Vapor pressure profiles for different number of modes computed with
the POD (a) and the error ε∞ as a function of the number of modes Q (b).

5.1. Extension of model reduction techniques to parametric problems

The issue of solving a parametric problem is to compute the solution u of Eq. (3.1)
depending on the usual time and space coordinates x and t as well as the parameter ν of
the problem. Thus, the solution is seek as u ( x , t ; ν ) , where ν is defined as a coordinate
of the problem within a given interval ν ∈

[

νmin , νmax

]

. Here we note Nν the number

of elements (cardinal) of the domain
[

νmin , νmax

]

.

5.1.1 Spectral reduced order model

For the parametric study, we want to compute the solution as a function of ( x , t ; ν ) :

u ( x , t ; ν ) ≈ un ( x , t ; ν ) =

N
∑

n=0

an ( t ; ν ) φn ( x ) .

The basis function will always depend only on x , that is why the parameter ν is computed
with spectral coefficients {an ( t ; ν )} . As it is not straightforward to compute the coeffi-
cients an ( t ; ν ) depending on both parameters, we compute the solution for each value of
the parameter ν , using a loop. The latter can easily be parallelised on high-performance
computer systems. It would be possible to vectorize the computation of the parametric
Spectral–ROM solution although the method would significantly loose its speed calculation.
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5.1.2 PGD reduced order model

To compute a parametric solution of Eq. (3.1) u ( x , t ; ν ) , the PGD approach assumes
a separated tensorial representation of the solution:

u ( x , t ; ν ) ≈ um ( x , t ; ν ) =
M
∑

m = 1

F m ( x ) Gm ( t ) H m ( ν ) .

Functions
(

F ,G ,H
)

are computed following the methodology described in Section 3.2.
Interested readers may refer to [12, 19, 21] for complementary details on the methodology.
The important point, is that the solution u is computed at once as a function of the
coordinates x , t and ν .

5.2. Case study

For this case, we seek for a parametric solution of problem Eq. (2.4). The vapor pressure
is computed as a function of time t , space x and moisture storage capacity cm . As in the
previous case, simulations are preformed in order to reproduce experiments that estimate
the moisture buffer value of the materials. Thus, the right boundary condition is exposed to
cyclic changes of relative humidity between 33 % and 75 % , with a 24 h period. The total
time of simulation is still 120 h . The convective vapor coefficient is h v = 2 · 10−8 s/m .
The left boundary is set to a constant vapor pressure, identical to the initial condition
P i

v = 842 Pa . Simulations undergo at a constant 23 ◦C temperature. All 500-mm

materials have the same vapor permeability, dm = 2.4 · 10−11 s , while the moisture
storage capacity varies in the interval Ω c = 1.2 · 10−3 and 6 · 10−3 kg/m3/Pa [53].

First, we perform a simulation for 10 different values of moisture storage capacity in the
interval Ω c , representing different kinds of materials. Two different techniques of reduction
order models were employed, the PGD and the Spectral–ROM. To validate these methods,
results were compared to the reference solution, constructed with the Chebfun package for
Matlab.

Figure 7(a) shows the mass content of each material among the simulation time. Even
with a low difference between the highest and the lowest values of storage capacity, it is
possible to observe significant variations of the weight as the the storage capacity increases,
retaining more moisture. Furthermore, Figure 7(b) presents the weight for the two highest
values of moisture storage capacity, corresponding to 6·10−3 and 4.15·10−3 kg/m3/Pa . The
last profile of the pressure vapor for all values of moisture storage capacity is represented
in Figure 8(a). In these figures, the PGD and the Spectral–ROM are in a good agreement
with the reference solution.

To compute the parametric study, with the same order of accuracy, the PGD needed
around M = 100 modes, while the Spectral–ROM used only N = 11 modes. This differ-
ence comes from the nature of the methods, that are constructed by different ways. The
error ε∞ is shown as a function of the storage capacity values in Figure 8(b). The methods
were constructed in order to give the same order of accuracy, around O ( 10−3 ) . It should
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be noted that the Spectral–ROM can give more accurate results, with the same degrees
of freedom, by increasing the tolerance in the ODE45 Matlab function, when the reduced
system is being computed. The degrees of freedom of the Spectral–ROM were predeter-
mined based on the previous case and by the order of the parameters values. Meanwhile,
the PGD computes its solution if the residual is lower than a given tolerance. The rate
of convergence of the PGD approach is illustrated in Figure 9, presenting the error as a
function of the number of modes.

