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 that the logarithm of the distribution function then converges to the viscosity solution of a constrained Hamilton-Jacobi equation.

The hyperbolic scaling and the Hopf-Cole transform make the kinetic equation stiff. Thus, the numerical resolution of the problem is challenging, since the standard numerical methods usually lead to high computational costs in these regimes. Asymptotic Preserving (AP) schemes have typically been introduced to deal with this difficulty, since they are designed to be stable along the transition to the macroscopic regime. The scheme we propose is adapted to the nonlinearity of the problem, enjoys a discrete maximum principle, and solves the limit equation in the sense of viscosity. It is based on a dedicated micro-macro decomposition attached to the Hopf-Cole transform. As it is well adapted to the singular limit, our scheme is able to cope with singular behaviours in space (sharp interface), and possibly in velocity (concentration in the velocity distribution). Various numerical tests are proposed to illustrate the properties and the efficiency of our scheme.

Introduction

We are interested in designing a numerical scheme for a nonlinear kinetic equation in the asymptotic regime. The model we consider is a nonlinear transport-reaction equation

∂ t f (t, x, v) + v • ∇ x f (t, x, v) = ρ(t, x)M (v) -f (t, x, v) + rρ(t, x)(M (v) -f (t, x, v)), (1) 
with r ≥ 0, supplemented with initial data f (0, x, v)= f in (x, v) = ρ in (x)M (v). Such models have been introduced in [START_REF] Schwetlick | Travelling fronts for multidimensional nonlinear transport equations[END_REF][START_REF] Hadeler | Reaction transport systems in biological modelling[END_REF][START_REF] Cuesta | Traveling waves of a kinetic transport model for the KPP-Fisher equation[END_REF]. The asymptotic regime of (1) was studied in [START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF][START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF], both in the linear case r = 0, and in the nonlinear case r > 0. In [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF], the distribution function f , which depends on t > 0, x ∈ R d , and v ∈ V , where V is a bounded symmetric set of R d , represents the density of particles at time t, at the position x, and with velocity v. The macroscopic density of particles is defined by,

ρ(t, x) = f := v∈V f (t, x, v)dv, t ≥ 0, x ∈ R d .
Note that the brackets • denote integration in velocity throughout the paper. For r = 0, equation [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF] describes the evolution of the density of particles moving according to a velocity-jump process.

Indeed, the motion of a particle is composed of phases of free transport, of run phases (with a velocity v) and of tumble phases (in which the particle changes velocity instantaneously). The post-tumbling velocity is chosen randomly, according to a given probability density M . We assume that M is even, non-negative, and continuous. Moreover, it satisfies

M = 1, vM = 0, (2) 
and we will suppose that inf v∈V M (v) > 0.

(3) Condition ( 3) is a technical condition, required to stay within the context of the asymptotic analysis of (1), as in [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF][START_REF] Bouin | A kinetic eikonal equation[END_REF], which is the aim of this paper. When (3) is not satisfied, the asymptotic equation is modified, see [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF]. Note that some comments and numerical tests on the case inf v∈V M (v) = 0 are proposed in Section 6.4 Equation ( 1) is complemented with a reaction term in the case r > 0. It takes into account creation of new particles at rate r, and local quadratic saturation. Initial velocity of new particles is drawn randomly from M . Averaging with respect to velocity leads to the classical logistic growth rρ(1 -ρ).

We consider the kinetic equation ( 1) under a hyperbolic scaling (t, x, v) -→ (t/ε, x/ε, v). Indeed, since we are interested in the study of propagation phenomena in [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF], the time and space scale have to be equal. The kinetic equation (1) then reads

∂ t f ε (t, x, v) + v • ∇ x f ε (t, x, v) = 1 ε (ρ ε (t, x)M (v) -f ε (t, x, v) + rρ ε (t, x, v)(M (v) -f ε (t, x, v))) . ( 4 
)
The propagation of fronts for (1) was studied in [START_REF] Bouin | Propagation in a kinetic reaction-transport equation: Travelling waves and accelerating fronts[END_REF]. To study the asymptotic behaviour of (4) when ε goes to 0, an analogy is made in [START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF] with the sharp front limit of the Fisher-KPP equation. A WKB ansatz is introduced, leading to the so-called approximation of geometric optics (see [START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF][START_REF] Freidlin | Geometric optics approach to reaction-diffusion equations[END_REF]). It consists of rewriting the distribution function f ε as

f ε = M e -ψ ε /ε . (5) 
The equation satisfied by ψ ε in the limit ε → 0 is then studied. In the case of the kinetic equation (4), if 0 ≤ f ε (0, •, •) ≤ M, a maximum principle ensures that ψ ε is well defined and remains non-negative for all t ≥ 0, see [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF]:

Proposition 1. Let r ≥ 0 and let ψ in ∈ Lip(R d × V ), the Hopf-Cole transform (5) of f in , bounded. Let f ε = M e -ψ ε /ε a solution of (4). Then the phase ψ ε is uniformly locally Lipschitz, and the following a priori bound holds

∀t ≥ 0, 0 ≤ ψ ε (t, •, •) ≤ ψ in ∞ . (6) 
In the case of the Fisher-KPP equation, it has been proven that the function ψ ε converges to a limit function ψ 0 , which is the viscosity solution of a Hamilton-Jacobi equation, see [START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF][START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Barles | Wavefront propagation for reaction-diffusion systems of PDE[END_REF][START_REF] Souganidis | Front propagation: Theory and applications[END_REF][START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. Moreover, in the asymptotic regime, the settled population ρ ∼ 1 is contained in the nullspace of ψ 0 , see [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF][START_REF] Barles | A remark on the asymptotic behavior of the resolution of the KPP equation[END_REF][START_REF] Fleming | PDE-viscosity solution approach to some problems of large deviations[END_REF].

The analysis of propagation phenomena at the mesoscopic scale is motivated by concentration waves of chemotactic bacteria, as observed experimentally in [START_REF] Saragosti | Directional persistence of chemotactic bacteria in a traveling concentration wave[END_REF]. Here, the model under investigation does not contain any chemotactic effect, but takes into account cell division. It satisfies the maximum principle, hence it is more amenable for mathematical analysis, following the seminal works by Kolmogorov, Petrovsky, Piskunov [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], and Aronson, Weinberger [START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF]. The first analytical works, where travelling waves are constructed, are [START_REF] Schwetlick | Travelling fronts for multidimensional nonlinear transport equations[END_REF] and [START_REF] Cuesta | Traveling waves of a kinetic transport model for the KPP-Fisher equation[END_REF]. Note that the latter develops a micro-macro decomposition to handle the construction of travelling waves near the diffusive regime. We also refer to [START_REF] Hadeler | Reaction transport systems in biological modelling[END_REF], and references therein, for a more general presentation of reaction transport equations in biology.

The asymptotic behaviour of (4) in the limit ε → 0 was established rigorously in [START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF]. Before stating the main theorem, let us highlight that the formation of fronts if r > 0 can be understood with very formal considerations on [START_REF] Barles | A remark on the asymptotic behavior of the resolution of the KPP equation[END_REF]. Indeed, when ε goes to 0, supposing that the distribution function f ε and its density ρ ε converge respectively to f 0 and ρ 0 , we have formally at order 0 in ε ρ 0 M -f 0 + rρ 0 (M -f 0 ) = 0, [START_REF] Bouin | Spreading in kinetic reaction-transport equations in higher velocity dimensions[END_REF] which, once integrated in v, gives formally an equation for ρ 0 rρ 0 (1 -ρ 0 ) = 0.

Thus, the limit density ρ 0 is equal either to 0 or 1. Going back to [START_REF] Bouin | Spreading in kinetic reaction-transport equations in higher velocity dimensions[END_REF], in both cases, we obtain that f 0 = ρ 0 M . Formally, when ε goes to 0, two areas appear where f 0 is equal either to 0 or M . However, an equation for the dynamics of the propagation of the front is lacking. The WKB ansatz is accurate to capture this phenomenon, since the nullset of ψ 0 corresponds to the set where f 0 = M , and f 0 = 0 where ψ 0 has positive values. In the one-dimensional case, the equation of the dynamic of the interface, and the asymptotic behaviour of ψ ε is given by the following theorem, proven in [START_REF] Bouin | A kinetic eikonal equation[END_REF][START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF]:

Theorem 1. Suppose that V is a symmetric and bounded set of R, that r ≥ 0 and that M is a continuous function of v which satisfies (2)- [START_REF] Barles | Wavefront propagation for reaction-diffusion systems of PDE[END_REF]. Let f ε be the solution of (4), and suppose that the initial data is well prepared

ψ(0, x, v) = ψ in (x), i.e. f ε (0, x, v) = e -ψ in (x)/ε M (v)
, and ρ ε (0, x) = e -ψ in (x)/ε , then (ψ ε ) ε converges locally uniformly towards ψ 0 , where ψ 0 does not depend on v. Moreover, ψ 0 is the unique viscosity solution of one of the following Hamilton-Jacobi equations:

1. If r = 0, then ψ 0 solves the standard Hamilton-Jacobi problem

∂ t ψ 0 + H ∂ x ψ 0 = 0, on R * + × R, ψ 0 (0, •) = ψ in (•). (8) 
2. If r > 0, then the limit equation is the following constrained Hamilton-Jacobi equation

min ψ 0 , ∂ t ψ 0 + H ∇ x ψ 0 + r = 0, on R * + × R, ψ 0 (0, •) = ψ in (•). (9) 
where, in both cases, the hamiltonian H is defined implicitly by

M 1 + r + H(p) -vp = 1 1 + r . ( 10 
) If d ≥ 2 or if (3)
is not satisfied, it may happen that the implicit definition for the hamiltonian H(p) [START_REF] Buet | Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models[END_REF] is inconsistent for large values of p. The definition of the hamiltonian has been extended in [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF] to deal with large p in full generality. We refer to Section 6.4 for the details. Numerical results are presented in order to illustrate the singular behaviours which arise in this case (concentration in the velocity variable). We also refer to the recent work in [START_REF] Bouin | Spreading in kinetic reaction-transport equations in higher velocity dimensions[END_REF] for front propagation in higher dimension.

