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The weak convergence of posterior distributions conditional on maximum pseudo-likelihood estimates (MPLE) is studied and exploited to justify the use of MPLE as summary statistics in approximate Bayesian computation (ABC). Our study could be generalized by replacing the pseudo-likelihood by other estimating functions (e.g. quasi-likelihoods and contrasts).

Introduction

Approximate Bayesian computation (ABC) has been developed to make Bayesian inference with models that can be used to generate data sets but whose probability distribution of state variables is intractable [START_REF] Marin | Approximate Bayesian computational methods[END_REF]. The intractability of this distribution makes impossible the application of the exact Bayesian approach, even by using numerical algorithms.

ABC provides a sample from the parameter space that is approximately distributed under a posterior distribution of parameters conditional on sum-mary statistics. In general, this posterior does not coincide with the posterior distribution of parameters conditional on full raw data. Here, we are interested in the specific case where (some of) the summary statistics are point estimates of parameters (PEP), as in Drovandi et al. (2011), Fearnhead and[START_REF] Fearnhead | Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation[END_REF], [START_REF] Gleim | Approximate Bayesian computation with indirect summary statistics[END_REF] and [START_REF] Mengersen | Bayesian computation via empirical likelihood[END_REF].

In the classical Bayesian framework, posteriors conditional on PEP can be viewed as specific cases of posteriors conditional on partial information [START_REF] Doksum | Consistent and robust Bayes procedures for location based on partial information[END_REF][START_REF] Soubeyrand | Inference with a contrast-based posterior distribution and application in spatial statistics[END_REF]. Here, we provide new results of weak convergence when PEP are either maximum likelihood estimates (MLE) or pseudo-maximum likelihood estimates (MPLE). The case where PEP are MPLE is of specific interest because, in ABC, it may be possible to compute MPLE via simplifications of the dependence structure in the model, and to use MPLE as summary statistics.

The results of weak convergence that are provided in this note can be viewed as new extensions of the Bernstein -von Mises (BvM) theorem.

For parametric models from which independent observations are made, the BvM theorem (i) states conditions under which the posterior distribution is asymptotically normal and (ii) subsequently leads to the efficiency of Bayesian point estimators and to the convergence of Bayesian confidence sets to frequentist limit confidence sets [START_REF] Walker | On the asymptotic behaviour of posterior distributions[END_REF][START_REF] Freedman | On the Bernstein-Von Mises theorem with infinitedimensional parameters[END_REF].

Thus, the BvM theorem can be viewed as a frequentist justification of posterior distributions for the estimation of parameters. Numerous extensions of the BvM theorem have been proposed, for instance, when the model is semiparametric or nonparametric (Bickel and Kleijn, 2012;[START_REF] Bontemps | Bernstein-von Mises theorems for Gaussian regression with increasing number of regressors[END_REF]Castillo, 2012a,b;[START_REF] Castillo | Nonparametric Bernstein-von Mises theorems in Gaussian white noise[END_REF][START_REF] Rivoirard | Bernstein-von Mises theorem for linear functionals of the density[END_REF], when observations are dependent [START_REF] Borwanker | The Bernsteinvon Mises theorem for Markov processes[END_REF][START_REF] Tamaki | The Bernstein-von Mises theorem for stationary processes[END_REF], when the model is misspecified [START_REF] Kleijn | The bernstein-von-Mises theorem under misspecification[END_REF], and when the model is nonregular (e.g. when the true value of the parameter is on the boundary of the parameter space; [START_REF] Bochkina | The bernstein-von Mises theorem and nonregular models[END_REF].

Here, we extend the BvM theorem (i) when raw observations are replaced by the MLE (Lemma 1) or an MPLE (Lemma 2), and (ii) when the posterior conditional on an MPLE is approximated via ABC (Theorem 1). Using a posterior distribution (approximate or not) conditional on an MPLE, that was built by ignoring some dependences in the model, can be viewed as using a misspecified model like in [START_REF] Kleijn | The bernstein-von-Mises theorem under misspecification[END_REF].