The numbers of operation for each approach can be estimated, remembering Nx and
N t stand for the number of elements according to the discretization of the space and time
domains, respectively. The quantity N ν represents the number of elements of parameter
cm considered for the parametric study. A standard approach based on implicit Euler

schemes requires Nx · N t · N ν operations. Considering the discretization parameters to
reach the given accuracy N t = 1.2 · 10 5 and Nx = 4 · 10 2 , the number of operations
scales with [29]:

Euler implicit: O

(

Nx ·N t ·N ν

)

≃ O

(

4.8 · 10 7 ·N ν

)

.

For the Spectral–ROM, the number is related to the solution of the ODE system Eq. (3.7),
computed in this case with the Matlab ODE45 solver. It is based on the iterative Runge–
Kutta method to approximate the solution. The number of operation depends on the
tolerance of the solver, which has a maximum tolerance of ∼ 10−5 for ODE45. Thus, we
have:

N t ≃ T

∆T
≃ T

(tol) 1/5
,

where T is the total time of simulation. At each time step, the Runge–Kutta needs to
compute six times the vector product An×n , where n depends on the degree of freedom N
of the solution (n = N − 2). Thus, it leads to 6 · n 2 operations to perform, knowing
that n scales with 10 . Consequently, the total number of operations for the Spectral–ROM
scales with:

O

(

6 (N − 2) 2 T

(tol) 1/5

)

.

For this parametric case, knowing that the tolerance was set to 10−3 , with N ≃ 11 modes,
the number of operations performed by the Spectral–ROM is expressed as:

Spectral–ROM: O

(

6 (11 − 2) 2 T

(10−3) 1/5
N ν

)

≃ O

(

2.3 · 10 5 ·N ν

)

.

Therefore, the number of operations increases faster for the Spectral–ROM and for the
standard Euler methods than for the PGD approach. After some kind of initial invest-
ment, the increase in the number of operations for the PGD is much slower than for other
approaches. The advantage of the PGD, in this case, it is related to its ability to compute
at once the solution depending on the three coordinates, whereas the Spectral–ROM com-
putes the solution for each value of moisture storage capacity independently, by a loop. It
should be noted that the Euler approach, based for instance on backward time centered
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Figure 7. (a) Water content increase for all values of parameter cm , and (b)
Water content increase for the two highest values of moisture storage capacity.

space, is a low order approximation of the solution, providing a less accurate solution than
the Spectral–ROM. An interesting advantage of the PGD is the low storage cost of the
solution thanks to the tensorial representation of the solution. This feature may be par-
ticularly interesting for real time applications. These features also impact the CPU time
of each algorithm, which has been evaluated using Matlab platform on a computer with
Intel i7 CPU and 8GB of RAM. Figure 10 shows the CPU time as a function of the num-
ber of elements of the parameter cm . For comparison, the CPU time required using the
Euler implicit scheme is also reported. Since the Spectral–ROM has a reduced system
to solve, its computational time drops significantly when compared to traditional methods.
However, the loop to simulate the parametric study increases the CPU time linearly with
the number of elements. For few numbers of elements of parameter cm , around 20 , the
Spectral–ROM is faster than the PGD. Yet, if the number of elements increases, the PGD
is a more attractive method. In addition, the large original model, based on implicit Euler

scheme, requires an important extra CPU time to compute the parametric solution.

6. Nonlinear transfer in porous material

The last case considers nonlinear transfer with moisture-dependent material properties.
Therefore, the diffusion coefficient ν depends on the field u and Eq. (3.1) becomes:

∂u

∂t
= ∇ ·

(

ν ( u )∇u
)

. (6.1)
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Figure 8. (a) vapor pressure profiles at t = 120 h , for cm ∈ [1.2 · 10−3; 6 · 10−3]
kg/m3/Pa , and (b) the error in function of all values of moisture storage
capacity between this interval.
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6.1. Extension of model reduction techniques to nonlinear problems
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6.1.1 Spectral reduced order model

In order to apply better the Spectral method, Eq. (6.1) is rearranged as follows:

∂u

∂t
= ν ( u )

∂ 2u

∂x 2
+ λ ( u )

∂u

∂x
, (6.2)

where,

ν ( u )
def
:=

dm ( u )

cm ( u )
,

λ ( u )
def
:=

1

cm ( u )
·
d
(

dm ( u )
)

du
.

