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Multilingual Lexicalized Constituency Parsing with Word-Level Auxiliary Tasks

. We model two important interfaces of constituency parsing with auxiliary tasks supervised at the word level: (i) part-of-speech (POS) and morphological tagging, (ii) functional label prediction. On the SPMRL dataset, our parser obtains above state-of-the-art results on constituency parsing without requiring either predicted POS or morphological tags, and outputs labelled dependency trees.

Introduction

Recent work has shown the efficacy of bidirectional long short-term memory network (bi-LSTM) encoders in parsing [START_REF] Kiperwasser | Simple and accurate dependency parsing using bidirectional lstm feature representations[END_REF]Cross and Huang, 2016b;Cross and Huang, 2016a). In these parsers, a bi-LSTM encodes the sentence and constructs context-aware embeddings for each word. Then a standard transition-based parser uses these embeddings as input to score parsing actions. In such architectures, the bi-LSTM component lends itself to auxiliary tasks of sequence prediction at the word level as illustrated for multilingual POS tagging by [START_REF] Plank | Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss[END_REF].

In this paper, we present a constituency parsing model based on a bi-LSTM encoder, and use the bi-LSTM component to model two natural interfaces of constituency parsing -morphology and functional labelling -as word-level auxiliary tasks.

Morphological information is crucial for phrase structure parsing of morphologically rich languages [START_REF] Seddah | Overview of the SPMRL 2013 shared task: A cross-framework evaluation of parsing morphologically rich languages[END_REF][START_REF] Björkelund | re)ranking meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task[END_REF][START_REF] Benoit | Multilingual discriminative lexicalized phrase structure parsing[END_REF]. Most multilingual parsers use a morphological tagger as the first step of a pipeline approach. As a first auxiliary task, we perform morphological analysis (prediction of the POS tags and of additional language-specific morphological attributes such as case, tense). We compare the resulting model to a pipeline approach.

As the second auxiliary task, we predict the functional label that links each word to its head. Overall, we evaluate to which extent these auxiliary tasks can both improve parsing and enrich the output of the parser. This paper makes the following contributions:

1. We introduce a single greedy parser which does not need predicted POS tags or morphological tags at inference time, and yet outperforms the best published results on the SPMRL dataset [START_REF] Björkelund | Introducing the ims-wrocław-szeged-cis entry at the spmrl 2014 shared task: Reranking and morpho-syntax meet unlabeled data[END_REF]. 1 2. We present the first experiments with multitask learning for multilingual lexicalized constituency parsing. 3. We further observe that a lexicalized constituency parser produces surprisingly accurate labelled dependency trees in a multilingual context.

Constituent Parsing with bi-LSTMs

Lexicalized transition-based constituent parsing generally derives from the work of [START_REF] Sagae | A classifier-based parser with linear run-time complexity[END_REF] and subsequent work [START_REF] Sagae | A best-first probabilistic shift-reduce parser[END_REF]Zhu et al., 2013, among others). We use the set of parse actions described by [START_REF] Sagae | A classifier-based parser with linear run-time complexity[END_REF]. It is a standard shift-reduce transition system which distinguishes left-and right-re-

Aux task input

Parsing input duce actions to assign heads to new constituents. We present the algorithm as a deduction system in Figure 3 of Appendix A.
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Each action has a set of preconditions to make sure that the transition system always terminates and always outputs a well-formed lexicalized tree (Table 3 of Appendix A). For exemple, it is impossible to shift if B is empty.

To make the algorithm deterministic, we use a neural network to score actions at each parsing step. The first component of the network is a bi-LSTM encoder [START_REF] Hochreiter | Long short-term memory[END_REF] which builds contextual representations for every token in the sentence. The second component uses these representations as input to produce a distribution over possible actions at each parsing step. Both components are trained simultaneously.

Bi-LSTM representation of the input

The use of a bi-LSTM encoder in parsing was proposed independently by [START_REF] Kiperwasser | Simple and accurate dependency parsing using bidirectional lstm feature representations[END_REF] and Cross and Huang (2016a). Its role is to provide contextual representations for each token. In transition-based parsing, bi-LSTMs can give a finite representation of the potentially unbounded buffer [START_REF] Dyer | Transitionbased dependency parsing with stack long shortterm memory[END_REF], and model span (Cross and Huang, 2016b).

