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Abstract

The weak convergence of posterior distributions conditional on maximum

pseudo-likelihood estimates (MPLE) is studied and exploited to justify the

use of MPLE as summary statistics in approximate Bayesian computation

(ABC). Our study could be generalized by replacing the pseudo-likelihood

by other estimating functions (e.g. quasi-likelihoods and contrasts).
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1. Introduction1

Approximate Bayesian computation (ABC) has been developed to make2

Bayesian inference with models that can be used to generate data sets but3

whose probability distribution of state variables is intractable (Marin et al.,4

2012). The intractability of this distribution makes impossible the applica-5

tion of the exact Bayesian approach, even by using numerical algorithms.6

ABC provides a sample from the parameter space that is approximately dis-7

tributed under a posterior distribution of parameters conditional on sum-8
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mary statistics. In general, this posterior does not coincide with the poste-9

rior distribution of parameters conditional on full raw data. Here, we are10

interested in the specific case where (some of) the summary statistics are11

point estimates of parameters (PEP), as in Drovandi et al. (2011), Fearn-12

head and Prangle (2012), Gleim and Pigorsch (2013) and Mengersen et al.13

(2013).14

In the classical Bayesian framework, posteriors conditional on PEP can15

be viewed as specific cases of posteriors conditional on partial information16

(Doksum and Lo, 1990; Soubeyrand et al., 2009). Here, we provide new17

results of weak convergence when PEP are either maximum likelihood esti-18

mates (MLE) or pseudo-maximum likelihood estimates (MPLE). The case19

where PEP are MPLE is of specific interest because, in ABC, it may be20

possible to compute MPLE via simplifications of the dependence structure21

in the model, and to use MPLE as summary statistics.22

The results of weak convergence that are provided in this note can be23

viewed as new extensions of the Bernstein – von Mises (BvM) theorem.24

For parametric models from which independent observations are made, the25

BvM theorem (i) states conditions under which the posterior distribution26

is asymptotically normal and (ii) subsequently leads to the efficiency of27

Bayesian point estimators and to the convergence of Bayesian confidence28

sets to frequentist limit confidence sets (Walker, 1969; Freedman, 1999).29

Thus, the BvM theorem can be viewed as a frequentist justification of pos-30

terior distributions for the estimation of parameters. Numerous extensions31

of the BvM theorem have been proposed, for instance, when the model is32

semiparametric or nonparametric (Bickel and Kleijn, 2012; Bontemps, 2011;33

Castillo, 2012a,b; Castillo and Nickl, 2013; Rivoirard and Rousseau, 2012),34

when observations are dependent (Borwanker et al., 1971; Tamaki, 2008),35
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when the model is misspecified (Kleijn and van der Vaart, 2012), and when36

the model is nonregular (e.g. when the true value of the parameter is on the37

boundary of the parameter space; Bochkina and Green, 2014).38

Here, we extend the BvM theorem (i) when raw observations are replaced39

by the MLE (Lemma 1) or an MPLE (Lemma 2), and (ii) when the posterior40

conditional on an MPLE is approximated via ABC (Theorem 1). Using a41

posterior distribution (approximate or not) conditional on an MPLE, that42

was built by ignoring some dependences in the model, can be viewed as43

using a misspecified model like in Kleijn and van der Vaart (2012).44

The BvM extensions obtained in the classical Bayesian framework (Point45

(i) in the paragraph above) are viewed as stepping stones that lead to the46

BvM extension obtained in the ABC framework (Point (ii)). Advancing47

theory in ABC has generally no direct practical implications because as-48

sumptions that may be required to prove theorems cannot be checked for a49

real-life implicit stochastic model whose distribution theory is intractable.50

However, showing an analytic result for a large class of theoretically tractable51

models may lead to conjecture that the result holds for some stochastic im-52

plicit models. Specifically, the work presented here allows us to conjecture53

that (i) an ABC–posterior distribution conditional on an MPLE is asymp-54

totically normal and centered around the MPLE, and (ii) resulting point55

estimates and confidence sets converge to their frequentist analogues.56

2. Main notations57

Observed data D ∈ D are assumed to be generated under the stochas-58

tic model Mθ parametrized by θ ∈ Θ with prior density π. The data59

space D and the parameter space Θ ⊂ Rq (q ∈ N∗) are both included in60
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multidimensional sets of real vectors. The probability distribution func-61