By using Spectral methods the unknown u ( x , t ) is approximated by the finite sum (3.3)
and, the derivatives can be written so that the Chebyshev polynomials remain the same,
as in the linear case of Eq. (3.4). Thus, Eq. (6.2) becomes:

n
∑

i=0

ȧ i ( t ) T i ( x ) = ν

(

n
∑

i=0

a i ( t ) Ti ( x )

)

n
∑

i=0

˜̃a i ( t ) T i ( x ) +

λ

(

n
∑

i=0

a i ( t ) T i ( x )

)

n
∑

i=0

ã i ( t ) T i ( x ) . (6.3)
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The nonlinear terms ν
(

∑n
i=0 ai ( t ) Ti ( x )

)

and λ
(

∑n
i=0 a i ( t ) T i ( x )

)

are treated by

applying the Galerkin projection and the Chebyshev–Gauß quadrature [28]. Contrary
to the linear case, the boundary conditions cannot provide an explicit expression for the
two last coefficients an ( t ) and an−1 ( t ). Thus, it is not possible to compute the solution
in the same way. Although, with all elements listed before, it is possible to set the system
to be solved by composing an ODE system with two additional algebraic expressions for
the boundary conditions. It results in a system of Differential–Algebraic Equations (DAEs)
with the following form:

M ȧn ( t ) = A an ( t ) + b ( t ) ,

where, M is a diagonal and singular matrix (rank (M ) = n − 2) containing the coefficients
of the Chebyshev weighted orthogonal system, b ( t ) is a vector containing the boundary
conditions and, A · an ( t ) is composed by the right member of Eq. (6.3). The initial
condition is given by Eq. (3.8) and the DAE system is solved by ODE15s or ODE23t from
Matlab. As for the linear case, interested readers may consult [28] for further details.

6.1.2 PGD reduced order model

To treat the nonlinearity of the problem, at the enrichment step m < M , the nonlinear
term ν ( u ) is approximated using the solution from previous steps:

ν ( u ) = ν

(

M
∑

i=1

F i ( x ) G i ( t ) + R ( x ) S ( t )

)

≃ ν

(

M
∑

i=1

F i ( x ) G i ( t )

)

.

Then, the matrix of the coefficient ν is separated into a tensorial product in the space and
time directions, using a Singular Value Decomposition (SVD) [33] or a Discrete Empirical

Interpolation Method (DEIM) [2, 18]:

ν ( u ) =

K
∑

j=1

ν j
t ( x ) ν

j
x ( t ) .

This decomposition enables us to separate the coefficient into a component depending on
the coordinate of the problem. Therefore, Eq. (3.12) becomes:

dS

dt
R −

K
∑

j =1

ν j
t S ν j

x

d 2R

dx
=

m
∑

i=1

dG i

dt
F i −

K
∑

j=1

ν j
t G i ν j

x

d 2F i

dx 2
+ Resm+1 .

Functions R and S are then computed using a similar approach as the one described in
Section 3.2.

6.2. Case study

The material investigated is the wood fiber, which properties have been presented in
[52]. The moisture transport coefficient dm is assumed as a first-degree polynomial of the
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Figure 11. Time evolution of the boundary condition.

relative humidity, while the moisture capacity cm as a second-degree polynomial:

cm (φ ) = 120φ 2 − 98φ + 27.02 , kg/m 3/Pa ,

dm (φ ) =
(

5.65φ + 2.33
)

· 10−11 , s .

In terms of boundary conditions, a Robyn-type is assumed for both sides of the material, as
described in Eq. (2.3). The variation of the relative humidity of the ambient air is given in
Figure 11. Variations were chosen in order to excite the material in the hygroscopic region
of the properties. The vapor convective transfer coefficients are set to h v,L = 1 ·10−8s/m
and h v,R = 1.5 · 10−8 s/m . As for the previous case, the time simulation is fixed to 5
days.

Results have been computed using discretization parameters ∆x ⋆ = 10−2 and ∆t ⋆ =
10−2 for both methods. The Spectral–ROM has been built for N = 8 modes while the PGD
for M = 30 modes. both results have been compared to a reference solution computed
with the open source package Chebfun. Profiles of relative humidity in the material are
shown in Figure 12(a). The time evolution of relative humidity at x = 0.074m is given in
Figure 12(b). A very good agreement is highlighted between the solutions. The physical
phenomena are accurately represented. The relative humidity at x = 0.074m increases
according to the variation of the boundary conditions. The reduced order models have
been built to give the same order of accuracy O ( 10−3 ) as illustrated in Figure 13(a). It
can be noted that the PGD needs M = 30 modes to compute the solution of the nonlinear
problem, while only M = 22 modes were required in the linear case. The Spectral–ROM
only needs one extra mode compared to the linear case. The error with the reference
solution is given as a function of the number of modes for both reduced order models in
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Figure 13(b). Again, the Spectral–ROM converges faster to an accurate solution than the
PGD approach. A limit is observed in the error of the Spectral–ROM, around O ( 10−4 ) ,
due to the tolerance of the Matlab solver that was set to this value.