The goal of this paper is to construct a numerical scheme able to compute the solution of (4) in all regimes of ε, in the one-dimensional case. Indeed, the fast relaxation towards the equilibrium distribution function M and the outbreak of a sharp interface in the space variable, make the rescaled kinetic equation (4) stiff for small ε. Standard numerical methods for partial differential equations require in general the use of refined grids, when they do not take into account the special structure of the problem. Asymptotic Preserving (AP) schemes have been introduced to avoid the problems arising with standard numerical methods when solving stiff asymptotic problems, see [START_REF] Jin | Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations[END_REF][START_REF] Klar | An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit[END_REF][START_REF] Klar | An asymptotic preserving numerical scheme for kinetic equations in the low mach number limit[END_REF]. Indeed, they are constructed with express purpose of being stable along the transition from the mesoscopic regime (ε ∼ 1) to the macroscopic regime (ε 1). Their properties are often summarized by the following diagram

P ε : (11) ε→0 -------→ P 0 : (8) -(9) ∆t,∆x,∆v→0 ------------→ ∆t,∆x,∆v→0 ------------→ S ∆t,∆x,∆v ε : (26) ε→0 -------→ S ∆t,∆x,∆v 0 : (29) - (30) 
It can be understood as follows: considering a ε-dependent problem P ε (here [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF]) which converges to a limit problem P 0 when ε goes to 0 (( 8) or [START_REF] Bouin | Propagation in a kinetic reaction-transport equation: Travelling waves and accelerating fronts[END_REF], see Th. 1), the AP scheme S ∆t,∆x,∆v ε (defined in [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF]) must be consistent with P ε when ε is fixed. In addition, when the discretization parameters ∆t, ∆x, ∆v are fixed, it has to converge when ε goes to 0 to a limit scheme S ∆t,∆x,∆v 0 (here ( 29) or ( 30)), which is required to be consistent with P 0 . An AP scheme can also enjoy the stronger property of being Uniformly Accurate (UA), which means that its accuracy does not depend on ε.

The development of AP schemes for stiff kinetic equations is necessary to ensure their numerical resolution in all regimes of ε. Many AP strategies have been proposed for various asymptotics of linear kinetic equations, see for instance [START_REF] Carrillo | Numerical schemes of diffusion asymptotics and moment closures for kinetic equations[END_REF][START_REF] Jin | Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation schemes[END_REF][START_REF] Jin | Uniformly accurate diffusive relaxation schemes for multiscale transport equations[END_REF][START_REF] Buet | Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models[END_REF][START_REF] Naldi | Numerical schemes for kinetic equations in diffusive regimes[END_REF][START_REF] Lemou | A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF][START_REF] Lemou | Micro-macro schemes for kinetic equations including boundary layers[END_REF][START_REF] Bennoune | Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible navier stokes asymptotics[END_REF].

For the particular asymptotics we are considering, an asymptotic scheme has been proposed in [START_REF] Luo | An asymptotic method based on a Hopf-Cole transformation for a kinetic BGK equation in the hyperbolic limit[END_REF], for the linear case r = 0 in (4), complemented with an efficient scheme for the limit equation ( 8) in [START_REF] Luo | Properties-preserving high order numerical methods for a kinetic eikonal equation[END_REF]. Asymptotic schemes are based on expansions of the solution of the equation in formal power series of ε. Contrary to AP schemes, they are designed to approach the asymptotic behaviour of the equation, but are not relevant for the mesoscopic regimes, where ε ∼ 1. Indeed, the formal power series in ε are truncated, which limits the accuracy of the scheme to the small ε regimes. Moreover, the scheme proposed in [START_REF] Luo | An asymptotic method based on a Hopf-Cole transformation for a kinetic BGK equation in the hyperbolic limit[END_REF] is not adapted to the nonlinear case r > 0 in (4), and it is not clear that the approach they use can be easily adapted to the nonlinear case. Conversely, AP schemes are designed to be efficient in all regimes of ε. It is ensured that no approximation in ε is made when constructing the scheme. As a consequence, the scheme is consistent with the equation when any ε > 0 is fixed. In addition, since they are constructed to be efficient in the asymptotic regime, they capture perfectly the asymptotic behaviour of the equation. Note also that, contrary to the asymptotic schemes, the UA property provides in addition the correct behaviour of the numerical solutions in the intermediate regime, with no constraint on the parameter ε. The scheme proposed in this paper enjoys the AP property even in the nonlinear case r > 0 in (4). Moreover, the numerical tests suggest that it also enjoys the UA property. It is then accurate in all regimes of ε.

We propose here a scheme for (4) in the one-dimensional case, which enjoys the AP property for the limit equations ( 8)- [START_REF] Bouin | Propagation in a kinetic reaction-transport equation: Travelling waves and accelerating fronts[END_REF]. It is based on the following reformulation of (4)

∂ t ψ ε + v∂ x ψ ε = 1 + r M e -ψ ε /ε -(1 + r) M e -ψ ε /ε e ψ ε /ε , ( 11 
)
where ψ ε is the Hopf-Cole transform of f ε , defined in [START_REF] Bennoune | Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible navier stokes asymptotics[END_REF]. This problem is still stiff when ε goes to 0, and its nonlinear character must be carefully dealt with. Indeed, it is necessary to ensure that the computational cost and the accuracy of the resolution of the nonlinear system are constant with respect to ε. Another difficulty we have to consider is the fact that the solution of (11) converges, when ε goes to 0, to the viscosity solution of one of the Hamilton-Jacobi equations ( 8)- [START_REF] Bouin | Propagation in a kinetic reaction-transport equation: Travelling waves and accelerating fronts[END_REF]. The discretization of the kinetic equation ( 4) needs to be treated carefully since it yields the discretization of the limit equation that must capture the viscosity solution of the Hamilton-Jacobi equation. Moreover, it must be robust enough to deal with the possible lack of regularity of the solutions of (4) in the asymptotic regime. Indeed, the solution is expected to be only locally Lipschitz regular, and may present some C 1 discontinuities. Eventually, when r > 0, the limit equation ( 9) becomes a constrained problem, thus the AP scheme will be designed to respect this constraint. The scheme we propose is based on an adaptation of micro-macro schemes for linear kinetic equations (see [START_REF] Lemou | Micro-macro schemes for kinetic equations including boundary layers[END_REF][START_REF] Lemou | A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF][START_REF] Lemou | Relaxed micro-macro schemes for kinetic equations[END_REF]). The micro-macro decomposition is modified to be compatible with the nonlinearity of [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF]. In addition, the resolution of the nonlinear system, which is needed to compute the numerical solution of [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF], is carefully discussed to ensure the computational cost of the method does not depend on ε. The scheme enjoys the AP property, and the limit scheme captures the viscosity solution of the limit equation. It also satisfies a maximum principle, which is a discrete equivalent of [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF].

The paper is organized as follows: the scheme and a formal derivation of the asymptotic behaviour of [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF], on which the construction of the scheme is based, are presented in the next section. Then, the numerical resolution of the nonlinear system is discussed in Section 3, and the discrete maximum principle is proven in Section 4. The proof of the AP character of the scheme is completed in Section 5. Eventually, various numerical tests are proposed in Section 6 to highlight the properties of the scheme.
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The numerical scheme

In this section, we construct an AP scheme for (4) in the one-dimensional case, using its reformulation with the Hopf-Cole transform of f ε [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF]. We focus here on the relevant one-dimensional case, as is usually done when investigating front propagation. We refer to [START_REF] Bouin | Spreading in kinetic reaction-transport equations in higher velocity dimensions[END_REF] for the analysis of front propagation in the higher dimensional case. This scheme is based on an adaptation of the micromacro decomposition proposed in [START_REF] Lemou | A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF][START_REF] Lemou | Micro-macro schemes for kinetic equations including boundary layers[END_REF][START_REF] Lemou | Relaxed micro-macro schemes for kinetic equations[END_REF] for the construction of AP schemes near the diffusive regime of linear kinetic equations. Indeed, the usual micro-macro decomposition consists in the rewriting of the distribution function f ε as the sum of its part at equilibrium and of a remainder,

f ε = ρ ε M + g ε ,
where f ε = ρ ε , and g ε = 0. Once injected in a linear kinetic equation, an integration with respect to velocity yields an equation for ρ ε . It is then substracted from the original kinetic equation, to get a coupled system of partial differential equations for ρ ε and g ε . It is equivalent to the original kinetic equation, and the construction of an AP scheme for the kinetic equation is more explicit with this version. In the case (11) that we are considering, such an approach is not adapted, since the non-linearity of the collision operator prevents the simplifications arising in the linear case. Instead, we propose a new micro-macro decomposition of f ε , in which the density appears multiplied by a remainder. Thanks to the logarithmic transform applied to f ε , this becomes a linear decomposition for ψ ε . In the linear case, the micro-macro decomposition is based on a Chapman-Enskog expansion of the distribution function. Here, it also makes the limit equation appear, and it yields in addition an equation for the corrector. Namely, we decompose ψ ε , defined in [START_REF] Bennoune | Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible navier stokes asymptotics[END_REF], as follows

ψ ε (t, x, v) = ϕ ε (t, x) + η ε (t, x, v), (t, x, v) ∈ R * + × R × V,
where ϕ ε stands for the Hopf-Cole transform of ρ ε

ρ ε (t, x) = e -ϕ ε (t,x)/ε , that is ϕ ε = -ε ln(ρ ε ), (12) 
and η ε denotes what remains to reconstruct f ε

f ε ρ ε M = e -η ε /ε , (13) 
such that M e -η ε /ε = 1.