tions (p.d.f.) of the model and the prior are defined with respect to the62

Lebesgue measure. Let p(D | θ) denote the likelihood of the model and63

p(θ | D) = p(D | θ)π(θ)/p(D) the full sample posterior of the parameter64

vector θ. The vector θ̂ML ∈ Θ is the maximum likelihood estimate (MLE)65

of θ: θ̂ML = argmax
θ∈Θ

p(D | θ). The posterior of parameters conditional66

on the MLE is p(θ | θ̂ML) = p(θ̂ML | θ)π(θ)/p(θ̂ML), where p(θ̂ML | θ) is67

the p.d.f. of the MLE given θ. Besides, we are interested in models whose68

likelihoods are not tractable because of the dependence structure in the69

data, but for which we can build tractable pseudo-likelihoods, say p̃(D | θ).70

A pseudo-likelihood is generally built by ignoring some of the dependen-71

cies in the data (Gaetan and Guyon, 2008; Gourieroux et al., 1983). The72

vector θ̂MPL ∈ Θ is a maximum pseudo-likelihood estimate (MPLE) of θ:73

θ̂MPL = argmax
θ∈Θ

p̃(D | θ). The posterior of parameters conditional on the74

MPLE is p(θ | θ̂MPL) = p(θ̂MPL | θ)π(θ)/p(θ̂MPL), where p(θ̂MPL | θ) is the75

p.d.f. of the MPLE given θ.76

3. Posterior conditional on the MLE77

The full sample posterior p(θ | D) and the posterior conditional on the78

MLE p(θ | θ̂ML) exactly coincide in specific cases (e.g. when the MLE are79

sufficient statistics), but do not coincide in general. Our aim, in this section,80

is to provide an asymptotically equivalent distribution for p(θ | θ̂ML).81

Bernstein – von Mises (BvM) theorems provide, for various statistical

models, the asymptotic behavior of posteriors distributions. For example,

following Walker (1969) and Lindley (1965, p. 130), we consider a set D =

(D1, . . . , Dn) of n i.i.d. variables drawn from a parametric distribution with
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density f(· | θ) with respect to a σ-finite measure on the real line, where θ is

in Θ ⊂ Rq. Under this setting and additional regularity conditions, the BvM

theorem establishes the asymptotic normality of the full sample posterior

(Walker, 1969, Theorem 2 and conclusion): the full sample posterior density

of θ is, for large n, equivalent to the normal density with mean vector equal

to the MLE θ̂ML and covariance matrix equal to Ωn(θ̂ML)−1:

p(θ | D) ∼
n→∞

φθ̂ML,Ωn(θ̂ML)−1(θ),

where φµ,Σ denotes the density of the normal distribution with mean vector82

µ and covariance matrix Σ, and Ωn(α) is the q×q matrix with element (i, j)83

equal to
(
−∂2 log p(D | θ)/∂θi∂θj

)
θ=α

.84

To provide an asymptotically equivalent distribution for p(θ | θ̂ML) as85

in BvM theorems, we assume in Lemma 1 (see below) that the MLE is86

asymptotically normal and consistent. For example, consider the same sta-87

tistical model than above and assume that assumptions made in Lehmann88

and Casella (1998, Theorem 5.1 of the MLE asymptotic normality, p. 463)89

are satisfied. In particular, assume that data were generated with parameter90

vector θ. Then, the density of θ̂ML is, for large n and given θ, equivalent to91

the normal density with mean vector equal to the true parameter vector θ92

and covariance matrix equal to n−1I(θ)−1:93

p(θ̂ML | θ) ∼
n→∞

φθ,n−1I(θ)−1(θ̂ML). (1)

where I(θ) denotes the q × q Fisher information matrix.94

Lemma 1 (Asymptotic normality of the posterior conditional on the MLE).