The CPU time of each method has been evaluated for the same order of accuracy of the
solution and are reported in Table 1. For the comparison, the CPU time required with
the classical Euler implicit scheme is also indicated. Both methods enable significant
computational savings, 95 % and 99.1 % for the PGD and Spectral, respectively. The
PGD requires more time than the Spectral–ROM, mainly due to the treatment of the
nonlinearity of the problem. It can be noted that using the DEIM for the treatment of the
nonlinearity permits to reduced by more than two the CPU time of the PGD, compared
to the SVD. Indeed, in the latter case, at each iteration, the solution has to be composed
to evaluate the nonlinear coefficients and then separate them along each coordinate of the
problem. The CPU time of each approach is related to the number of operations. For the
PGD, it scales with:

PGD: O

(

M ·
(

S ·
(

N t + Nx

)

+ N nl

))

,

where N nl represents the number of operations for the treatment of nonlinearities. Depend-
ing on the method used for the decomposition of the solution, the number of operations
scales with:

SVD: N nl ≈ O

(

N 2
x ·N t

)

,

DEIM: N nl ≈ O

(

K · (Nx + N t )
)

,

where K ≈ O ( 3 ) is the order of the decomposition of the coefficients. It can be understood
why the CPU time of the PGD using the DEIM is lower.

For the Spectral–ROM, thanks to the analytical pre-treatment of the solution, there is
almost no increase in the number of operations. According to Eq. (6.2), the number of
operations is only multiplied by two:

Spectral–ROM: O

(

2
6 (N − 2) 2 T

(10−3) 1/5

)

.

For the large original model, using the Euler implicit scheme, the number of operations
equals [29]:

Euler implicit LOM: O

(

N nl ·Nx ·N t

)

.

For this case, the average number of sub-iterations required required for the implicit scheme
to treat the nonlinearity was around N nl ∼ O ( 12 ) for a tolerance fixed to 0.01 ·∆t ⋆ .

7. Conclusion

Due to moisture-dependent material properties and weather driven boundary conditions,
numerical methods are used to compute the solution of moisture transfer problems. Usual
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Figure 12. (a) Relative humidity profiles in the material and (b) relative
humidity evolution at x = 0.074m .
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Figure 13. (a) Error as a function of x (m) and (b) error as a function of the
number of modes.

approaches based for instance on Euler or Crank–Nicolson schemes require the so-
lution of large systems of equations, which imposes important numerical costs. Model
reduction techniques appear then as efficient alternatives, enabling to reduce the model
order without deteriorating the representation of the physical phenomena. These methods
aim at preserving the computation resources in terms of CPU time and memory. Among
the a priori model reduction techniques applied in building physics, this paper intended
to compare the Spectral and the PGD methods.
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Table 1. Computational cost of the methods for the nonlinear case.

Method CPU time ( s ) CPU time (% )

Euler implicit 36 100

PGD using SVD 5.29 15

PGD using DEIM 1.9 5

Spectral–ROM 0.35 0.9

The two reduced order methods assume that the solution is approximated by a finite
sum of functions products. The Spectral method fixes a set of basis function for the space
domain. Here the Chebyshev polynomials have been chosen. Analytical preliminary
treatment of the Spectral solution has been operated to set an ordinary system of equations
to compute the temporal coefficients of the solution. On the other hand, the PGD has
no assumptions and attempt to compute directly the basis functions by minimizing the
equation residual. The comparison was carried out for three cases, commonly found in
building physics. The first one deals with linear moisture transfer. The second one aimed
at computing a parametric solution, whose model outputs depend not only on the space
and time coordinates, but also on the moisture capacity of the material. The last case
dealt with a nonlinear transfer problem, with moisture dependent material properties.