Since Theorem 1 states that the distribution fonction f ε converges to a distribution at equilibrium when ε → 0, η ε is expected to vanish for small ε. More precisely, we will show that its numerical approximation is of the order of ε. Once injected into [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF], this decomposition and the conserved quantity ( 14) yield

1 -∂ t (ϕ ε + η ε ) -v∂ x (ϕ ε + η ε ) + re -ϕ ε /ε = (1 + r)e η ε /ε . ( 15 
)
With this reformulation of [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF], it is easy to highlight formally the asymptotic behaviour of the model, presented in Theorem 1. Moreover, the formal computations we present here are also the basis of the construction of the scheme we propose. Theorem 1 states that when ε goes to 0, the distribution function f ε converges to a distribution at equilibrium, since ψ ε converges to a phase ψ 0 which does not depend on v, and which solves one of the limit equations ( 8)-( 9). The asymptotic behaviour of ϕ ε and η ε is formally,

lim ε→0 ϕ ε = ψ 0 , lim ε→0 η ε = 0, (16) 
since ϕ ε is the Hopf-Cole transform of ρ ε . Moreover, the equation safisfied by ψ 0 appears naturally from [START_REF] Cuesta | Traveling waves of a kinetic transport model for the KPP-Fisher equation[END_REF]. Indeed, it can be reformulated as follows

M 1 -∂ t (ϕ ε + η ε ) -v∂ x (ϕ ε + η ε ) + re -ϕ ε /ε = M e -η ε /ε 1 + r , (17) 
and by integrating with respect to velocity, becomes

M 1 -∂ t (ϕ ε + η ε ) -v∂ x (ϕ ε + η ε ) + re -ϕ ε /ε = 1 1 + r . ( 18 
)
As we are interested in exhibiting the Hamilton-Jacobi limit of the previous expression, let us introduce the approximated hamiltonian H ε , defined as

∂ t ϕ ε + H ε + r = 0,
and replace ∂ t ϕ ε with -H ε -r in [START_REF] Fleming | PDE-viscosity solution approach to some problems of large deviations[END_REF]. Thanks to [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF], if r = 0, the previous expression formally goes to [START_REF] Bouin | A kinetic eikonal equation[END_REF] when ε goes to 0, and if r > 0, we obtain (9) when ε goes to 0. Note that [START_REF] Cuesta | Traveling waves of a kinetic transport model for the KPP-Fisher equation[END_REF] ensures that the previous equation ( 18) is equivalent to the conservation of the quantity [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF]. It is also worth remarking that this formal asymptotic analysis yields the asymptotic behaviour of the corrector e -η ε /ε = f ε / (ρ ε M ) if r = 0. Indeed, thanks to ( 17) and ( 16), we obtain formally

lim ε→0 e -η ε /ε = 1 1 -∂ t ψ 0 -v∂ x ψ 0 . ( 19 
)
This formal asymptotic analysis paves the way for designing an AP scheme for (4). Indeed, as for the usual micro-macro decomposition, the expressions ( 15) and ( 18) provide a coupled system of equations for ϕ ε and η ε , on which the asymptotic equation appears clearly

         ∂ t ϕ ε + H ε + r = 0 1 -∂ t (ϕ ε + η ε ) -v∂ x (ϕ ε + η ε ) + re -ϕ ε /ε = (1 + r)e η ε /ε M 1 -∂ t η ε + H ε + r -v∂ x (ϕ ε + η ε ) + re -ϕ ε /ε = 1 1 + r . (20) 
To simplify the expression of the scheme, we will rather replace the last line with [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF]. Both are equivalent, thanks to [START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF]. Indeed, integrating [START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF] in velocity yields that the equality ( 18) is true if and only if ( 14) is satisfied. The system [START_REF] Hadeler | Reaction transport systems in biological modelling[END_REF] becomes

       ∂ t ϕ ε + H ε + r = 0 1 -∂ t (ϕ ε + η ε ) -v∂ x (ϕ ε + η ε ) + re -ϕ ε /ε = (1 + r)e η ε /ε M e -η ε /ε = 1. (21) 
The scheme for ( 21) is written using a symmetric grid for the space variable

x i = -x max + ∆x 2 + (i -1)∆x, i = 1, . . . , N x = 2N x , (22) 
where ∆x = x max /N x , and for the velocity variable

v j = -v max + ∆v 2 + (j -1)∆v, j = 1, . . . , N v = 2N v , (23) 
with ∆v = v max /N v . The integrations in v will be denoted by • Nv and performed with a simple quadrature rule

f Nv = ∆v Nv j=1 f (v j ). (24) 
In order to write an upwind scheme for the transport in the x variable, we define v + j = max(v j , 0), v - j = min(v j , 0). For the time variable, we will denote the final time as T , the time step as ∆t = T /N t , and

t n = n∆t, n = 0, . . . , N t . (25) 
The initial data for f ε will be considered at equilibrium f (0,

•, •) = M ρ ε in = M e -ϕ in /ε
, such that ϕ in is a given function and η ε (0, •, •) = 0. The choice of initial data at equilibrium comes from the fact that the asymptotic analysis of (1) has been carried on in [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF][START_REF] Bouin | A kinetic eikonal equation[END_REF] only for such initial data. Rigorously speaking, the asymptotic behaviour for small ε of a solution of (1) with initial data not at equilibrium is not known, even though it is natural to expect the part of the distribution which is not at equilibrium to behave as an initial layer term and to vanish within a time of the order of ε. Even if it will be proven in section 5, that the numerical approximation of η is indeed a O(ε) for small ε and positive time, the admissible initial data are restricted in this paper to the ones for which the asymptotic behaviour of (1) has been proven.

Denoting

η n i,j (resp. ϕ n i ) an approximation of η ε (t n , x i , v j ) (resp. ϕ ε (t n , x i )) for all n ≥ 1, i ∈ [[1, N x ]], j ∈ [[1, N v ]],
we propose the following scheme for ϕ ε and η

ε                ϕ n+1 i -ϕ n i ∆t + H n+1 i + r = 0, 1 + H n+1 i + r - η n+1 i,j -η n i,j ∆t -[v∂ x (ϕ + η)] n i,j + re (r∆t-ϕ n i )/ε e ∆tH n+1 i /ε = (1 + r)e η n+1 i,j /ε M e -η n+1 i,j /ε Nv = 1, (26) 
with the initialization ϕ 0 i = ϕ in (x i ), η 0 i,j = 0, and where the transport part is computed with an upwind scheme

[v∂ x (ϕ + η)] n i,j = v + j ϕ n i -ϕ n i-1 ∆x + η n i,j -η n i-1,j ∆x + v - j ϕ n i+1 -ϕ n i ∆x + η n i+1,j -η n i,j ∆x . ( 27 
)
Note that the dependence in ε of ϕ n i and η n i,j has been omitted to simplify the notations. To write this scheme, we implicited the stiff terms of the equation to avoid the problems that may arise in the numerical resolution. From the maximum principle, ϕ ε is non-negative in [START_REF] Jin | Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations[END_REF]. Although e -ϕ ε /ε is then not stiff, we decided to implicit it in the scheme. Indeed, with this formulation, a discrete maximum principle can be proven for the scheme (see Section 4), and we observed that it is not satisfied in the numerical tests if e -ϕ ε /ε is taken explicit. Eventually, the use of an upwind scheme [START_REF] Lemou | Relaxed micro-macro schemes for kinetic equations[END_REF] for the transport part is important since it provides the monotonicity properties needed to prove that the limit scheme captures the viscosity solution of the asymptotic model ( 8)- [START_REF] Bouin | Propagation in a kinetic reaction-transport equation: Travelling waves and accelerating fronts[END_REF].

In practise, to compute

ϕ n+1 i , η n+1 i,j (i,j)∈[[1,Nx]]×[[1,Nv]]
, one must solve the nonlinear system

       1 + H n+1 i + r - η n+1 i,j -η n i,j ∆t -[v∂ x (ϕ + η)] n i,j + re (r∆t-ϕ n i )/ε e H n+1 i ∆t/ε = (1 + r)e η n+1 i,j /ε M e -η n+1 i,j /ε Nv = 1, (28) 
in which the unknowns are

H n+1 i , η n+1 i,j (i,j)∈[[1,Nx]]×[[1,Nv]]
. To ensure the AP property of the scheme, the computational cost of the numerical resolution of this system must not depend on ε. A Newton's method is used for its resolution, and is discussed in the next section. Eventually, we have the following proposition:

Proposition 2. Consider the scheme (26) defined for all i ∈ [[1, N x ]], j ∈ [[1, N v ]], n ∈ [[0, N t -1]],
and suppose that the accuracy and computational cost of the resolution of the nonlinear problem (28) are independent of ε. This scheme has the following properties:

1. The scheme is of order 1 for any fixed ε > 0.

2. The scheme enjoys a discrete maximum principle : Let m > 0 such that 0 ≤ ϕ 0 i ≤ m, and suppose that η 0 i,j = 0 for all (i, j)

∈ [[1, N x ]] × [[1, N v ]].
Then, the following bounds hold:

∀n ∈ [[0, N t ]], ∀(i, j) ∈ [[1, N x ]] × [[1, N v ]], 0 ≤ ϕ n i ≤ m 0 ≤ ϕ n i + η n i,j ≤ m.
3. The scheme is AP: when the discretization parameters are fixed, the scheme tends, when ε goes to 0, to one of the following scheme:

If r = 0 : ϕ n+1 -ϕ n ∆t + H n+1 i = 0, ϕ 0 i = ϕ in , (29) 
If r > 0 : min

ϕ n+1 i -ϕ n i ∆t + H n+1 i + r, ϕ n+1 i = 0, ϕ 0 i = ϕ in , ( 30 
)
with ϕ n i ≥ 0 for all (n, i) ∈ [[1, N t ]] × [[1, N x ]],
and where in both cases H n+1 i is defined by

M 1 + H n+1 i + r -[v∂ x ϕ] n i,j Nv = 1 1 + r . ( 31 
)
These two schemes capture respectively the viscosity solutions of the asymptotic problems (8)-( 9), when the discretization parameters tend to zero.