Consider the modeling setting described in Section 2 and suppose that the

MLE satisfies Equation (1) with non-singular matrix I(θ). Assume in ad-

dition that the prior π is a positive and Lipschitz function over Θ, that
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θ 7→ |I(θ)| (determinant of I(θ)) and θ 7→ x′I(θ)x (for all x ∈ Rq, x′ being

the transpose of x) are Lipschitz functions over Θ, and that the constant

which arises in the Lipschitz condition for θ 7→ x′I(θ)x and which is a

function of x, is also a Lipschitz function over Rq. Then, when n → ∞,

the posterior density p(θ | θ̂ML) conditional on the MLE is asymptotically

equivalent to the density of the normal distribution with mean vector θ̂ML

and covariance matrix n−1I(θ̂ML)−1 over a subset Bn of Θ whose measure

with respect to this normal density is asymptotically one in probability:

p(θ | θ̂ML) ∼
n→∞

φθ̂ML,n−1I(θ̂ML)−1(θ), ∀θ ∈ Bn

lim
n→∞

∫
Bn

φθ̂ML,n−1I(θ̂ML)−1(θ)dθ =
P

1.

Thus, over the subset Bn which asymptotically contains all the mass95

of the normal density φθ̂ML,n−1I(θ̂ML)−1(·), the posterior conditional on the96

MLE is asymptotically equivalent to this normal distribution.97

From a frequentist point of view, the BvM theorem (which concerns the98

full sample posterior p(θ | D)) is a justification of the Bayesian approach99

for parameter estimation since the Bayesian confidence sets asymptotically100

coincide with the frequentist limit confidence sets (Freedman, 1999). Lemma101

1 shows a similar result for the posterior conditional on the MLE p(θ |102

θ̂ML). Thus, Lemma 1 can also be viewed as a justification of the use103

of the posterior conditional on asymptotically normal MLE for parameter104

estimation. Note that results similar to the one provided by Lemma 1 have105

already been obtained for the estimation of an univariate location parameter;106

see Doksum and Lo (1990) and references therein.107

Regarding assumptions in Lemma 1, the asymptotic normality of the108

MLE (Equation (1)) requires classical but strong assumptions (even for the109

simple i.i.d. case). However, the asymptotic normality of the MLE has been110
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obtained for numerous modeling and sampling settings, even in non-i.i.d.111

cases. Lemma 1 is also based on a series of Lipschitz assumptions concerning112

the prior π and the Fisher information matrix I(θ). These assumptions are113

satisfied for classical distributions (e.g. when π is uniform on a bounded114

domain and when (D1, . . . , Dn) are independent normal variables with mean115

µ and variance 1).116

Proof. Under the assumptions of the theorem of the MLE asymptotic nor-

mality (i.e. under Equation (1)), p(θ̂ML | θ) = ηn(θ) + εn(θ), where ηn(θ) =

φθ,n−1I(θ)−1(θ̂ML) and εn(θ) =
n→∞

o(ηn(θ)). Therefore,

p(θ | θ̂ML) =
n→∞

{ηn(θ) + εn(θ)}π(θ)∫
Θ ηn(α)π(α)dα+

∫
Θ εn(α)π(α)dα

=
ηn(θ)π(θ)(1 + o(1))∫

Θ ηnπ +
∫

Θ εnπ
.

The densities π and ηn being positive over Θ and the density ηn converg-117

ing to the Dirac distribution at the true parameter vector θ0 when n→∞,118 ∫
Θ ηnπ is positive and its limit, namely π(θ0), is also positive. Besides,119

θ 7→ p(θ̂ML | θ) being asymptotically equivalent to ηn, it also converges120

to the Dirac distribution at the true parameter vector θ0 when n → ∞,121

and
∫

Θ p(θ̂ML | θ)π(θ)dθ → π(θ0) > 0. Therefore,
∫

Θ εnπ =
∫

Θ p(θ̂ML |122

θ)π(θ)dθ −
∫

Θ ηnπ converges to 0,
∫

Θ εnπ = o(
∫

Θ ηnπ) and123

p(θ | θ̂ML) =
n→∞

π(θ)

π(θ0)
ηn(θ)(1 + o(1)). (2)

Let Bn be the ball of center θ0 and radius rn such that rn → 0 and124

rn
√
n → ∞ (rn converges to zero at a lower rate than 1/

√
n). Since π is125

Lipshitzian (i.e. ∃A1 <∞,∀θ1, θ2 ∈ Θ, |π(θ1)− π(θ2)| ≤ A1||θ1 − θ2||),126

π(θ) =
n→∞

π(θ0)(1 + o(1)), ∀θ ∈ Bn. (3)

Let us now derive an equivalent function for ηn which can be written:

ηn(θ) = φθ,n−1I(θ)−1(θ̂ML) =

√
n|I(θ)|1/2

(2π)d/2
exp

(
−n

2
(θ̂ML − θ)′I(θ)(θ̂ML − θ)

)
.
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Using the Lipschitz condition on θ 7→ I(θ) (i.e. ∃A2 < ∞,∀θ1, θ2 ∈ Θ, |

|I(θ1)|−|I(θ2)| |≤ A2||θ1−θ2||), one can state that for all θ ∈ Bn, |I(θ)|1/2 =
n→∞

|I(θ̂ML)|1/2(1 + o(1)). Besides, the two Lipschitz conditions concerning

θ 7→ x′I(θ)x can be written as follows:

∀x ∈ Rq,∃A3(x) <∞, ∀θ1, θ2 ∈ Θ, |x′I(θ1)x− x′I(θ2)x| ≤ A3(x)||θ1 − θ2||

∃A4 <∞, ∀x1, x2 ∈ Rq, |A3(x1)−A3(x2)| ≤ A4||x1 − x2||.

These conditions imply that over Bn, |(θ̂ML − θ)′I(θ)(θ̂ML − θ) − (θ̂ML −127

θ)′I(θ̂ML)(θ̂ML− θ)| is bounded from above by 2rn(A3(0) + 2rnA4). There-128

fore, (θ̂ML− θ)′I(θ)(θ̂ML− θ) =
n→∞

(θ̂ML− θ)′I(θ̂ML)(θ̂ML− θ)(1 + o(1))and129

ηn(θ) =
n→∞

φθ̂ML,n−1I(θ̂ML)−1(θ)(1 + o(1)), ∀θ ∈ Bn. (4)

Using Equations (2-4), we obtain the first equation of Lemma 1:

p(θ | θ̂ML) =
n→∞

φθ̂ML,n−1I(θ̂ML)−1(θ)(1 + o(1)), ∀θ ∈ Bn.

The 2nd equation of Lemma 1 is shown below. Let p ∈ (0, 1), and con-130

sider Rn,p the region consisting of the vectors θ ∈ Θ satisfying n(θ̂ML −131

θ)′I(θ̂ML)(θ̂ML − θ) ≤ χ2
d(p), where χ2

d(p) is the quantile of order p of132

the chi-square distribution of order d (i.e. the dimension of Θ). Using133

the link between the normal and chi-square distributions, Rn,p satisfies:134 ∫
Rn,p

φθ̂ML,n−1I(θ̂ML)−1(θ)dθ = p. Moreover, from a property of the Rayleigh135

quotient, (θ̂ML − θ)′I(θ̂ML)(θ̂ML − θ) ≥ λmin{I(θ̂ML)}||θ̂ML − θ||, where136

λmin{I(θ̂ML)} is the minimum eigenvalue of I(θ̂ML). Therefore,137

∀θ ∈ Rn,p, ||θ̂ML − θ|| ≤ λmin{I(θ̂ML)}−1
√
χ2
d(p)/n. (5)

From the MLE asymptotic normality,

lim
n→∞

P
(

(θ̂ML − θ0)′I(θ0)(θ̂ML − θ0) ≤
√
χ2
d(p)/n

)
= p.
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Moreover, (θ̂ML − θ0)′I(θ0)(θ̂ML − θ0) ≥ λmin{I(θ0)}||θ̂ML − θ0||, where138

λmin{I(θ0)} is the minimum eigenvalue of I(θ0). Therefore,139

lim
n→∞

P
(
||θ̂ML − θ0|| ≤ λmin{I(θ0)}−1

√
χ2
d(p)/n

)
≥ p. (6)

Since ||θ−θ0|| ≤ ||θ̂ML−θ||+ ||θ̂ML−θ0||, one obtains using Eq. (5) and (6),

lim
n→∞

P
(
∀θ ∈ Rn,p, ||θ − θ0|| ≤

[
λmin{I(θ̂ML)}−1 + λmin{I(θ0)}−1

]√
χ2
d(p)/n

)
≥ p.