The BvM extensions obtained in the classical Bayesian framework (Point (i) in the paragraph above) are viewed as stepping stones that lead to the BvM extension obtained in the ABC framework (Point (ii)). Advancing theory in ABC has generally no direct practical implications because assumptions that may be required to prove theorems cannot be checked for a real-life implicit stochastic model whose distribution theory is intractable.

However, showing an analytic result for a large class of theoretically tractable models may lead to conjecture that the result holds for some stochastic implicit models. Specifically, the work presented here allows us to conjecture that (i) an ABC-posterior distribution conditional on an MPLE is asymptotically normal and centered around the MPLE, and (ii) resulting point estimates and confidence sets converge to their frequentist analogues. A pseudo-likelihood is generally built by ignoring some of the dependencies in the data [START_REF] Gaetan | Modélisation et statistique spatiale[END_REF][START_REF] Gourieroux | Pseudo maximum likelihood methods: Theory[END_REF]. The vector θMP L ∈ Θ is a maximum pseudo-likelihood estimate (MPLE) of θ: 

Main notations

θMP L = argmax

Posterior conditional on the MLE

The full sample posterior p(θ | D) and the posterior conditional on the MLE p(θ | θML ) exactly coincide in specific cases (e.g. when the MLE are sufficient statistics), but do not coincide in general. Our aim, in this section, is to provide an asymptotically equivalent distribution for p(θ | θML ).

Bernstein -von Mises (BvM) theorems provide, for various statistical models, the asymptotic behavior of posteriors distributions. For example, following [START_REF] Walker | On the asymptotic behaviour of posterior distributions[END_REF] and Lindley (1965, p. 130), we consider a set D = (D 1 , . . . , D n ) of n i.i.d. variables drawn from a parametric distribution with density f (• | θ) with respect to a σ-finite measure on the real line, where θ is in Θ ⊂ R q . Under this setting and additional regularity conditions, the BvM theorem establishes the asymptotic normality of the full sample posterior (Walker, 1969, Theorem 2 and conclusion): the full sample posterior density of θ is, for large n, equivalent to the normal density with mean vector equal to the MLE θML and covariance matrix equal to Ω n ( θML ) -1 :

p(θ | D) ∼ n→∞ φ θML ,Ωn( θML ) -1 (θ),
where φ µ,Σ denotes the density of the normal distribution with mean vector µ and covariance matrix Σ, and Ω n (α) is the q × q matrix with element (i, j)

equal to -∂ 2 log p(D | θ)/∂θ i ∂θ j θ=α .
To provide an asymptotically equivalent distribution for p(θ | θML ) as in BvM theorems, we assume in Lemma 1 (see below) that the MLE is asymptotically normal and consistent. For example, consider the same statistical model than above and assume that assumptions made in Lehmann and Casella (1998, Theorem 5.1 of the MLE asymptotic normality, p. 463) are satisfied. In particular, assume that data were generated with parameter vector θ. Then, the density of θML is, for large n and given θ, equivalent to the normal density with mean vector equal to the true parameter vector θ and covariance matrix equal to n -1 I(θ) -1 :

p( θML | θ) ∼ n→∞ φ θ,n -1 I(θ) -1 ( θML ).
(

) 1 
where I(θ) denotes the q × q Fisher information matrix.

Lemma 1 (Asymptotic normality of the posterior conditional on the MLE).