Remark. In Proposition 2, it is supposed that the accuracy and the computational cost of the numerical resolution of the nonlinear system (28) are independent of ε. A numerical method for (28) enjoying these properties is discussed in Section 3.

Remark. The numerical tests we propose in Section 6.3 suggest that the scheme enjoys the UA property.

Remark. As stated in the proposition, the scheme ( 26) is of order 1 in time, space, and velocity, for any fixed ε > 0. The construction of higher order schemes then appears as a natural concern. It is straightforward to remark that using a higher order quadrature rule instead of (24) will increase both the order in velocity of the scheme, and of the asymptotic schemes [START_REF] Luo | An asymptotic method based on a Hopf-Cole transformation for a kinetic BGK equation in the hyperbolic limit[END_REF]. Moreover, it will not change their properties, since it will only slightly affect the resolution of the nonlinear system (Section 3), with a modification of the coefficients γ j in [START_REF] Schwetlick | Travelling fronts for multidimensional nonlinear transport equations[END_REF]. However, increasing the order of the scheme in time and space is not straightforward. Indeed, as was the case for the scheme in this paper, it is necessary to the following three issues of different nature:

• the numerical resolution of a nonlinear system at each step of the computation, since some terms of the scheme have to be considered implicit for stability reasons in the limit ε → 0.

• the stability of the scheme for all the regimes of ε. As it has to enjoy a discrete maximum principle uniformly in ε, this adds some constraints on the choice of the discretizations in time and space.

• the consistency of the scheme obtained in the limit ε → 0. It has to capture the viscosity solution of the Hamilton-Jacobi limit equation ( 8)-( 9). Nice monotonicity properties are then required. It is also necessary to ensure that it is of the same order as the initial scheme.

The construction of high order AP schemes for (1) will be the subject of a dedicated study in the near future.

Remark. The scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] is written in a one-dimensional context. Altough its expression could be easily extended to multi-dimensional setting, it is not clear that it would still enjoy the AP property. Indeed, in the linear case r = 0, the expression of the hamiltonian H is modified in dimensions greater than 1 and some Dirac masses may appear in the distribution function when ε → 0, see [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF]. Because of these differences in the asymptotic analysis of (1) in the multi-dimensional case, it seems that the construction of AP schemes able to handle dimensions greater than 1 must be done differently. This will be done in a future work.

The consistency and the order of the scheme for fixed ε are clear since we only used finite differences to write it. The second point of this proposition is proven in Section 4 and the AP character of the scheme is proven in Section 5. The properties claimed in this proposition are illustrated by various numerical tests in Section 6.

Resolution of the nonlinear system

The scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] proposed in the previous section is both nonlinear and implicit. In practice, given the values ϕ n i , η n i,j , the numerical resolution of the nonlinear system ( 28) is needed to compute ϕ n+1 i , η n+1 i,j . Furthermore, since the system (28) depends on ε, and contains some stiff terms, its numerical resolution may become costly when ε goes to 0. This would break the AP property, as the computational cost is expected not to increase when ε decreases. In this section, we explain how the Newton method can be tuned to resolve this issue, and how it can be implemented to make the computational cost independent on the stiffness of the problem.

The system (28) contains N x (N v +1) unknowns, for the same number of equations. We propose to consider it as N x systems of N v + 1 unknowns, each of them being numerically solved with Newton's method. Indeed, if

i 0 ∈ [[1, N x ]] is fixed, the system        1 + H n+1 i 0 + r - η n+1 i 0 ,j -η n i 0 ,j ∆t -[v∂ x (ϕ + η)] n i 0 ,j + re (r∆t-ϕ n i 0 )/ε e ∆tH n+1 i 0 /ε = (1 + r)e η n+1 i 0 ,j /ε M e -η n+1 i 0 ,j /ε Nv = 1, (32) 
where the unknowns are

η n+1 i 0 ,j j∈[[1,Nv]] , H n+1 i 0
, is a closed system of N v + 1 unknowns and N v + 1 equations, which can be reformulated as follows

F η n+1 i 0 ,j j∈[[1,Nv]] , H n+1 i 0 = 0,
with F : R Nv+1 -→ R Nv+1 . The Jacobian matrix of F can be computed explicitly to apply Newton's method. It is written

DF η n+1 i 0 ,j j∈[[1,Nv]] , H n+1 i 0 =         α 1 0 • • • 0 δ 1 0 α 2 . . . . . . . . . . . . . . . . . . 0 δ Nv-1 0 • • • 0 α Nv δ Nv γ 1 • • • γ Nv-1 γ Nv 0         , (33) 
where the coefficients α j , γ j , δ j are defined for j ∈ [[1, N v ]] by

α j = - 1 ∆t - 1 + r ε e -η n+1 i,j /ε , δ j = 1 + r∆t ε e (r∆t-ϕ n i )/ε e H n+1 i ∆t/ε , γ j = - ∆v ε M (v j )e -η n+1 i,j /ε . (34) 
Note that their dependence in i 0 is omitted to simplify the notations. Since the coefficients of ( 33) are stiff when ε is small, it is more convenient to compute the inverse of this matrix analytically, instead of doing it numerically. Indeed, this can be computed explicitly as

1 S                     S α 1 - δ 1 α 1 γ 1 α 1 - δ 1 α 1 γ 2 α 2 . . . - δ 1 α 1 γ Nv α Nv δ 1 α 1 - δ 2 α 2 γ 1 α 1 S α 2 - δ 2 α 2 γ 2 α 2 • • • - δ 2 α 2 γ Nv α Nv δ 2 α 2 . . . . . . . . . . . . . . . - δ Nv α Nv γ 1 α 1 • • • - δ Nv-1 α Nv γ Nv-1 α Nv-1 S α Nv - δ Nv α Nv γ Nv α Nv δ Nv α Nv γ 1 α 1 • • • γ Nv-1 α Nv-1 γ Nv α Nv -1                     , (35) 
where

S = Nv j=1 γ j α j δ j .
Having an explicit formula for DF

G n+1 i 0 ,j j∈[[1,Nv]] , H n+1 i 0 -1
presents two advantages. First of all, it reduces the computational cost by avoiding the numerical inversion of [START_REF] Saragosti | Directional persistence of chemotactic bacteria in a traveling concentration wave[END_REF], which may be of large dimension. One also notices that the construction of the matrix (35) can be done with only a moderate computational cost, since it is mostly made of an assembly of the vectors (δ i /α i ) i , (1/α i ) i , and (γ i /α i ) i . The main advantage however, is that the coefficients of [START_REF] Souganidis | Front propagation: Theory and applications[END_REF], which contain

γ j α j = - ∆t∆vM (v j )e -η n+1 i 0 ,j /ε ε + (1 + r)∆te η n+1 i 0 ,j /ε
, and

δ j α j = - ε∆t + r∆t 2 e (r∆t-ϕ n i )/ε e H n+1 i ∆t/ε ε + (1 + r)∆te η n+1 i,j /ε ,
do not present any singularity as ε goes to 0. Indeed, thanks to the discrete maximum principle proven in Section 4, e (r∆t-ϕ n i +H n+1 i ∆t)/ε is bounded with respect to ε. In fact, the discrete maximum principle states that ϕ n+1 i , defined by the first line of (26) as

ϕ n+1 i = ϕ n i -r∆t -H n+1 i ∆t,
remains non-negative. The proof of the AP character of the scheme in Section 5 also states as a preliminary result that e η n+1 i 0 ,j /ε and e -η n+1 i 0 ,j /ε are bounded with respect to ε. Using [START_REF] Souganidis | Front propagation: Theory and applications[END_REF] in the numerical computations will avoid singularities in the numerical computation of the inverse of [START_REF] Saragosti | Directional persistence of chemotactic bacteria in a traveling concentration wave[END_REF], that may appear for the small values of ε.

As a conclusion, we propose to compute the solution of (32) with the Newton method initialized by

[η, H] 0 := η n i 0 ,j j∈[[1,Nv]] , H n i 0
and with the iterations

[η, H] k+1 = [η, H] k -DF [η, H] k -1 [η, H] k .
Thanks to the discussion above, the accuracy and the computational cost of the resolution of the system is then independant of ε, which is a necessary condition for the scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] to enjoy the AP property.

Discrete maximum principle

The scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] has been designed including an upwind choice to deal with the transport terms. This ensures the consistency of the scheme for a given ε, as well as its stability under a CFL condition

v max ∆t ∆x < 1. (36) 
The stiff terms in ε have been treated implicitly to ensure the stability of the scheme when ε decreases.