Each token is a tuple of typed symbols, consisting minimally of a word-form. The other types of symbols are POS tags and language-dependent morphological attributes. Each type of symbol has its own embedding look-up table.

In our architecture (Figure 1), the input to the bi-LSTM encoder at step i is the concatenation of the embeddings of each typed symbol composing token i. The output for the same token is the concatenation of the forward and backward LSTM states at step i. We use a two-layer bi-LSTM encoder, the input to the second layer being the output of the first one. Intuitively, the lower layer encodes a representation suitable for the word-level auxiliary tasks while the upper layer builds a representation for the parsing task itself.

On some experimental setups, we also use a single-layer of character bi-LSTM encoder for each word form, using the sequence of its characters, and concatenate its output to the input of the higher-level bi-LSTM, as has been done by [START_REF] Plank | Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss[END_REF], [START_REF] Ballesteros | Improved transition-based parsing by modeling characters instead of words with lstms[END_REF], among others.

Output layers

To compute transition scores, we use a simple two-layer feedforward neural network. The input of this network consists of embeddings extracted from symbols in the stack (S) and the buffer (B). The symbols used are presented as feature templates in Figure 2.

These features are either instantiated with nonterminal embeddings or by the contextual token embedding produced by the bi-LSTM encoder. For example, s 0 .L(eft)C(orner) is instantiated by the bi-LSTM output of the left-most token encompassed by the constituent s 0 .

Auxiliary Tasks

We use the bi-LSTM states of the lower layer of the encoder to predict word-level attributes. Intuitively, the auxiliary tasks should make the lower layer representations good at predicting some word-level attributes known to be informative for parsing. The upper layer constructs more abstract features from these intermediate representations.

We experiment with two types of auxiliary tasks: morphology and functional labels. 2014). c Languages with few head mismatches between the dependency and the constituency corpora (Crabbé, 2015). d Tagging is evaluated with the dependency treebanks (the tagsets used in the constituency treebanks might differ).

Morphology Each token is annotated with its tag and a sequence of language-specific morphological attributes such as gender, case or tense.

Whereas the tagging has often been addressed with parsing as a joint task, to the best of our knowledge, no model has proposed to perform full morphological analysis in a multi-task framework.

For this task, we use one softmax output layer per available morphological attribute, including POS tags (Figure 1).

Functional Labels Both to improve constituency parsing and to enrich constituency trees with functional information, we propose a novel auxiliary task consisting in predicting the functional label of a token, i.e. its syntactic role with respect to its head. This task is constructed as a simple sequence prediction task without any information about the parse tree.

Loss function

The objective function for a single sentence w n 1 whose gold derivation is the sequence of actions a T 1 is defined as follows:

L(a T 1 , w n 1 ; θ) = T i=1 log p(a i |a 1 , . . . a i-1 ; w n 1 , θ)+ n i=1 A j=1 log p(w i,j |w n 1 ; θ)
where w i,j denotes the attribute j of token i, A is the total number of attributes used as auxiliary tasks and θ is the set of all parameters.

Experiments

Our model combine constituency parsing with two of its natural interfaces, morphology and functional structure. We designed experiments to assess to which extent modelling these interfaces as auxiliary tasks can improve parsing and enrich the output of the parser. We performed two sets of experiments to handle two questions: we compare the integration of morphological information as respectively provided by an external tagger in a pipeline architecture or as an auxiliary prediction task for the neural model. For each of those setup, we test to which extent we can also accurately predict functional labels as an auxiliary task.

In a first set of experiments, we evaluated the model with a character-level bi-LSTM and either no auxiliary task (TOK+CLSTM), morphological tagging as an auxiliary task (TOK+CLSTM+M), or morphological tagging and dependency label predictions as auxiliary tasks (TOK+CLSTM+M+D). In those three models, the input to the sentencelevel bi-LSTM is the concatenation of a word embedding and a character-based embedding.

In a second set of experiments, the input to the sentence-level bi-LSTM is either a word embedding (TOK) or the concatenation of a word embedding and embeddings for each available morphological tag (TOK+MMT), predicted by a morphological tagger (Mueller et al., 2013, MarMoT). We compare the latter setup with an additional functional prediction as auxiliary task (TOK+MMT+D).

This last model will give upper-bound accuracies against which we can compare the model with all auxiliary (TOK+CLSTM+M+D), which is the focus of the paper.