Consider the modeling setting described in Section 2 and suppose that the MLE satisfies Equation (1) with non-singular matrix I(θ). Assume in addition that the prior π is a positive and Lipschitz function over Θ, that θ → |I(θ)| (determinant of I(θ)) and θ → x I(θ)x (for all x ∈ R q , x being the transpose of x) are Lipschitz functions over Θ, and that the constant which arises in the Lipschitz condition for θ → x I(θ)x and which is a function of x, is also a Lipschitz function over R q . Then, when n → ∞, the posterior density p(θ | θML ) conditional on the MLE is asymptotically equivalent to the density of the normal distribution with mean vector θML and covariance matrix n -1 I( θML ) -1 over a subset B n of Θ whose measure with respect to this normal density is asymptotically one in probability:

p(θ | θML ) ∼ n→∞ φ θML ,n -1 I( θML ) -1 (θ), ∀θ ∈ B n lim n→∞ Bn φ θML ,n -1 I( θML ) -1 (θ)dθ = P 1.
Thus, over the subset B n which asymptotically contains all the mass of the normal density φ θML ,n -1 I( θML ) -1 (•), the posterior conditional on the MLE is asymptotically equivalent to this normal distribution.

From a frequentist point of view, the BvM theorem (which concerns the full sample posterior p(θ | D)) is a justification of the Bayesian approach for parameter estimation since the Bayesian confidence sets asymptotically coincide with the frequentist limit confidence sets [START_REF] Freedman | On the Bernstein-Von Mises theorem with infinitedimensional parameters[END_REF]. Lemma 1 shows a similar result for the posterior conditional on the MLE p(θ | θML ). Thus, Lemma 1 can also be viewed as a justification of the use of the posterior conditional on asymptotically normal MLE for parameter estimation. Note that results similar to the one provided by Lemma 1 have already been obtained for the estimation of an univariate location parameter;

see [START_REF] Doksum | Consistent and robust Bayes procedures for location based on partial information[END_REF] and references therein.

Regarding assumptions in Lemma 1, the asymptotic normality of the MLE (Equation ( 1)) requires classical but strong assumptions (even for the simple i.i.d. case). However, the asymptotic normality of the MLE has been obtained for numerous modeling and sampling settings, even in non-i.i.d.

cases. Lemma 1 is also based on a series of Lipschitz assumptions concerning the prior π and the Fisher information matrix I(θ). These assumptions are satisfied for classical distributions (e.g. when π is uniform on a bounded domain and when (D 1 , . . . , D n ) are independent normal variables with mean µ and variance 1).

Proof. Under the assumptions of the theorem of the MLE asymptotic normality (i.e. under Equation ( 1)

), p( θML | θ) = η n (θ) + ε n (θ), where η n (θ) = φ θ,n -1 I(θ) -1 ( θML ) and ε n (θ) = n→∞ o(η n (θ)). Therefore, p(θ | θML ) = n→∞ {η n (θ) + ε n (θ)}π(θ) Θ η n (α)π(α)dα + Θ ε n (α)π(α)dα = η n (θ)π(θ)(1 + o(1)) Θ η n π + Θ ε n π .
The densities π and η n being positive over Θ and the density η n converging to the Dirac distribution at the true parameter vector θ 0 when n → ∞, Θ η n π is positive and its limit, namely π(θ 0 ), is also positive. Besides, θ → p( θML | θ) being asymptotically equivalent to η n , it also converges to the Dirac distribution at the true parameter vector θ 0 when n → ∞,

and Θ p( θML | θ)π(θ)dθ → π(θ 0 ) > 0. Therefore, Θ ε n π = Θ p( θML | θ)π(θ)dθ -Θ η n π converges to 0, Θ ε n π = o( Θ η n π) and p(θ | θML ) = n→∞ π(θ) π(θ 0 ) η n (θ)(1 + o(1)). (2) 
Let B n be the ball of center θ 0 and radius r n such that r n → 0 and

r n √ n → ∞ (r n converges to zero at a lower rate than 1/ √ n). Since π is Lipshitzian (i.e. ∃A 1 < ∞, ∀θ 1 , θ 2 ∈ Θ, |π(θ 1 ) -π(θ 2 )| ≤ A 1 ||θ 1 -θ 2 ||), π(θ) = n→∞ π(θ 0 )(1 + o(1)), ∀θ ∈ B n . (3) 
Let us now derive an equivalent function for η n which can be written:

η n (θ) = φ θ,n -1 I(θ) -1 ( θML ) = √ n|I(θ)| 1/2 (2π) d/2 exp - n 2 ( θML -θ) I(θ)( θML -θ) .
Using the Lipschitz condition on θ → I(θ

) (i.e. ∃A 2 < ∞, ∀θ 1 , θ 2 ∈ Θ, | |I(θ 1 )|-|I(θ 2 )| |≤ A 2 ||θ 1 -θ 2 ||), one can state that for all θ ∈ B n , |I(θ)| 1/2 = n→∞ |I( θML )| 1/2 (1 + o(1)).
Besides, the two Lipschitz conditions concerning θ → x I(θ)x can be written as follows:

∀x ∈ R q , ∃A 3 (x) < ∞, ∀θ 1 , θ 2 ∈ Θ, |x I(θ 1 )x -x I(θ 2 )x| ≤ A 3 (x)||θ 1 -θ 2 || ∃A 4 < ∞, ∀x 1 , x 2 ∈ R q , |A 3 (x 1 ) -A 3 (x 2 )| ≤ A 4 ||x 1 -x 2 ||.
These conditions imply that over

B n , |( θML -θ) I(θ)( θML -θ) -( θML - θ) I( θML )( θML -θ)| is bounded from above by 2r n (A 3 (0) + 2r n A 4 ). There- fore, ( θML -θ) I(θ)( θML -θ) = n→∞ ( θML -θ) I( θML )( θML -θ)(1 + o(1))and η n (θ) = n→∞ φ θML ,n -1 I( θML ) -1 (θ)(1 + o(1)), ∀θ ∈ B n . (4) 
Using Equations (2-4), we obtain the first equation of Lemma 1:

p(θ | θML ) = n→∞ φ θML ,n -1 I( θML ) -1 (θ)(1 + o(1)), ∀θ ∈ B n .
The 

∀θ ∈ R n,p , || θML -θ|| ≤ λ min {I( θML )} -1 χ 2 d (p)/n. ( 5 
)
From the MLE asymptotic normality,

lim n→∞ P ( θML -θ 0 ) I(θ 0 )( θML -θ 0 ) ≤ χ 2 d (p)/n = p.
Moreover, ( θML -θ 0 ) I(θ 0 )( θML -θ 0 ) ≥ λ min {I(θ 0 )}|| θML -θ 0 ||, where λ min {I(θ 0 )} is the minimum eigenvalue of I(θ 0 ). Therefore,

lim n→∞ P || θML -θ 0 || ≤ λ min {I(θ 0 )} -1 χ 2 d (p)/n ≥ p. (6) 
Since ||θ -θ 0 || ≤ || θML -θ||+|| θML -θ 0 ||, one obtains using Eq. ( 5) and ( 6),

lim n→∞ P ∀θ ∈ R n,p , ||θ -θ 0 || ≤ λ min {I( θML )} -1 + λ min {I(θ 0 )} -1 χ 2 d (p)/n ≥ p.
Since r n goes to zero more slowly than 1/ √ n, the previous inequality yields:

lim n→∞ P (∀θ ∈ R n,p , ||θ -θ 0 || ≤ r n ) ≥ p lim n→∞ P (R n,p ⊂ B n ) ≥ p lim n→∞ P Bn φ θML ,n -1 I( θML ) -1 (θ)dθ ≥ Rn,p φ θML ,n -1 I( θML ) -1 (θ)dθ ≥ p lim n→∞ P Bn φ θML ,n -1 I( θML ) -1 (θ)dθ ≥ p ≥ p.
The last inequality obtained for any p ∈ (0, 1) implies that Bn φ θML ,n -1 I( θML ) -1 (θ)dθ converges to one in probability when n → ∞, i.e. 

Posterior conditional on an MPLE

Here, we propose a lemma analogous to Lemma 1 but concerning an MPLE (maximum pseudo-likelihood estimate) instead of the MLE.

Lemma 2 (Asymptotic normality of the posterior conditional on an MPLE).