Notice that this implies the AP property as well, as we shall see in the next section. Moreover, the scheme enjoys a discrete maximum principle, which is the discrete version of the maximum principle [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF] proven in [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF][START_REF] Bouin | A kinetic eikonal equation[END_REF] in the continuous case. In this section, we prove the following proposition, which contains the second point of Proposition 2.

Proposition 3. Let m > 0. Assume that for all i ∈ [[1, N x ]], j ∈ [[1, N v ]], 0 ≤ ϕ 0 i ≤ m and η 0 i,j = 0, then for all n ∈ [[0, N t -1]], and for all (i, j) ∈ [[1, N x ]] × [[1, N v ]],
the following properties hold :

1. 0 ≤ ϕ n+1 i ≤ m, 2. 0 ≤ η n+1 i,j + ϕ n+1 j ≤ m, 3. 0 ≤ ϕ n+1 i + η n+1 i,j -∆t 1 -e η n+1 i,j /ε + r∆te η n+1 i,j /ε 1 -e -(ϕ n+1 i +η n+1 i,j )/ε ≤ m.
Proof. As a preliminary result, let us remark that for a fixed i ∈ [[1, N x ]], there exists at least one index j -such that η n+1 i,j -≤ 0 and one index j + such that η n+1 i,j + ≥ 0. Otherwise, the equality

M e -η n+1 i,j /ε Nv = 1,
can not be fulfilled, since M = 1.

The proof of this proposition is done by induction. Let us fix n ∈ [[0, N t -1]] and suppose that for all (i, j)

∈ [[1, N x ]] × [[1, N v ]], 0 ≤ ϕ n i + η n i,j ≤ m.
The third point of the proposition comes by fixing j ∈ [[1, N v ]] such that v j ≥ 0 (the demonstration is similar for v j < 0). Indeed, the second line of ( 26) can be recast as follows

ϕ n+1 i -ϕ n i ∆t + η n+1 i,j -η n i,j ∆t + v j ϕ n i -ϕ n i-1 ∆x + v j η n i,j -η n i-1,j ∆x + re η n+1 i,j /ε = 1 -e η n+1 i,j /ε + re -ϕ n+1 i /ε ,
or, equivalently

ϕ n+1 i + η n+1 i,j -∆t 1 -e η n+1 i,j /ε + r∆te η n+1 i,j /ε 1 -e -(ϕ n+1 i +η n+1 i,j )/ε (37) = 1 -v j ∆t ∆x ϕ n i + η n i,j + v j ∆t ∆x ϕ n i-1 + η n i-1,j . If 0 ≤ ϕ n i + η n i,j ≤ m for all (i, j) ∈ [[1, N x ]] × [[1, N v ]],
and under the CFL condition (36), the righthand side of (37) is a convex combination of quantities lying in the interval [0, m]. This yields the inequality

0 ≤ ϕ n+1 i + η n+1 i,j -∆t 1 -e η n+1 i,j /ε + r∆te η n+1 i,j /ε 1 -e -(ϕ n+1 i +η n+1 i,j )/ε ≤ m.
Let us suppose in addition that for all

i ∈ [[1, N x ]], ϕ n i ≥ 0.
The first point of the proposition is a consequence of the previous inequality. We argue by contradiction. Suppose that ϕ n+1 i 0 < 0 for some i 0 . In addition, let j 0 ∈ [[1, N v ]] such that η n+1 i 0 ,j 0 ≤ 0. Then the inequality

0 ≤ ϕ n+1 i 0 + η n+1 i 0 ,j 0 -∆t 1 -e η n+1
i 0 ,j 0 /ε + r∆te

η n+1 i 0 ,j /ε 1 -e -ϕ n+1 i 0 +η n+1 i 0 ,j /ε , (38) 
cannot be fulfilled, since the right-hand side is a sum of negative terms. Hence, for all j ∈ [[1, N v ]], η n+1 i 0 ,j > 0, but this contradicts the preliminary result stated at the beginning of this proof. Hence, for all i ∈ [[1, N x ]], ϕ n+1 i ≥ 0. Let j 0 such that η n+1 i,j 0 ≥ 0. Considering (38) for (i, j 0 ), we obtain

ϕ n+1 i ≤ ϕ n+1 i + η n+1 i,j 0 + ∆t e η n+1 i,j 0 /ε -1 + r∆te η n+1 i,j 0 /ε 1 -e -ϕ n+1 i +η n+1 i,j 0 /ε ≤ m,
which gives the upper bound for ϕ n+1 i , and the first point of the proposition

0 ≤ ϕ n+1 i ≤ m.
Eventually, the second point of the proposition can be proven. Indeed, if η n+1 i,j ≥ 0, the inequality 0 ≤ ϕ n+1 i + η n+1 i,j follows immediately, and if η n+1 i,j < 0, we have

0 ≤ ϕ n+1 i + η n+1 i,j + ∆t e η n+1 i,j /ε -1 + r∆te η n+1 i,j /ε 1 -e -(ϕ n+1 i +η n+1 i,j )/ε ≤ ϕ n+1 i + η n+1 i,j + r∆t 1 -e -(ϕ n+1 i +η n+1 i,j )/ε ≤ 1 + r∆t ε ϕ n+1 i + η n+1 i,j
, which proves the positivity of ϕ n+1 i + η n+1 i,j . This implies also

ϕ n+1 i + η n+1 i,j + ∆t e η n+1 i,j /ε -1 ≤ ϕ n+1 i + η n+1 i,j + ∆t e η n+1 i,j /ε -1 + r∆te η n+1 i,j /ε 1 -e -(ϕ n+1 i +η n+1 i,j )/ε ≤ m
Considering the function f : x → x + ∆t(e x/ε -1), we remark that since x/ε ≤ e x/ε -1,

η n+1 i,j + ∆t(e η n+1 i,j /ε -1) ≤ m -ϕ n+1 i ⇒ 1 + ∆t ε η n+1 i,j ≤ m -ϕ n+1 i ⇒ η n+1 i,j ≤ m -ϕ n+1 i , because m -ϕ n+1 i ≥ 0.
Eventually, we get the upper bound of

ϕ n+1 i + η n+1 i,j ϕ n+1 i + η n+1 i,j ≤ m.

AP character

In this section, we prove that when ε goes to 0, the quantity η n i,j , which depends on ε, is such that η n i,j /ε is bounded uniformly with respect to ε, and that the limit scheme for (26) when ε goes to 0 is consistent with [START_REF] Bouin | Propagation in a kinetic reaction-transport equation: Travelling waves and accelerating fronts[END_REF]. Let us fix n ∈ [[0, N ]], and (i,

j) ∈ [[1, N x ]] × [[1, N v ]]. Since M e -η n i,j /ε Nv = 1,
where the discrete integration with respect to velocity has been defined in [START_REF] Klar | An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit[END_REF], and M Nv = 1, there exists a constant c such that e -η n i,j /ε ≤ c.

Moreover, as

0 ≤ ϕ n i + η n i,j + ∆t e η n i,j /ε -1 + r∆t e η n+1 i,j /ε -e -ϕ n+1 i /ε ≤ m, with, 0 ≤ ϕ n i + η n i,j ≤ m, and 0 ≤ ϕ n+1 i ≤ m,
we obtain that e η n i,j /ε ≤ m + ∆t ∆t .

Hence, both e -η n i,j /ε and e η n i,j /ε are bounded independently of ε, thanks to the maximum principle of the previous section. As a consequence, η n i,j /ε is bounded independently of ε. In other words, η n i,j vanishes when ε goes to 0, which is the expected asymptotic behaviour of η ε at the continuous level [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF]. To find the limit scheme for [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF], it is more convenient to rewrite the third line of (26) as

M 1 + H n+1 i + r - η n+1 i,j -η n i,j ∆t -[v∂ x (ϕ + η)] n i,j + re -ϕ n+1 i /ε Nv = 1 1 + r .
These two expressions are equivalent thanks to the second line of the scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF]. Hence, when ε → 0 with fixed ∆t, (26) becomes a scheme for ϕ n i only

ϕ n+1 -ϕ n ∆t = -H n+1 i , ϕ 0 i = ϕ in (x i ), (39) 
if r = 0, and

min ϕ n+1 i -ϕ n i ∆t + H n+1 i + r, ϕ n+1 i = 0, ϕ 0 i = ϕ in (x i ), (40) 
if r > 0. In both cases, the maximum principle of the second point of Prop. 2 ensures that ϕ n i ≥ 0, and

H n+1 i is defined implicitly for all n ∈ [[1, N -1]], and i ∈ [[1, N x ]], by M 1 + H n+1 i + r -[v∂ x ϕ] n i,j = 1 1 + r , (41) 
where the spatial derivative [v∂ x ϕ] n i,j is computed with an upwind scheme as in [START_REF] Lemou | Relaxed micro-macro schemes for kinetic equations[END_REF]. As in the continuous case, the asymptotic behaviour of ϕ n i and η n i,j yields the asymptotic behaviour of the corrector e -η n i,j /ε for small ε and r = 0. Indeed, if r = 0, the second line of ( 26) can be rewritten as e -η n+1 i,j /ε = 1

1 -

ϕ n+1 i -ϕ n i ∆t - η n+1 i,j -η n i,j ∆t -[v∂ x (ϕ + η)] n i,j . (42) 
Since η n+1 i,j and η n i,j tend to 0 when ε tends to 0, we obtain

lim ε→0 e -η n+1 i,j /ε = 1 1 - ϕ n+1 i -ϕ n i ∆t -[v∂ x ϕ] n i,j
, where ϕ n i solves the limit scheme (29). To prove that the scheme (26) enjoys the AP property, it remains to show that ( 29) and ( 30) capture the viscosity solution of ( 8) and ( 9). To do so, we use a general result on numerical schemes for Hamilton-Jacobi equations, stated in [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF]. It states that, for a scheme written in the general form