Data We evaluate our models on the SPMRL dataset [START_REF] Seddah | Overview of the SPMRL 2013 shared task: A cross-framework evaluation of parsing morphologically rich languages[END_REF]. This dataset contains constituency and dependency treebanks aligned at the word level for 9 morphologically righ languages. These treebanks are annotated with POS tags and morphological attributes (such as case, mood, tense, number).

In the experiments where morphology is predicted as an auxiliary task, we use the gold tags and morphological annotations at training time and none of this information at test time.

In the other experiments, we use the POS and morphological tags predicted by MarMoT [START_REF] Mueller | Efficient higher-order CRFs for morphological tagging[END_REF],2 for training and parsing. Following [START_REF] Björkelund | re)ranking meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task[END_REF], we used fine pos-tags for all languages except Korean.

As our parsing model is lexicalized, each constituent in the training set must be annotated with its head. We used the procedure described by Crabbé (2015) to do so. This procedure uses the alignement between constituency trees and dependency trees to determine the head of each phrase, and uses heuristics to solve mismatch cases. 3 We binarize trees with an order-0 head-Markovization and collapse unary productions ex-cept those which produce pre-terminals.

Protocol We trained every model with ASGD [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] and shuffle the training set before each iteration. When using auxiliary losses, we repeat the two following steps. First, we make predictions for every auxiliary task, assign POS tags to tokens (POS tags of tokens are nonterminals once shifted onto S), then backpropagate and update the parameters. In the second step, we compute the primary loss (over the gold sequence of actions for the current sentence), then backpropagate the gradient and update the parameters.

For each model, we calibrated the learning rate and the number of iterations on the development set, but did not do any other hyperparameter tuning. The complete list of hyperparameters used is shown in Table 4 in Appendix A.

Results and Discussion

Results on development and test sets are presented in Table 1. First we observe that our baseline (TOK+CLSTM) is nearly as accurate as the best published results on the SPMRL dataset. The use of morphology as auxiliary tasks (TOK+CLSTM+M) improves the baseline by 0.5 F1 on average on the test sets. While being greedy, and needing neither predicted POS nor morphological tags, the resulting parser outperforms the product of grammar and reranker combination of [START_REF] Björkelund | Introducing the ims-wrocław-szeged-cis entry at the spmrl 2014 shared task: Reranking and morpho-syntax meet unlabeled data[END_REF].

Furthermore, on average, it is only 0.5 F1 behind the model which uses predicted morphology as input to the bi-LSTM (TOK+MMT). Across languages, the performance difference between the two models can be partly explained by the difference in tagging accuracy (Table 2). The TOK+CLSTM+M model matches MarMoT tagging results for several languages, but is not as good overall. MarMoT uses morphological lexicons as an additional source of information, which might be crucial for languages such as Basque.

Second, the dependency label auxiliary task improves constituency parsing by a small but consistent margin. As our model is lexicalized, it is able to output unlabelled dependency trees. As a byproduct of this task, we can obtain labelled dependency trees instead. Thus, we also evaluate the output of our parser against the dependency corpora using the evaluator provided with the shared task. Results are shown in Table 2. Our parser outperforms [START_REF] Ballesteros | Improved transition-based parsing by modeling characters instead of words with lstms[END_REF], the best pub-lished results with a greedy parser, on 5 languages out of 9. Unsurprisingly, these languages correspond to the corpora, identified by Crabbé (2015), which contain very few mismatch cases between the dependency and the constituency treebank.

This result is in keeping with Cer et al. ( 2010) who has shown that constituency parsers are very good at recovering dependency structures for English. Our experiments confirm this finding in a novel multilingual setting where labelled dependency trees are directly predicted by the parser, rather than obtained by conversion of predicted constituency trees.

Conclusion

We have investigated to which extent modelling morphological analysis and functional label prediction as auxiliary tasks could benefit parsing. The parser we described does not need predicted morphological information at test time, and yet obtains state-of-the-art results in constituency parsing. Since the parser is lexicalized, it models both constituency and dependency and can therefore output directly labelled dependency trees without involving any additional conversion heuristic.
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 1 Figure 1: Deep bi-LSTM encoder with auxiliary tasks supervised at the first layer.