Since rn goes to zero more slowly than 1/
√
n, the previous inequality yields:

lim
n→∞

P (∀θ ∈ Rn,p, ||θ − θ0|| ≤ rn) ≥ p

lim
n→∞

P (Rn,p ⊂ Bn) ≥ p

lim
n→∞

P

(∫
Bn

φθ̂ML,n−1I(θ̂ML)−1(θ)dθ ≥
∫
Rn,p

φθ̂ML,n−1I(θ̂ML)−1(θ)dθ

)
≥ p

lim
n→∞

P
(∫

Bn

φθ̂ML,n−1I(θ̂ML)−1(θ)dθ ≥ p
)
≥ p.

The last inequality obtained for any p ∈ (0, 1) implies that
∫
Bn
φθ̂ML,n−1I(θ̂ML)−1(θ)dθ

converges to one in probability when n→∞, i.e.

lim
n→∞

∫
Bn

φθ̂ML,n−1I(θ̂ML)−1(θ)dθ =
P

1.

140

4. Posterior conditional on an MPLE141

Here, we propose a lemma analogous to Lemma 1 but concerning an142

MPLE (maximum pseudo-likelihood estimate) instead of the MLE.143

Lemma 2 (Asymptotic normality of the posterior conditional on an MPLE).

Consider the modeling setting provided in Section 2. Assume that, given the

vector θ under which the data D were generated, the p.d.f. of the MPLE
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θ̂MPL is equivalent to the normal density with mean vector θ and covariance

matrix g(n)−1J(θ)−1:

p(θ̂MPL | θ) ∼
n→∞

φθ,g(n)−1J(θ)−1(θ̂MPL),

where g is a positive increasing function such that g(n) → ∞ and J(θ) is

a positive-definite matrix. Assume in addition that the prior π is a positive

and Lipschitz function over Θ, that θ 7→ |J(θ)| and θ 7→ x′J(θ)x (for all

x ∈ Rq, x′ being the transpose of x) are Lipschitz functions over Θ, and

that the constant which arises in the Lipschitz condition for θ 7→ x′J(θ)x

and which is a function of x, is also a Lipschitz function over Rq. Then,

when n→∞, the posterior density p(θ | θ̂MPL) conditional on the MPLE is

asymptotically equivalent to the density of the normal distribution with mean

vector θ̂MPL and covariance matrix g(n)−1J(θ̂MPL)−1 over a subset Bn of

Θ whose measure with respect to this normal density is asymptoticallyone:

p(θ | θ̂MPL) ∼
n→∞

φθ̂MPL,g(n)−1J(θ̂MPL)−1(θ), ∀θ ∈ Bn

lim
n→∞

∫
Bn

φθ̂MPL,g(n)−1J(θ̂MPL)−1(θ)dθ = 1.

Lemma 2 justifies the use of the posterior conditional on the MPLE for144

parameter estimation because the Bayesian confidence sets that are pro-145

vided by this posterior asymptotically coincide with the frequentist limit146

confidence sets obtained by maximizing the pseudo-likelihood.147

The asymptotic normality of the MPLE required in Lemma 2 has been148

obtained for various models, especially random Markov fields and spatial149

point processes; see Gaetan and Guyon (2008, chap. 5), Gourieroux et al.150

(1983), Møller and Waagepetersen (2004, chap. 9) and references therein.151

It has to be noted that information is lost when MPLE are used rather than152

MLE and, consequently, that estimation accuracy is decreased (e.g. this153
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has been shown for simple Markovian models using asymptotic estimation154

variances (Gaetan and Guyon, 2008, chap. 5)).155

Proof. Follow the proof of Lemma 1 by assuming that the radius rn of the156

ball Bn satisfies rn
√
g(n)→∞ instead of rn

√
n→∞.157

158

5. Approximate posterior conditional on an MPLE159

Here, we derive implications of Lemma 2 in the framework of approxi-160

mate Bayesian computation (ABC) when (some of) the summary statistics161

are MPLE (see Theorem 1 and Corollary 1). We consider the (simple) ABC–162

rejection algorithm based on independent simulations, on a set of summary163

statistics and on a tolerance threshold (Pritchard et al., 1999):164

ABC–rejection. Perform the next 3 steps for i in {1, . . . , I}, independently:165