Consider the modeling setting provided in Section 2. Assume that, given the vector θ under which the data D were generated, the p.d.f. of the MPLE θMP L is equivalent to the normal density with mean vector θ and covariance matrix g(n) -1 J(θ) -1 :

p( θMP L | θ) ∼ n→∞ φ θ,g(n) -1 J(θ) -1 ( θMP L ),
where g is a positive increasing function such that g(n) → ∞ and J(θ) is a positive-definite matrix. Assume in addition that the prior π is a positive and Lipschitz function over Θ, that θ → |J(θ)| and θ → x J(θ)x (for all

x ∈ R q , x being the transpose of x) are Lipschitz functions over Θ, and that the constant which arises in the Lipschitz condition for θ → x J(θ)x and which is a function of x, is also a Lipschitz function over R q . Then, when n → ∞, the posterior density p(θ | θMP L ) conditional on the MPLE is asymptotically equivalent to the density of the normal distribution with mean vector θMP L and covariance matrix g(n) -1 J( θMP L ) -1 over a subset B n of Θ whose measure with respect to this normal density is asymptoticallyone:

p(θ | θMP L ) ∼ n→∞ φ θMP L ,g(n) -1 J( θMP L ) -1 (θ), ∀θ ∈ B n lim n→∞ Bn φ θMP L ,g(n) -1 J( θMP L ) -1 (θ)dθ = 1.
Lemma 2 justifies the use of the posterior conditional on the MPLE for parameter estimation because the Bayesian confidence sets that are provided by this posterior asymptotically coincide with the frequentist limit confidence sets obtained by maximizing the pseudo-likelihood.

The asymptotic normality of the MPLE required in Lemma 2 has been obtained for various models, especially random Markov fields and spatial point processes; see Gaetan and Guyon (2008, chap. 5), [START_REF] Gourieroux | Pseudo maximum likelihood methods: Theory[END_REF], Møller and Waagepetersen (2004, chap. 9) and references therein.

It has to be noted that information is lost when MPLE are used rather than MLE and, consequently, that estimation accuracy is decreased (e.g. this has been shown for simple Markovian models using asymptotic estimation variances (Gaetan and Guyon, 2008, chap. 5)).

Proof. Follow the proof of Lemma 1 by assuming that the radius r n of the ball

B n satisfies r n g(n) → ∞ instead of r n √ n → ∞.

Approximate posterior conditional on an MPLE

Here, we derive implications of Lemma 2 in the framework of approximate Bayesian computation (ABC) when (some of) the summary statistics are MPLE (see Theorem 1 and Corollary 1). We consider the (simple) ABCrejection algorithm based on independent simulations, on a set of summary statistics and on a tolerance threshold [START_REF] Pritchard | Population growth of human Y chromosomes: a study of Y chromosome microsatellites[END_REF]:

ABC-rejection. Perform the next 3 steps for i in {1, . . . , I}, independently:

• Generate θ i from π and simulate D i from M θ i ;

• Compute summary statistics S i = s(D i ), where s is a function from D to the space S of statistics; normal density goes to one in probability and that does not depend on :

• Accept θ i if d(S i , S) ≤ ,
p (θ | θMP L ) ∼ n→∞, →0 φ θMP L ,g(n) -1 J( θMP L ) -1 (θ), ∀θ ∈ B n lim n→∞ Bn φ θMP L ,g(n) -1 J( θMP L ) -1 (θ)dθ = P 1.
As explained in the introduction, this result leads us to conjecture that, for some stochastic implicit models, (i) the ABC-posterior distribution conditional on an MPLE is asymptotically normal and centered around the MPLE, and (ii) resulting point estimates and confidence sets converge to their frequentist analogues. Corollary 1 in Appendix A provides an analogous result when the MPLE is used in conjunction with supplementary statistics.