ϕ n+1 i = F (ϕ n i-1 , ϕ n i , ϕ n i+1 ), (43) 
that can also be written with a differenced form

ϕ n+1 i = ϕ n i -h ϕ n i -ϕ n i-1 ∆x , ϕ n i+1 -ϕ n i ∆x ∆t, (44) 
the following theorem, adapted from [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF], holds Theorem 2. Let H : R -→ R be continuous, ϕ in be bounded and Lipschitz continuous on R with Lipschitz constant L, and ϕ be the viscosity solution of

∂ t ϕ + H (∂ x ϕ) = 0, ϕ(0, x) = ϕ in (x). ( 45 
)
Under the CF L condition v max ∆t ∆x ≤ 1, (46) 
suppose that the scheme (43) has a differenced form (44), that the numerical hamiltonian h is consistent with H, and locally Lipschitz continuous. Suppose also that the scheme F defined in (43) is a nondecreasing function of each argument. Then, there exists a constant c depending only on sup |ϕ in |, L, h and the final time T such that

∀n ∈ [[1, N ]], ∀i ∈ [[1, N x ]], |ϕ n i -ϕ(t n , x i )| ≤ c √ ∆x + ∆t.
Here, the discretized hamiltonian H Nv and the numerical hamiltonian h are implicitly defined. Indeed, if p ∈ R, H Nv (p) is solution of

M 1 + r + H Nv (p) -vp Nv = 1 1 + r ,
with 1 + H Nv (p) -vp > 0, and if (p, q) ∈ R 2 , h(p, q) is solution of

M 1 + r + h(p, q) -v + p -v -q Nv = 1 1 + r , with 1 + r + h(p, q) -v + p -v -q > 0.
Therefore, the implicit function theorem ensures that H Nv (resp. h) is a continuous and locally Lipschitz function of p (resp. (p, q)). The consistency of h with H Nv is a consequence of the fact that h(p, p) = H Nv (p). Note that we only consider the discrete integrations • Nv for this result. The fact that the solution of ( 8)-( 9) with H Nv converges to the solution of ( 8)-( 9) with H is a consequence of the stability results for Hamilton-Jacobi equations found by [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]. To prove that the schemes ( 29)-( 30) capture the viscosity solution of ( 8)-( 9) with the integrations in velocity done with • Nv , it remains to be shown that it is nondecreasing in each argument. Considering ( 29)- [START_REF] Luo | An asymptotic method based on a Hopf-Cole transformation for a kinetic BGK equation in the hyperbolic limit[END_REF] in the general form (43), we compute the partial derivatives of F with the implicit function theorem. They read

∂F ∂ϕ n i-1 ϕ n i-1 , ϕ n i , ϕ n i+1 = ∆t ∆x v + M 1 + r + h ϕ n i -ϕ n i-1 ∆x , ϕ n i+1 -ϕ n i ∆x -v + ϕ n i -ϕ n i-1 ∆x -v - ϕ n i+1 -ϕ n i ∆x 2 Nv M 1 + r + h ϕ n i -ϕ n i-1 ∆x , ϕ n i+1 -ϕ n i ∆x -v + ϕ n i -ϕ n i-1 ∆x -v - ϕ n i+1 -ϕ n i ∆x 2 Nv ∂F ∂ϕ n i ϕ n i-1 , ϕ n i , ϕ n i+1 = 1 - ∆t ∆x (v + -v -)M 1 + r + h ϕ n i -ϕ n i-1 ∆x , ϕ n i+1 -ϕ n i ∆x -v + ϕ n i -ϕ n i-1 ∆x -v - ϕ n i+1 -ϕ n i ∆x 2 Nv M 1 + r + h ϕ n i -ϕ n i-1 ∆x , ϕ n i+1 -ϕ n i ∆x -v + ϕ n i -ϕ n i-1 ∆x -v - ϕ n i+1 -ϕ n i ∆x 2 Nv ∂F ∂ϕ n i+1 ϕ n i-1 , ϕ n i , ϕ n i+1 = ∆t ∆x |v -| M 1 + r + h ϕ n i -ϕ n i-1 ∆x , ϕ n i+1 -ϕ n i ∆x -v + ϕ n i -ϕ n i-1 ∆x -v - ϕ n i+1 -ϕ n i ∆x 2 Nv M 1 + r + h ϕ n i -ϕ n i-1 ∆x , ϕ n i+1 -ϕ n i ∆x -v + ϕ n i -ϕ n i-1 ∆x -v - ϕ n i+1 -ϕ n i ∆x 2 
Nv , which gives bounds on the partial derivatives of F ,

0 ≤ ∂F ∂ϕ i-1 ≤ v max ∆t ∆x 1 -v max ∆t ∆x ≤ ∂F ∂ϕ i ≤ 1 0 ≤ ∂F ∂ϕ i+1 ≤ v max ∆t ∆x .
The CFL condition (46) ensures that the second one is non-negative. The schemes ( 29)-( 30) then fulfill the hypothesis of Theorem 2. Therefore, it converges to the viscosity solution of ( 8)-( 9) with the integrations in velocity done with • Nv , when the discretization parameters ∆t and ∆x tend to 0.

Numerical tests

In this section, we present some numerical tests for the scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF]. In all the simulations, we will use the discretizations ( 22)-( 23)-( 25), with x max = 1, ∆v = 1.25 • 10 -2 , and v max = 1. The time and space steps ∆t and ∆x will be given in each case. Section 6.4 excepted, the equilibrium M we consider is constant on [-v max , v max ], such that M Nv = 1.

To compare the results given by ( 26) for large values of ε, we will compute numerical solutions of (4) using an explicit scheme for (4). Denoting f n i,j an approximaion of f ε (t n , x i , v j ) and ρ n i an approximation of ρ ε (t n , x i ), such a scheme can be written as

     f n+1 i,j -f n i,j ∆t + [v∂ x f ] n i,j = 1 ε ρ n i M j -f n i,j + rρ n i M j -f n i,j ρ n i = f n i,j Nv , (47) 
where the approximation [v∂ x f ] n i,j of the spatial derivative v∂ x f at (t n , x i , v j ) is computed using an upwind scheme

[v∂ x f ] n i,j = v + j f n i,j -f n i-1,j ∆x + v - j f n i+1,j -f n i,j
∆x .

The values ϕ n i and η n i,j are then deduced from the values of f n i,j , ρ n i

ϕ n i = -ε ln(ρ n i ), η n i,j = -ε ln f n i,j ρ n i M j . ( 48 
)
The scheme (47) is of order 1 for any fixed ε. When ε ∼ 1, the equation ( 4) contains no stiff terms, and the computation of a numerical approximation of the solution of ( 4) using ( 47) is then possible. However, the computation of ϕ and η for small values of ε with this method requires the explicit resolution of a stiff equation, which is costly from a computational point of view. Indeed, as a layer of width ε appears in the asymptotic regime, a condition linking ∆x and ε must be satisfied to ensure the solution of ( 47) is accurate. Roughly, it is given by ∆x ≤ cε. In addition, the CFL condition

∆t ∆x ≤ C, (49) 
makes the numerical resolution of (47) costly when ε is small. The solution of ( 26) will be compared to the numerical solution of the limit equation ( 8)-( 9) computed with ( 29)- [START_REF] Luo | An asymptotic method based on a Hopf-Cole transformation for a kinetic BGK equation in the hyperbolic limit[END_REF]. In this limit scheme, the numerical resolution of the nonlinear equation needed to find H n+1 is performed with the Newton method proposed in [START_REF] Luo | Properties-preserving high order numerical methods for a kinetic eikonal equation[END_REF]. In this method, the Newton method is used to solve [START_REF] Luo | Properties-preserving high order numerical methods for a kinetic eikonal equation[END_REF]. It is however slightly modified to ensure that ϕ n+1 i , defined in ( 29)- [START_REF] Luo | An asymptotic method based on a Hopf-Cole transformation for a kinetic BGK equation in the hyperbolic limit[END_REF], and the denominator of ( 31), remain non-negative for all iterations. When considering the micro-macro scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] for small ε > 0, this constraint is automatically satisfied, thanks to the maximum principle.

Consistency and AP character of the scheme in the linear case r = 0

In this section, we test the consistency and the AP property of the scheme (26) when r = 0, and we consider spatially periodic boundary conditions. Indeed, this is the simplest way of dealing with problems that are considered on the whole space. Although the border contitions could have been changed in the micro-macro scheme, it is important to insist on the fact that the theoretical asymptotic analysis has not yet been studied for bounded space domains, with boundary conditions. It is then impossible to compare the results given by the numerical schemes using nonperiodic border conditions to a theoretical result. We refer to Section 6.3 for numerical tests of the order of the micro-macro scheme. Firstly, we consider the initial value

ϕ in (x) = x 2 , x ∈ [-1, 1]. ( 50 
)
To check the consistency of the scheme ( 26), we test it for large values of ε, for which the solution of ( 11) is far from the solution of the limit equation ( 8)- [START_REF] Bouin | Propagation in a kinetic reaction-transport equation: Travelling waves and accelerating fronts[END_REF]. For x ∈ [-1, 1], we compute the solutions given by ( 26) for ε = 1, 10 -1 , and 10 -2 , and the parameters ∆t = 2.5 • 10 -3 , and ∆x = 10 -2 . For ε = 1 and ε = 10 -1 , the equation ( 4) can be solved numerically with (47) and the same numerical parameters. The solutions given by ( 26) are displayed in Fig. 1 and Fig. 2, they match the solutions given by (47) which are represented on the same figures. When ε becomes smaller, the computation of the solution of (4) with the scheme (47) becomes costly, due to the stiffness of the problem, and of the condition (49). The solution of ( 26) for ε = 10 -2 is then compared to the solution of the limit scheme (8) in Fig. 3. Once again, both are computed with ∆t = 2.5 • 10 -3 and ∆x = 10 -2 . We observe that for such a small value of ε, the solution of the kinetic problem [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF], computed with ( 26) is close to the solution of the asymptotic problem [START_REF] Bouin | A kinetic eikonal equation[END_REF]. These tests, done independently for ε = 1, 10 -1 and for ε = 10 -2 , show that the scheme ( 26) is accurate for the values of ε for which the problem is not stiff, and that it captures the viscosity solution of the limit problem (8) when ε is smaller.