• Generate θi from π and simulate Di from Mθi ;166

• Compute summary statistics Si = s(Di), where s is a function from D167

to the space S of statistics;168

• Accept θi if d(Si, S) ≤ ε, where d is a distance over S and ε is a169

tolerance threshold for the distance between the observed statistics170

S = s(D) and the simulated ones Si.171

The set of accepted parameters, say Θε,I = {θi : d(Si, S) ≤ ε, i = 1, . . . , I},

forms a sample from the following posterior:

pε(θ | S) =

(∫
Bd(S,ε) h(s | θ)ds

)
π(θ)∫

Θ

(∫
Bd(S,ε) h(s | α)ds

)
π(α)dα

,

where the ball Bd(S, ε) in the d-dimensional space S is the set of points172

from which the distance to S is less than ε, and h(S | θ) is the conditional173
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probability distribution function of S given θ. When ε tends to zero and d is174

appropriate, pε(θ | S) is a good approximation of p(θ | S) under regularity175

assumptions (see Blum (2010) and Soubeyrand et al. (2013, Appendix A)):176

pε(θ | S) and p(θ | S) are asymptotically equivalent. However, if S is not177

sufficient, then p(θ | S) 6= p(θ | D) and information is lost by using S instead178

of D.179

Theorem 1 (Asymptotic normality of the ABC–posterior conditional on

an MPLE). Consider the ABC–rejection algorithm that samples in the pos-

terior pε(θ | θ̂MPL) of θ conditional on the vector of summary statistics

S = θ̂MPL. Assume that when ε → 0, pε(θ | θ̂MPL) converges pointwise

to p(θ | θ̂MPL). Then, under assumptions of Lemma 2, when n → ∞ and

ε→ 0, the posterior pε(θ | θ̂MPL) is asymptotically equivalent to the density

of the normal distribution with mean vector θ̂MPL and covariance matrix

g(n)−1J(θ̂MPL)−1 over a subset Bn of Θ whose measure with respect to this

normal density goes to one in probability and that does not depend on ε:

pε(θ | θ̂MPL) ∼
n→∞,ε→0

φθ̂MPL,g(n)−1J(θ̂MPL)−1(θ), ∀θ ∈ Bn

lim
n→∞

∫
Bn

φθ̂MPL,g(n)−1J(θ̂MPL)−1(θ)dθ =
P

1.

As explained in the introduction, this result leads us to conjecture that,180

for some stochastic implicit models, (i) the ABC–posterior distribution con-181

ditional on an MPLE is asymptotically normal and centered around the182

MPLE, and (ii) resulting point estimates and confidence sets converge to183

their frequentist analogues. Corollary 1 in Appendix A provides an anal-184

ogous result when the MPLE is used in conjunction with supplementary185

statistics.186

Proof. This result is directly obtained from Lemma 2 by simply noting that
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the subset Bn does not depend on ε. Indeed, following the proof of Lemma

1, pointwise in θ we have:

pε(θ | θ̂MPL) =
ε→0

p(θ | θ̂MPL)(1 + oε(1))

=
n→∞,ε→0

π(θ)

π(θ0)
ηn(θ)(1 + on(1))(1 + oε(1)).

Then, Bn is used to provide an equivalent of π(θ)π(θ0)−1ηn(θ). This term187

does not depend on ε and, consequently, Bn has not to be dependent on ε.188

189

6. Example190

The simplified example presented here illustrates the application of ABC

conditional on an MPLE and a supplementary statistic. The model Mθ

under consideration is the following bivariate normal distribution:

N
(

( µµ ) ,
(

1 ρ
ρ 1

))
,

parameterized by the mean µ and the correlation ρ; we set θ = (µ, ρ).

Observed data D = {(D(1)
k , D

(2)
k ) : k = 1, . . . , n} are n = 100 vectors drawn

under this normal distribution with µ = 0 and ρ = 0.5. We use a uniform

prior distribution π over the rectangular domain (−3, 3) × (−1, 1). The

maximum likelihood estimates of µ and ρ are the empirical mean of (D
(1)
k +

D
(2)
k )/2 and the empirical correlation of (D

(1)
k , D

(2)
k ), k = 1, . . . , n. Here, we

applied ABC with the two following statistics:

S = s(D) =

µ̂MPL

S0

 =
1

n

n∑
i=1

 D
(1)
k

1{sign(D
(1)
k ) = sign(D

(2)
k )}

 ,

where µ̂MPL is an MPLE of µ that uses only partial information contained191

in the sample (i.e. only the first component of sampled vectors), and S0 is a192
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supplementary statistic that gives the mean number of vectors in the sample193

whose components D
(1)
k and D

(2)
k have the same sign (1{·} is the indicator194

function).195

To assess the convergence of ABC when ε tends to zero, we applied ABC196

with varying ε, with I = 105 simulations, and with the distance d(Si, S) =197

(µ̂MPL,i − µ̂MPL)2 + (S0,i − S0)2, where Si = (µ̂MPL,i, S0,i) is the vector of198

statistics computed for the simulation i. As usual in ABC–rejection, instead199

of fixing ε, we fixed the sample size τ of the posterior sample (i.e. the number200

of accepted parameter vectors); note that ε decreases when τ decreases.201

The sample size τ was fixed at values ranging from 10 to 5000. For each202

value of τ , we computed the local posterior probability (LPP) around the203

true parameter vector θ = (0, 0.5) as the proportion of accepted parameter204

vectors in the small rectangle [−0.015, 0.015] × [0.495, 0.505] whose center205

is θ = (0, 0.5) and whose sides are 200 times smaller than the sides of the206

parameter space (−3, 3)× (−1, 1). We expect that this LPP increases with207

the efficiency of the inference procedure. The LPP was computed for 50000208

datasets and Figure 1 shows its mean and standard deviation when τ varies.209

The mean LPP around the true parameters increases when the sample size210

τ (and ε) tends to zero; meanwhile, the dispersion of the LPP increases.211

This is the signature of the classical bias–variance trade-off.212

To automatically select the sample size τ , we applied the procedure213

proposed by Soubeyrand et al. (2013) where the distance between summary214

statistics is also optimized. In this procedure, the distance is weighted:215

d(Si, S;w1, w2) = w1(µ̂MPL,i − µ̂MPL)2 + w2(S0,i − S0)2, and the triplet216

(τ, w1, w2) is optimized under constraints using an integrated mean square217

error criterion. For one of the 50000 datasets simulated above, Figure 2218

shows ABC–posterior samples obtained when d is not weighted and τ is219
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Figure 1: Mean (solid line), pointwise 95%-confidence envelopes (dashed lines) and stan-

dard deviation (dotted line) of the local posterior probability around the true parameter

vector θ = (0, 0.5) as a function of sample size τ .

fixed at 5000, 1000 and 200, and when d is weighted and (τ, w1, w2) is220

optimized. The grey contour line shows the smallest 95%-posterior area221

obtained with the classical Bayesian computation. The first three panels222

illustrate the bias–variance trade-off when τ tends to zero. The fourth panel223

illustrates the difference between the classical Bayesian inference conditional224

on all data and the ABC inference conditional on partial information and225

with optimized τ (here τ = 585). The relevancy of the optimized sample size226

τ = 585 can be seen by projecting this value on Figure 1: (i) the expected227

LPP around the true parameters is comparable to expected LPP obtained228

with lower τ , and (ii) the standard deviation of the LPP is strongly decreased229

compared with standard deviations obtained with lower τ .230
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Figure 2: ABC–posterior samples (dots) obtained when d is not weighted and τ is fixed

at 5000 (top left), 1000 (top right) and 200 (bottom left), and when d is weighted and

(τ, w1, w2) is optimized (bottom right). Dashed lines are intersecting at the true value

(0, 0.5) of the parameter vector θ = (µ, ρ). The grey contour line gives the smallest

95%-posterior area obtained with the classical Bayesian computation.
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7. Discussion231

We provided a frequentist justification for the use of posterior distribu-232

tions conditional on MPLE, both in the classical Bayesian framework and in233

the ABC framework. The asymptotic results presented above were obtained234

for a large but limited class of models satisfying regularity assumptions. In235

real-life studies where ABC is applied, these assumptions cannot be checked236

and, consequently, our asymptotic results may not hold. Therefore, it is237

crucial (i) to combine MPLE and supplementary summary statistics to tend238

to a set of sufficient summary statistics (Joyce and Marjoram, 2008), and239

(ii) to apply a method for selecting, weighting or transforming the summary240

statistics to avoid to take into account non-relevant statistics. In Section241

6, we used the weighted distance between summary statistics proposed by242

Soubeyrand et al. (2013) where the weights are optimized with respect to243

an integrated mean square error. Other approaches could be applied. For244

example, Barnes et al. (2012), Joyce and Marjoram (2008) and Nunes and245

Balding (2010) propose a dimension reduction (that can be viewed as a bi-246

nary weighting), and Wegmann et al. (2009) proposes a PLS transformation247

followed by a binary weighting of the PLS axes (see also Blum et al., 2013;248

Fearnhead and Prangle, 2012; Jung and Marjoram, 2011).249

The strong implication of our approach is that an analytic work has to be250

made: the dependence structure of the model has to be simplified to write a251

tractable pseudo-likelihood and, eventually, to find an analytic expression for252