Proof. This result is directly obtained from Lemma 2 by simply noting that the subset B n does not depend on . Indeed, following the proof of Lemma 1, pointwise in θ we have:

p (θ | θMP L ) = →0 p(θ | θMP L )(1 + o (1)) = n→∞, →0 π(θ) π(θ 0 ) η n (θ)(1 + o n (1))(1 + o (1)).
Then, B n is used to provide an equivalent of π(θ)π(θ 0 ) -1 η n (θ). This term does not depend on and, consequently, B n has not to be dependent on .

Example

The simplified example presented here illustrates the application of ABC conditional on an MPLE and a supplementary statistic. The model M θ under consideration is the following bivariate normal distribution:

N ( µ µ ) , 1 ρ ρ 1
, parameterized by the mean µ and the correlation ρ; we set θ = (µ, ρ).

Observed data D = {(D (1) k , D (2) 
k ) : k = 1, . . . , n} are n = 100 vectors drawn under this normal distribution with µ = 0 and ρ = 0.5. We use a uniform prior distribution π over the rectangular domain (-3, 3) × (-1, 1). The maximum likelihood estimates of µ and ρ are the empirical mean of (D

(1) k + D (2)
k )/2 and the empirical correlation of (D

(1) k , D (2) k ), k = 1, . . . , n.
Here, we applied ABC with the two following statistics:

S = s(D) =   μMP L S 0   = 1 n n i=1   D (1) k 1{sign(D (1) k ) = sign(D (2) k )}   ,
where μMP L is an MPLE of µ that uses only partial information contained in the sample (i.e. only the first component of sampled vectors), and S 0 is a supplementary statistic that gives the mean number of vectors in the sample whose components D

k and D

(2)

k have the same sign (1{•} is the indicator function).

To assess the convergence of ABC when tends to zero, we applied ABC with varying , with I = 10 5 simulations, and with the distance d(S i , S) = (μ M P L,i -μMP L ) 2 + (S 0,i -S 0 ) 2 , where S i = (μ M P L,i , S 0,i ) is the vector of statistics computed for the simulation i. As usual in ABC-rejection, instead of fixing , we fixed the sample size τ of the posterior sample (i.e. the number of accepted parameter vectors); note that decreases when τ decreases.

The sample size τ was fixed at values ranging from 10 to 5000. For each value of τ , we computed the local posterior probability (LPP) around the true parameter vector θ = (0, 0.5) as the proportion of accepted parameter vectors in the small rectangle [-0.015, 0.015] × [0.495, 0.505] whose center is θ = (0, 0.5) and whose sides are 200 times smaller than the sides of the parameter space (-3, 3) × (-1, 1). We expect that this LPP increases with the efficiency of the inference procedure. The LPP was computed for 50000 datasets and Figure 1 shows its mean and standard deviation when τ varies.

The mean LPP around the true parameters increases when the sample size τ (and ) tends to zero; meanwhile, the dispersion of the LPP increases. This is the signature of the classical bias-variance trade-off.

To automatically select the sample size τ , we applied the procedure proposed by [START_REF] Soubeyrand | Approximate Bayesian computation with functional statistics[END_REF] where the distance between summary statistics is also optimized. In this procedure, the distance is weighted: d(S i , S; w 1 , w 2 ) = w 1 (μ M P L,i -μMP L ) 2 + w 2 (S 0,i -S 0 ) 2 , and the triplet (τ, w 1 , w 2 ) is optimized under constraints using an integrated mean square error criterion. For one of the 50000 datasets simulated above, Figure 2 shows ABC-posterior samples obtained when d is not weighted and τ is 

Discussion

We provided a frequentist justification for the use of posterior distributions conditional on MPLE, both in the classical Bayesian framework and in the ABC framework. The asymptotic results presented above were obtained for a large but limited class of models satisfying regularity assumptions. In real-life studies where ABC is applied, these assumptions cannot be checked and, consequently, our asymptotic results may not hold. Therefore, it is crucial (i) to combine MPLE and supplementary summary statistics to tend to a set of sufficient summary statistics [START_REF] Joyce | Approximately sufficient statistics and Bayesian computation[END_REF], and