,Figure 2 :

 2 Figure 2: Parsing Templates. s and b respectively address symbols in the stack and the buffer.

Table 1 :

 1 Results on development and test corpora (SPMRL evaluator). a Björkelund et al. (2013).

			Arabic Basque French German Hebrew Hungarian Korean Polish Swedish Avg
	Experimental conditions	Decoding				Development F1 (EVALBSPMRL)		
	TOK+CLSTM	greedy	82.97	86.88	81.97	87.91	88.43	89.91	86.12	92.13	77.08	85.93
	TOK+CLSTM+M	greedy	83.03	87.93	82.0	88.32	89.42	89.98	86.71	92.8	78.4	86.51
	TOK+CLSTM+M+D	greedy	83.04	87.93	82.19	88.7	89.64	90.52	86.78	93.23	79.14	86.8
	TOK	greedy	80.97	76.28	79.93	85.52	85.82	81.88	72.97	82.8	72.95	79.9
	TOK+MMT	greedy	82.75	88.25	82.5	88.5	90.31	91.22	86.53	93.53	79.39	87.0
	TOK+MMT+D	greedy	83.07	88.35	82.35	88.75	90.34	91.22	86.55	94.0	79.64	87.14
	Experimental Conditions					Test F1 (EVALBSPMRL)			
	TOK+CLSTM+M+D	greedy	82.92	87.87	82.1	85.12	89.19	90.95	85.89	92.67	83.44	86.68
	TOK+MMT+D	greedy	82.77	88.81	82.49	85.34	89.87	92.34	86.04	93.64	84.0	87.26
	Björkelund et al. (2014)	ens+reranker 81.32 a 88.24	82.53	81.66	89.80	91.72	83.81	90.50	85.50	86.12
			Arabic	Basque	French c	German	Hebrew c Hungarian Korean c	Polish c	Swedish c
	Experimental Conditions	Decoding			Development results -POS-Tagging d			
	TOK+CLSTM+M	greedy	97.66	95.7	97.58	98.39		95.71	98.06		94.42	97.02	96.88
	MarMoT a	CRF+lexicons	97.38	97.02	97.61	98.10		97.09	98.72		94.03	98.12	97.27
						Test results -UAS/LAS			
	TOK+CLSTM+M+D	greedy	81.5/78.7 75.8/68.9 88.0/83.1 67.1/64.1 84.5/75.3 74.5/69.5 89.9/87.3 88.2/80.0 86.3/76.5
	TOK+MMT+D	greedy	81.3/78.6 76.8/71.2 87.8/83.5 67.2/64.7 85.8/77.3 75.9/72.0 89.6/87.5 89.6/83.1 86.7/78.5
	Ballesteros et al. (2015)	greedy	86.1/83.4 85.2/78.6 86.2/82.0 87.3/84.6 80.7/72.7 80.9/76.3 88.4/86.3 87.1/79.8 83.4/76.4
	Best published b	ens+reranker 88.3/86.2 90.0/85.7 89.0/85.7 91.6/89.7 87.4/81.7 89.8/86.1 89.1/87.3 91.8/87.1 88.5/82.8

Table 2 :

 2 Dependency and tagging results.

a Uses external morphological lexicons

[START_REF] Björkelund | re)ranking meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task[END_REF]

. b Either

[START_REF] Björkelund | re)ranking meets morphosyntax: State-of-the-art results from the SPMRL 2013 shared task[END_REF] 

or

Björkelund et al. (

These are available on MarMoT website.

Mismatches could be caused by irreducible structure difference between both treebanks[START_REF] Benoit | Multilingual discriminative lexicalized phrase structure parsing[END_REF].
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A Supplemental Material

Action Conditions SH B is not empty.

U-X

The last action is SHIFT. X is an axiom iff this is a one-word sentence.

(R|L)-X S has at least 2 elements.

X is an axiom iff B is empty, and S has exactly one element. If X is a temporary symbol and if B is empty, s 2 must not be a temporary symbol.

R-X

s 1 is not a temporary symbol.

L-X s 0 is not a temporary symbol. S, w|B S|w, B

Figure 3: Lexicalized shift-reduce transition system. X[h] denotes a non-terminal X and its head h. Each action has a set of preconditions to make sure that the transition system always terminates and always outputs a well-formed lexicalized tree. These preconditions are described in Table 3 of Appendix A. a Following [START_REF] Kiperwasser | Simple and accurate dependency parsing using bidirectional lstm feature representations[END_REF], we stochastically replace a word by an unknown symbol with probability p(w) = α #{w}+α , where #{w} is the raw frequency of w in the training corpus. Following Cross and Huang (2016b), we used α = 0.8375.

b When applicable. c Depending on number of possible values for this attribute.