In both cases r = 0 and r > 0, the solution of (11) converges, when ε goes to 0, to the viscosity solution of an Hamilton-Jacobi equation ( 8)- [START_REF] Bouin | Propagation in a kinetic reaction-transport equation: Travelling waves and accelerating fronts[END_REF]. Depending on the properties of the initial data, the solutions of these equations may not be smooth. Indeed, if there are two distinct minimum points in the initial data, the solutions of ( 8)-( 9) lack the C 1 regularity after some time. Theorem 2 ensures that the limit schemes ( 29)-( 30) captures the viscosity solution of ( 8)-( 9). As a consequence, they are robust when such a lack of regularity appears during the computations. However, to ensure that a scheme for [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF] enjoys the AP property, it is necessary to make sure that it is robust in the case of an initial data leading to a solution which does not enjoy the C 1 regularity, for all the values of ε. In order to test the robustness of [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] in this case, we now consider an initial data with two minimum points. Once again, for large values of ε, the solution of ( 26) is compared to the solution of (47), to check the agreement between them. The values ε = 1 and ε = 10 -1 are considered in Fig. 4 and Fig. 5, with the parameters ∆t = 10 -3 and ∆x = 4 • 10 -3 . When ε is smaller, the solution of the scheme ( 26) is compared to the solution of ( 8)- [START_REF] Bouin | Propagation in a kinetic reaction-transport equation: Travelling waves and accelerating fronts[END_REF]. Still because of the stiffness of the problem (4) for small ε, when ε is smaller it is costly to compare the solution of the micro-macro scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] to the solution of the explicit scheme (47). In addition, it is not robust when the solution is not regular enough, as in the test case we are considering. Instead, we compare the results given by the micro-macro scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] to the solutions given by the limit scheme [START_REF] Lemou | A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF], which captures the viscosity solution of the limit problem [START_REF] Bouin | A kinetic eikonal equation[END_REF]. The computations are done with the parameters ∆t = 10 -3 , and ∆x = 4 • 10 -3 , and the results are displayed in Fig. 6 for ε = 10 -2 and Fig. 7 for ε = 10 -3 .

Eventually, let us remark that the asymptotic behaviour of the corrector e -η ε /ε is recovered by the scheme, as expected with (42). Indeed, Fig. 8 presents the quantities e -η N t i,j /ε and 1/(1

-(ψ Nt i - ψ Nt-1 i )/∆t -[v∂ x ψ] Nt i,j
) at T = 1 and x = 0.5 as functions of v for different values of ε. We observe that when ε goes to 0, they coincide perfectly. The computations have been done with ∆t = 5 • 10 -3 and ∆v = ∆x = 0.02. The numerical rate in ε of this convergence is highlighted in the last plot of Fig. 8, where the quantity

e -η N t i,j /ε - 1 1 - ψ N t i -ψ N t -1 i ∆t -[v∂ x ψ] Nt i,j ∞ (51) 
is displayed as a function of ε. It appears that the numerical order of the convergence is 1. 26)-( 28) and (47) for ε = 10 -1 at times T = 0.25, 0.5, 0.75, 1, computed with ∆t = 10 -3 , ∆x = 4 • 10 -3 and ∆v = 1.25 • 10 -2 .

Consistency and AP character in the nonlinear case r > 0

In this section, we provide numerical tests to study the consistency and the AP property of the micro-macro scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] in the nonlinear case r > 0. As in the linear case, the accuracy of the micro-macro scheme ( 26) is tested for different values of ε. The results are displayed in Fig. 9, where the phase ϕ given by the scheme is compared to the solution of an explicit scheme (47) for (1) when ε = 1 or ε = 10 -1 , and to the solution of the limit scheme [START_REF] Luo | An asymptotic method based on a Hopf-Cole transformation for a kinetic BGK equation in the hyperbolic limit[END_REF] for ε = 10 and spatial periodic boundary conditions. As in the linear case, the comparison with the explicit scheme test shows that the scheme is accurate for large values of ε, and the comparison with the limit scheme highlights its AP character. When r > 0, it is expected that the nullset of ϕ spreads at a fixed speed c * , which depends on the model. Indeed, the following result has been proven in [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF], Proposition 4. Assume that ϕ 0 (x) = 0 x = 0 +∞ else , Then the nullset of the solution ϕ of (9) propagates at speed c * :

∀t > 0, {ϕ(t, •) = 0} = B(0, c * t).
The tests we propose in what follows are designed to highlight the propagation of fronts that is expected, thanks to the positivity of r. The speed of the propagation of the fronts is also tested numerically. The initial condition we consider is a density ρ such that ρ = 1 at the left of the spatial domain and 0 elsewhere, with Neumann spatial boundary conditions. Indeed, as a transport phenomenon is studied in this test, an analogy is made with the numerical boundary conditions that can be used for transport problems. To ensure the test is carried out in the asymptotic regime, we consider ε = 10 -4 with the parameters ∆t = 3.125 • 10 -4 , and ∆x = 1.25 • 10 -3 . Such a refined grid is not necessary to observe the propagation of the front, but it provides a better accuracy on the computation of the numerical propagation speed. The density given by the micro-macro scheme [START_REF] Kolmogorov | étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] at different times is displayed in Fig. 10. The speed of the propagation of the front is computed in the left part of Fig. 11. To determine numerically its theoretical value, the minimum of

c(p) = H(p) + r p , (52) 
for p > 0 is computed. It is presented in the plot on the right-hand side of Fig. 11. The precision of the result depends on ∆x, as highlighted in Fig. 12. In this figure, the relative error |c * ∆x -c * |/c * , where c * ∆x denotes the numerical propagation speed, is presented as a function of ∆x. In a logarithmic scale, a line is obtained, with slope 2. 

Order and uniform accuracy

In this section, we study the order of the scheme when ε is fixed, and we investigate its uniform accuracy. To study the order of the scheme, we choose the initial data (50), and we define a reference solution as the solution given by ( 26)-( 28) for ∆x = 2 • 10 -3 , ∆t = 5 • 10 -4 , and ∆v = 1.25 • 10 -2 . Keeping ∆t and ∆v fixed, we compute the solutions of ( 26) for different values of N x . The error

E(ε, ∆x) = ϕ ε ref -ϕ ε ∆x ∞ ϕ ε ref ∞
, is then computed for ε = 1. It is displayed in Fig. 13 in logarithmic scale. As the slope of the line is slightly greater than 1, the scheme is of order 1 in space, as expected for an upwind scheme. The scheme enjoys the UA property, with uniform order 1 if

sup ε∈(0,1] E(ε, ∆x) ≤ C∆x,
with C independent of ε. This property is is highlighed in Fig. 14 where the error E(ε, ∆x) is displayed in function of ε for different values of ∆x. As the lines are stratified, the scheme ( 26)-( 28) is uniformly accurate in ε. 

Case of a singular equilibrium

In this section, we consider the linear case r = 0, and an equilibrium M vanishing at some point of the velocity domain. It has been proven in [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF] that, in this case, the asymptotic model is still a Hamilton-Jacobi equation, but that the hamiltonian H is not given by the implicit formula (10) anymore. Indeed, if we suppose that the velocity space V , which is the support of M , is V = [-v max , v max ] (such a hypothesis simplifies the notations but is not necessary), and if we denote

µ(p) = v max |p|, (53) 
and

Sing(M ) = p ∈ R, M (v) µ(p) -vp ≤ 1 , (54) 
the following result holds Theorem 3. Suppose that ϕ ε (0, x, v) = ϕ in (x), then ϕ ε converges locally uniformly on R + × R × V towards ϕ, where ϕ does not depend on v. Moreover, ϕ is the viscosity solution of the following Hamilton-Jacobi equation:

∂ t ϕ(t, x) + H (∂ x ϕ(t, x)) = 0, (t, x) ∈ R + × R, (55) 
where the hamiltonian H is defined as follows: if p ∈ Sing(M ), then H(p) = µ(p) -1, else H(p) is uniquely determined by the following implicit formula

M 1 + H(p) -vp = 1. (56) 
This theorem, which has been proven in [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF] can be explained formally. Indeed, with the previous notations

ρ ε = e -ϕ ε /ε , f ε ρ ε M = e -η ε /ε , the equation (1) reads, for r = 0 ∂ t ϕ ε + v∂ x ϕ ε = 1 -e η ε /ε ,
which can be reformulated as follows

(H ε -vp ε + 1)e -η ε /ε = 1, where H ε = -∂ t ϕ ε and p ε = ∂ x ϕ ε . Since M e -η ε /ε = 1, when ε → 0, Q ε = e -η ε /ε converges formally to the solution Q of the spectral problem (H -v • p + 1)Q = M Q , (57) 
where H = -∂ t ϕ, p = ∂ x ϕ. It implies that 1 + H(p) -vp ≥ 0, and then that H(p) ≥ µ(p) -1.