(ii) to apply a method for selecting, weighting or transforming the summary statistics to avoid to take into account non-relevant statistics. In Section 6, we used the weighted distance between summary statistics proposed by [START_REF] Soubeyrand | Approximate Bayesian computation with functional statistics[END_REF] where the weights are optimized with respect to an integrated mean square error. Other approaches could be applied. For example, Barnes et al. (2012), [START_REF] Joyce | Approximately sufficient statistics and Bayesian computation[END_REF] and [START_REF] Nunes | On optimal selection of summary statistics for approximate Bayesian computation[END_REF] propose a dimension reduction (that can be viewed as a binary weighting), and [START_REF] Wegmann | Efficient approximate Bayesian computation coupled with Markov chain Monte Carlo without likelihood[END_REF] proposes a PLS transformation followed by a binary weighting of the PLS axes (see also [START_REF] Blum | A comparative review of dimension reduction methods in approximate Bayesian computation[END_REF][START_REF] Fearnhead | Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation[END_REF][START_REF] Jung | Choice of summary statistic weights in approximate Bayesian computation[END_REF].

The strong implication of our approach is that an analytic work has to be made: the dependence structure of the model has to be simplified to write a tractable pseudo-likelihood and, eventually, to find an analytic expression for the maximizer. This additional work is however expected to yield relevant summary statistics directly informing (a subset of) the parameters.

In this article, we did not precisely define what is a pseudo-likelihood.

This deliberate choice is justified in the sense that the MPLE could be replaced, in Theorem 1, by any other estimates with similar normal weak convergence. Thus, our approach could be generalized by replacing the pseudo-likelihood by a quasi-likelihood or a contrast. Another extension of Theorem 1 could be derived by conditioning ABC on the score function of the pseudo-likelihood instead of the MPLE as proposed by [START_REF] Gleim | Approximate Bayesian computation with indirect summary statistics[END_REF], [START_REF] Ruli | Approximate Bayesian computation with composite score functions[END_REF] and [START_REF] Mengersen | Bayesian computation via empirical likelihood[END_REF].

Under the first set of assumptions of Corollary 1, we can also write ). Moreover, the existence of T 0 is a strong assumption that reduces the applicability of the corollary (a trivial but certainly rare example where T 0 exists is obtained when one assumes that ( θMP L , S 0 ) is a normal random vector; Indeed, in this case T 0 can be defined as T 0 = S 0 -E(S 0 | θMP L )). Nevertheless, if ( θMP L , S 0 ) is asymptotically normal, we conjecture that a result similar to Corollary 1 can be obtained.

Proof. The first part of the corollary is straightforward: 

  Observed data D ∈ D are assumed to be generated under the stochastic model M θ parametrized by θ ∈ Θ with prior density π. The data space D and the parameter space Θ ⊂ R q (q ∈ N * ) are both included in multidimensional sets of real vectors. The probability distribution functions (p.d.f.) of the model and the prior are defined with respect to the Lebesgue measure. Let p(D | θ) denote the likelihood of the model and p(θ | D) = p(D | θ)π(θ)/p(D) the full sample posterior of the parameter vector θ. The vector θML ∈ Θ is the maximum likelihood estimate (MLE) of θ: θML = argmax θ∈Θ p(D | θ). The posterior of parameters conditional on the MLE is p(θ | θML ) = p( θML | θ)π(θ)/p( θML ), where p( θML | θ) is the p.d.f. of the MLE given θ. Besides, we are interested in models whose likelihoods are not tractable because of the dependence structure in the data, but for which we can build tractable pseudo-likelihoods, say p(D | θ).

  θ∈Θ p(D | θ). The posterior of parameters conditional on the MPLE is p(θ | θMP L ) = p( θMP L | θ)π(θ)/p( θMP L ), where p( θMP L | θ) is the p.d.f. of the MPLE given θ.