Results have demonstrated that both reduced order models, Spectral and PGD, accu-
rately represent the moisture transfer and both approaches provide an important reduction
of the model order. While the order of the large original model scales with several hundred,
the one of the ROMs is proportional to a few tens or even less. For the nonlinear case,
thanks to this order reduction, the model reduction techniques enable to save more than
95 % of the CPU time, compared to a large original model based on a Euler implicit
scheme. If both methods are efficient, some distinctions between the two ROMs have
been highlighted. For the linear and nonlinear cases, the Spectral–ROM has a lower order
than the PGD, N ≃ O ( 8 ) against M ≃ O ( 20 ) to ≃ O ( 30 ) , for the same accuracy.
Moreover, the error of the Spectral–ROM decreases faster with the number of modes than
the PGD. For these reasons, the Spectral–ROM is faster than the PGD. For the nonlin-
ear case, the CPU time of the Spectral–ROM is divided by 5 compared to the PGD. For
the parametric case study, the two approaches compute the solution by different processes.
The Spectral–ROM computes a solution for each numerical value of the material properties
within a defined interval. Then, a loop is operated to compute the solution for each value of
the material properties. The PGD approach considers directly the material properties as a
coordinate of the problem within a defined interval of values. The solution is approximated
by a tensorial representation and a basis of functions of each of the three coordinates is
computed. Thus, the parametric solution is obtained at once. If the PGD ROM needs
more modes than the Spectral method, the number of operations to compute the solution
is smaller. Moreover, the increase of operations for the PGD is much slower, in this case,
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thanks to the tensorial representation of the solution. For a parametric solution depending
on 50 values of material properties, the CPU time of the PGD is six times faster.

To conclude the comparison of the two model reduction techniques, results have high-
lighted that the Spectral approach is more efficient in terms of order reduction, preserving
computational resources for linear and nonlinear moisture diffusion problems. For the com-
putation of parametric solutions, the PGD appears to be more efficient. These promising
results encourage further investigation for two- or three-dimensional problems including
combined heat and moisture transfer phenomena, where the order of the large original
model becomes even higher.
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A. Nomenclature

Latin letters

cm moisture storage capacity [kg/m3/Pa]

dm moisture diffusion [s]

g liquid flux [kg/m2/s]

h v vapour convective transfer coefficient [s/m]

k permeability [s]

L length [m]

P c capillary pressure [Pa]

P s saturation pressure [Pa]

P v vapour pressure [Pa]

Rv water gas constant [J/kg/K]

T temperature [K]

Greek letters

φ relative humidity [−]

ρ specific mass [kg/m3]

B. Dimensionless values

B.1. Linear case

Problem (2.4) is taken into account with g ⋆
l,L = g ⋆

l,R = 0 and a Dirichlet condition
on the left side:

c ⋆
m

∂u

∂t ⋆
=

∂

∂x ⋆

(

d ⋆
m

∂u

∂x ⋆

)

, t ⋆ > 0 , x ⋆ ∈
[

0, 1
]

, (B.1a)

u = uL , t ⋆ > 0 , x ⋆ = 0 , (B.1b)

− d ⋆
m

∂u

∂x ⋆
= Bi v,R ·

(

u − uR( t
⋆ )
)

, t ⋆ > 0 , x ⋆ = 1 , (B.1c)

u = 1 , t ⋆ = 0 , x ⋆ ∈
[

0, 1
]

. (B.1d)

The dimensionless properties of the material are d ⋆
m = 1 and c ⋆

m = 430 . The reference
time is t 0 = 1 h , thus the final simulation time is fixed to t ⋆ = 120 . The Biot number
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is Bi v,R = 333 . The boundary conditions are expressed as:

uL = 1 ,

uR( t
⋆ ) = 1 + 1.6 sin 2

(

2π t ⋆

48

)

.

B.2. Parametric case

Problem (2.4) is taken into account with g ⋆
l,L = g ⋆

l,R = 0 and a Dirichlet condition

on the left side, the same as in the previous case. The reference time is t 0 = 1 h , thus
the final simulation time is fixed to t ⋆ = 120 . The Biot number is Bi v,R = 100 . The
boundary conditions are expressed as:

uL = 1 ,

uR( t
⋆ ) = 1 + 1.6 sin 2

(

2π t ⋆

48

)

.

The dimensionless properties of the materials are d ⋆
m = 1 and c ⋆

m assume the following
values:

i 1 2 3 4 5 6 7 8 9 10

c ⋆
m,i 833 576 441 357 300 258 227 203 183 166

B.3. Nonlinear case

Problem (2.4) is taken into account with g ⋆
l,L = g ⋆

l,R = 0 and Robin condition on
both boundaries. The Biot number are Bi v, L = 10 and Bi v,R = 15 . The boundary
conditions are expressed as:

uL( t
⋆ ) = 1 + 0.3

[

1 − cos

(

2π t ⋆

24

)]

,

uR( t
⋆ ) = 1 + 0.6 sin 2

(

2π t ⋆

60

)

.

The reference time is t 0 = 1 h , thus the final simulation time is fixed to t ⋆ = 120 .
The dimensionless properties of the materials are:

d ⋆
m ( u ) =

(

0.86 + 0.25 u
)

· 5 · 10−3 ,

c ⋆
m ( u ) = 3.36 − 6.11 u + 3.37 u 2 .
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