the maximizer. This additional work is however expected to yield relevant253

summary statistics directly informing (a subset of) the parameters.254

In this article, we did not precisely define what is a pseudo-likelihood.255

This deliberate choice is justified in the sense that the MPLE could be256

17



replaced, in Theorem 1, by any other estimates with similar normal weak257

convergence. Thus, our approach could be generalized by replacing the258

pseudo-likelihood by a quasi-likelihood or a contrast. Another extension259

of Theorem 1 could be derived by conditioning ABC on the score function260

of the pseudo-likelihood instead of the MPLE as proposed by Gleim and261

Pigorsch (2013), Ruli et al. (2013) and Mengersen et al. (2013).262
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Appendix A. Combining an MPLE and supplementary statistics266

Corollary 1. Consider the posterior pε(θ | θ̂MPL, S0) of θ conditional on the

vector of summary statistics S = (θ̂MPL, S0) in which the ABC–rejection al-

gorithm samples. Assume that when ε→ 0, pε(θ | θ̂MPL) converges pointwise

to p(θ | θ̂MPL). Assume that there exists a vector T0 independent of θ̂MPL

such that (θ̂MPL, T0) brings the same information on θ than S = (θ̂MPL, S0).

Then,

pε(θ | θ̂MPL, S0) =
ε→0

p̌(θ | T0)(1 + oε(1)),

where p̌(θ | T0) is the posterior density of θ conditional on the subset of267

statistics T0 given the modified prior p(θ | θ̂MPL) = p(θ̂MPL | θ)π(θ)/p(θ̂MPL).268

If in addition assumptions of Lemma 2 hold, the modified prior p(θ |269

θ̂MPL) is asymptotically equivalent to the density of the normal distribution270

with mean vector θ̂MPL and covariance matrix equal to g(n)−1J(θ̂MPL)−1
271

over a subset Bn of Θ whose measure with respect to this normal density272

goes to one in probability and that does not depend on ε.273
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Under the first set of assumptions of Corollary 1, we can also write274

that pε(θ | θ̂MPL, S0) =
ε→0

p̌(θ | θ̂MPL)(1 + oε(1)), where p̌(θ | θ̂MPL) is275

the posterior density of θ conditional on the MPLE with the modified prior276

p(θ | T0) = p(T0 | θ)π(θ)/p(T0). Moreover, the existence of T0 is a strong277

assumption that reduces the applicability of the corollary (a trivial but cer-278

tainly rare example where T0 exists is obtained when one assumes that279

(θ̂MPL, S0) is a normal random vector; Indeed, in this case T0 can be defined280

as T0 = S0 − E(S0 | θ̂MPL)). Nevertheless, if (θ̂MPL, S0) is asymptotically281

normal, we conjecture that a result similar to Corollary 1 can be obtained.282

Proof. The first part of the corollary is straightforward:

pε(θ | θ̂MPL, S0) =
ε→0

p(θ | θ̂MPL, S0)(1 + oε(1)) = p(θ | θ̂MPL, T0)(1 + oε(1))

=
p(θ̂MPL, T0 | θ)π(θ)

p(θ̂MPL, T0)
(1 + oε(1)) =

p(T0 | θ̂MPL, θ)p(θ̂MPL | θ)π(θ)

p(T0)p(θ̂MPL)
(1 + oε(1))

=
p(T0 | θ)p(θ̂MPL | θ)π(θ)

p(T0)p(θ̂MPL)
(1 + oε(1)) =

p(T0 | θ)p(θ | θ̂MPL)

p(T0)
(1 + oε(1)).

The term p(θ | θ̂MPL) can be viewed as a prior that is based on information283

contained in θ̂MPL and that is independent from data T0 used for the final284

inference. The second part of the corollary corresponds to Theorem 1.285
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