  2nd equation of Lemma 1 is shown below. Let p ∈ (0, 1), and consider R n,p the region consisting of the vectors θ ∈ Θ satisfying n( θMLθ) I( θML )( θML -θ) ≤ χ 2 d (p), where χ 2 d (p) is the quantile of order p of the chi-square distribution of order d (i.e. the dimension of Θ). Using the link between the normal and chi-square distributions, R n,p satisfies: Rn,p φ θML ,n -1 I( θML ) -1 (θ)dθ = p. Moreover, from a property of the Rayleigh quotient, ( θML -θ) I( θML )( θML -θ) ≥ λ min {I( θML )}|| θML -θ||, where λ min {I( θML )} is the minimum eigenvalue of I( θML ). Therefore,

  lim n→∞ Bn φ θML ,n -1 I( θML ) -1 (θ)dθ = P 1.

  where d is a distance over S and is a tolerance threshold for the distance between the observed statistics S = s(D) and the simulated ones S i .The set of accepted parameters, say Θ ,I = {θ i : d(S i , S) ≤ , i = 1, . . . , I}, forms a sample from the following posterior:p (θ | S) = B d (S, ) h(s | θ)ds π(θ) Θ B d (S, ) h(s | α)ds π(α)dα, where the ball B d (S, ) in the d-dimensional space S is the set of points from which the distance to S is less than , and h(S | θ) is the conditional probability distribution function of S given θ. When tends to zero and d is appropriate, p (θ | S) is a good approximation of p(θ | S) under regularity assumptions (see Blum (2010) and Soubeyrand et al. (2013, Appendix A)): p (θ | S) and p(θ | S) are asymptotically equivalent. However, if S is not sufficient, then p(θ | S) = p(θ | D) and information is lost by using S instead of D. Theorem 1 (Asymptotic normality of the ABC-posterior conditional on an MPLE). Consider the ABC-rejection algorithm that samples in the posterior p (θ | θMP L ) of θ conditional on the vector of summary statistics S = θMP L . Assume that when → 0, p (θ | θMP L ) converges pointwise to p(θ | θMP L ). Then, under assumptions of Lemma 2, when n → ∞ and → 0, the posterior p (θ | θMP L ) is asymptotically equivalent to the density of the normal distribution with mean vector θMP L and covariance matrix g(n) -1 J( θMP L ) -1 over a subset B n of Θ whose measure with respect to this

Figure 1 :

 1 Figure 1: Mean (solid line), pointwise 95%-confidence envelopes (dashed lines) and standard deviation (dotted line) of the local posterior probability around the true parameter vector θ = (0, 0.5) as a function of sample size τ .

Figure 2 :

 2 Figure 2: ABC-posterior samples (dots) obtained when d is not weighted and τ is fixed at 5000 (top left), 1000 (top right) and 200 (bottom left), and when d is weighted and (τ, w1, w2) is optimized (bottom right). Dashed lines are intersecting at the true value (0, 0.5) of the parameter vector θ = (µ, ρ). The grey contour line gives the smallest 95%-posterior area obtained with the classical Bayesian computation.
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Appendix A. Combining an MPLE and supplementary statistics Corollary 1. Consider the posterior p (θ | θMP L , S 0 ) of θ conditional on the vector of summary statistics S = ( θMP L , S 0 ) in which the ABC-rejection algorithm samples. Assume that when → 0, p (θ | θMP L ) converges pointwise to p(θ | θMP L ). Assume that there exists a vector T 0 independent of θMP L such that ( θMP L , T 0 ) brings the same information on θ than S = ( θMP L , S 0 ).

Then,

where p(θ | T 0 ) is the posterior density of θ conditional on the subset of statistics T 0 given the modified prior p(θ

If in addition assumptions of Lemma 2 hold, the modified prior p(θ | θMP L ) is asymptotically equivalent to the density of the normal distribution with mean vector θMP L and covariance matrix equal to g(n) -1 J( θMP L ) -1 over a subset B n of Θ whose measure with respect to this normal density goes to one in probability and that does not depend on .