We distinguish between two cases. The first one is that which we treated in this paper, namely if

p ∈ Sing(M ) c , then M µ(p) -vp > 1,
by monotonicity of

H -→ M 1 + H -vp , there exists H(p) > µ(p) -1 such that M 1 + H(p) -vp = 1.
But if p ∈ Sing(M ), such an H(p) cannot be determined and we have

H(p) = µ(p) -1. Therefore H(p) is continuous but not C 1 at p such that M µ(p) -vp = 1.
In addition, the solution of the spectral problem (57) is singular, and a Dirac mass arises at ±v max . It is even possible to compute the weight of this Dirac mass, see [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF][START_REF] Bouin | Spreading in kinetic reaction-transport equations in higher velocity dimensions[END_REF]. Note that when the equilibrium satisfies (3), Sing(M ) = ∅, and that, in the case we are considering in this part

M (v) = m (1 -∆v/2) 2 -v 2 , (58) 
Sing(M ) is not empty. Indeed, M vanishes at ±(1 -∆v/2) and Taylor expansions of M at v = ±(1 -∆v/2), show that any p large enough belongs to Sing(M ).

In this part, we investigate the behaviour of the micro-macro scheme with the equilibrium (58), since it was a priori not designed for such a singular equilibrium function. The consistency of the scheme with the kinetic equation for large values of ε ∼ 1 is still clear, since it is written as a finite differences scheme for the kinetic equation. To test the accuracy of the scheme in the asymptotic regime, we first ensure that the reference scheme we use for the limit equation (that was proposed in [START_REF] Luo | Properties-preserving high order numerical methods for a kinetic eikonal equation[END_REF]) is consistent with the limit equation defined with the constrained hamiltonian (56). The right part of Fig. 15 presents the numerical hamiltonian H(p) computed with the limit scheme. This limit scheme is defined following the idea of [START_REF] Luo | Properties-preserving high order numerical methods for a kinetic eikonal equation[END_REF] with an Euler scheme for (55), and the constrained hamiltonian (56) computed with a constrained Newton's method. As expected, it lacks the C 1 character and the condition H(p) ≥ µ(p) -1 is satisfied. The left part of Fig. 15 presents the equilibrium function M (58), with m such that M Nv = 1.

The AP character of the micro-macro scheme with this equilibrium is tested in Fig 16, where we fixed ε = 10 -4 , ∆x = 10 -2 , ∆t = 2.5 • 10 -3 , and ∆v = 5 • 10 -2 . It presents ϕ, the Hopf-Cole transform of the spatial density ρ, given by the micro macro scheme, and by the limit scheme. As the two curves match, the scheme seems to enjoy the AP property in the case of a singular equilibrium. It can actually be seen on the expression of the scheme. Indeed, since it can be written 

                         ϕ n+1 i -ϕ n i ∆t + H n+1 i = 0 M 1 + H n+1 i - η n+1 i,
the third line implies that the denominator of the second line remains positive in the computations.

Let us now remark that, as is stated in the continuous case in Thm. 3, η n+1 i,j vanishes when ε goes to 0. Indeed, if there are at least two index j ∈ [[1, N v ]] such that M (v j ) = 0, the proof of the discrete maximum principle stated in Section 4 still holds. As a consequence, ϕ n+1 i and η n+1 i,j are uniformly bounded in ε. The third line of (59) provides the following inequality

1 + H n+1 i - η n+1 i,j -η n i,j ∆t -[v∂ x (ϕ + η)] n i,j ≥ 1 + η n+1 i,j ε ,
that can be recast as follows (∆t -ε) η n+1 i,j ≥ -εη n i,j -ε∆t [v∂ x (ϕ + η)] n i,j -H n+1 i .

As a consequence, η n+1 i,j is non-negative when ε goes to 0 with the discretization parameters fixed. However, if it is positive, the third point of Prop. 3 cannot be satisfied in the small ε limit. Eventually, η n+1 i,j vanishes when ε goes to 0. Thus, the following inequality holds when ε → 0

1 + H n+1 i -[v∂ x ϕ] n i,j ≥ 0,
the constraint H(∂ x ϕ) ≥ µ(∂ x ϕ) -1 is hence fulfilled in the limit scheme. Moreover, if v = ±v max , the corrector e -η ε (t,x,v)/ε may not be bounded anymore, and a Dirac mass can even appear for such v, see [START_REF] Caillerie | Large deviations of a velocity jump process with a Hamilton-Jacobi approach[END_REF]. This phenomena is highlighted by Fig. 17, in which the corrector e -η ε (T,x,v)/ε is represented at time T = 1 as a function of x and v for different values of ε. As it is expected, we observe that a Dirac mass arises at some points located at the border of the velocity domain. The corrector e -η ε (T,x,v)/ε given by the micro-macro scheme at time T = 1, for different values of ε, and ∆x = 10 -2 , ∆t = 2.5 • 10 -3 , ∆v = 5 • 10 -2 as a function of x and v.

It also worth remarking that, contrary to the case M (v) ≥ δ > 0, the corrector e -η ε /ε does not converge to the quantity [START_REF] Freidlin | Geometric optics approach to reaction-diffusion equations[END_REF]. Indeed, the formal asymptotic analysis proposed in Section 2 breaks when M vanishes at some point of the velocity domain, and the equivalent (42) is not valid anymore. This is highlighted in Fig. 18, where the quantities e -η N t i,j /ε M and M/(1 -∂ t ψ Nt i -v∂ x ψ Nt i ) are plotted as functions of v for x = 0.5. The last plot of the figure presents the difference e -η N t i,j /ε M -M 1 -

ψ N t i -ψ N t -1 i ∆t -[v∂ x ψ] Nv i,j ∞ , (60) 
as a function of ε at time T = 1, with ∆t = 5 • 10 -3 and ∆v = ∆x = 0.02. As it is not a decreasing function of ε, the equivalent (42) does not hold in this case. )/∆t -[v∂ x ψ] Nv i,j ) as functions of v for x = 0.5 and different values of ε. In the last plot, the quantity (60) as a function of ε.

To conclude, the scheme presented here handles singular measures in the velocity variable which can arise when the equilibrium distribution M vanishes at the boundary of V . However, we lack suitable numerical analysis. For instance, the accuracy of the resolution of the nonlinear system (59) may be reduced when Dirac masses arise in the corrector.
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 12 Figure 1: The solutions of (26) and (47) for ε = 1 at times T = 0.25, 0.5, 0.75, 1, computed with ∆t = 2.5 • 10 -3 , ∆x = 10 -2 and ∆v = 1.25 • 10 -2 .

Figure 3 :

 3 Figure 3: The solutions of (26) and (29) for ε = 10 -2 at times T = 0.1, 0.2, 0.3, 0.5, 0.75, 1, computed with ∆t = 2.5 • 10 -3 , ∆x = 10 -2 and ∆v = 1.25 • 10 -2 .
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 45 Figure 4: The solutions of (26) and (47) for ε = 1 at times T = 0.25, 0.5, 0.75, 1, computed with ∆t = 10 -3 , ∆x = 4 • 10 -3 and ∆v = 1.25 • 10 -2 .
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 67 Figure 6: The solutions of (26) and (29) for ε = 10 -2 at times T = 0.1, 0.2, 0.3, 0.5, 0.75, 1, computed with ∆t = 10 -3 , ∆x = 4 • 10 -3 and ∆v = 1.25 • 10 -2 .
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 8 Figure 8: For T = 1, ∆t = 5 • 10 -3 , and ∆x = ∆v = 0.02, the quantities e -η N t i,j /ε and 1/(1 -(ψ Nt i -ψ Nt-1 i )/∆t -[v∂ x ψ] Nv i,j) as functions of v for x = 0.5 and different values of ε. In the last plot, the quantity (51) as a function of ε.
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 9 Figure 9: The solutions of (26), (47), and (29) for some values of ε at time T = 0.5, computed with ∆t = 2.5 • 10 -3 , ∆x = •10 -2 and ∆v = 1.25 • 10 -2 .
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 1011 Figure 10: The solution of the micro-macro scheme (26) for ε = 10 -4 at times T = 0.25, 0.5, 0.75 and 1, computed with ∆t = 3.125 • 10 -4 , ∆x = 1.25 • 10 -3 and ∆v = 1.25 • 10 -2 .

Figure 12 :

 12 Figure 12: The relative error |c ∆ x * -c * |/c * as a function of ∆x (log scale).
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 13 Figure 13: The expression E(1, ∆x) in function of ∆x (log scale).
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 14 Figure 14: The expression E(ε, ∆x) in function of ε for different values of ∆x (log scale).
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 15 Figure15: Left : The singular equilibrium considered in this section. Right : The constrained hamiltonian H(p) computed with the limit scheme.

  x (ϕ + η)] n i,j = e η n+1 i,j /ε ,
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 16 Figure16: The Hopf-Cole transform of the density, ϕ, given by the micro-macro scheme and the limit scheme at time T = 1, for ε = 10 -4 , ∆x = 10 -2 , ∆t = 2.5 • 10 -3 , ∆v = 5 • 10 -2 .
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 17 Figure17:The corrector e -η ε (T,x,v)/ε given by the micro-macro scheme at time T = 1, for different values of ε, and ∆x = 10 -2 , ∆t = 2.5 • 10 -3 , ∆v = 5 • 10 -2 as a function of x and v.
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 18 Figure 18: For T = 1, ∆t = 5 • 10 -3 , and ∆x = ∆v = 0.02, the quantities e -η N t i,j /ε M and M/(1 -(ψ Nt i -ψ Nt-1 i