Weak convergence of posteriors conditional on maximum pseudo-likelihood estimates and implications in ABC

Samuel Soubeyrand, Emilie Haon-Lasportes

To cite this version:

Samuel Soubeyrand, Emilie Haon-Lasportes. Weak convergence of posteriors conditional on maximum pseudo-likelihood estimates and implications in ABC. Statistics and Probability Letters, 2015, 107, pp.84-92. 10.1016/j.spl.2015.08.003. hal-01522265

HAL Id: hal-01522265
https://hal.science/hal-01522265
Submitted on 30 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Weak convergence of posteriors conditional on maximum pseudo-likelihood estimates and implications in ABC

Samuel Soubeyrand1 and Emilie Haon–Lasportes

\textit{INRA, UR546 Biostatistics and Spatial Processes, F-84914 Avignon, France}

Abstract

The weak convergence of posterior distributions conditional on maximum pseudo-likelihood estimates (MPLE) is studied and exploited to justify the use of MPLE as summary statistics in approximate Bayesian computation (ABC). Our study could be generalized by replacing the pseudo-likelihood by other estimating functions (e.g. quasi-likelihoods and contrasts).

Keywords: Approximate Bayesian computation, Bernstein - von Mises theorem, Weak convergence.

2010 MSC: 62F12, 62Fxx, 65C60

1. Introduction

Approximate Bayesian computation (ABC) has been developed to make Bayesian inference with models that can be used to generate data sets but whose probability distribution of state variables is intractable (Marin et al., 2012). The intractability of this distribution makes impossible the application of the exact Bayesian approach, even by using numerical algorithms. ABC provides a sample from the parameter space that is approximately distributed under a posterior distribution of parameters conditional on sum-

1Corresponding Author: Samuel.Soubeyrand@avignon.inra.fr

\textit{August 20, 2015}
mary statistics. In general, this posterior does not coincide with the poste-
rior distribution of parameters conditional on full raw data. Here, we are
interested in the specific case where (some of) the summary statistics are
point estimates of parameters (PEP), as in Drovandi et al. (2011), Fear-
head and Prangle (2012), Gleim and Pigorsch (2013) and Mengersen et al.
(2013).

In the classical Bayesian framework, posteriors conditional on PEP can
be viewed as specific cases of posteriors conditional on partial information
(Doksum and Lo, 1990; Soubeyrand et al., 2009). Here, we provide new
results of weak convergence when PEP are either maximum likelihood esti-
mates (MLE) or pseudo-maximum likelihood estimates (MPLE). The case
where PEP are MPLE is of specific interest because, in ABC, it may be
possible to compute MPLE via simplifications of the dependence structure
in the model, and to use MPLE as summary statistics.

The results of weak convergence that are provided in this note can be
viewed as new extensions of the Bernstein – von Mises (BvM) theorem.
For parametric models from which independent observations are made, the
BvM theorem (i) states conditions under which the posterior distribution
is asymptotically normal and (ii) subsequently leads to the efficiency of
Bayesian point estimators and to the convergence of Bayesian confidence
sets to frequentist limit confidence sets (Walker, 1969; Freedman, 1999).
Thus, the BvM theorem can be viewed as a frequentist justification of pos-
terior distributions for the estimation of parameters. Numerous extensions
of the BvM theorem have been proposed, for instance, when the model is
semiparametric or nonparametric (Bickel and Kleijn, 2012; Bontemps, 2011;
Castillo, 2012a,b; Castillo and Nickl, 2013; Rivoirard and Rousseau, 2012),
when observations are dependent (Borwanker et al., 1971; Tamaki, 2008),
when the model is misspecified (Kleijn and van der Vaart, 2012), and when
the model is nonregular (e.g. when the true value of the parameter is on the
boundary of the parameter space; Bochkina and Green, 2014).

Here, we extend the BvM theorem (i) when raw observations are replaced
by the MLE (Lemma 1) or an MPLE (Lemma 2), and (ii) when the posterior
conditional on an MPLE is approximated via ABC (Theorem 1). Using a
posterior distribution (approximate or not) conditional on an MPLE, that
was built by ignoring some dependences in the model, can be viewed as
using a misspecified model like in Kleijn and van der Vaart (2012).

The BvM extensions obtained in the classical Bayesian framework (Point
(i) in the paragraph above) are viewed as stepping stones that lead to the
BvM extension obtained in the ABC framework (Point (ii)). Advancing
theory in ABC has generally no direct practical implications because as-
sumptions that may be required to prove theorems cannot be checked for a
real-life implicit stochastic model whose distribution theory is intractable.
However, showing an analytic result for a large class of theoretically tractable
models may lead to conjecture that the result holds for some stochastic im-

dicit models. Specifically, the work presented here allows us to conjecture
that (i) an ABC–posterior distribution conditional on an MPLE is asym-

totically normal and centered around the MPLE, and (ii) resulting point
estimates and confidence sets converge to their frequentist analogues.

2. Main notations

Observed data $\mathcal{D} \in \mathbb{D}$ are assumed to be generated under the stochas-
tic model \mathcal{M}_θ parametrized by $\theta \in \Theta$ with prior density π. The data
space \mathbb{D} and the parameter space $\Theta \subset \mathbb{R}^q$ ($q \in \mathbb{N}^*$) are both included in
multidimensional sets of real vectors. The probability distribution functions (p.d.f.) of the model and the prior are defined with respect to the Lebesgue measure. Let \(p(D \mid \theta) \) denote the likelihood of the model and \(p(\theta \mid D) = p(D \mid \theta)\pi(\theta)/p(D) \) the full sample posterior of the parameter vector \(\theta \). The vector \(\hat{\theta}_{ML} \in \Theta \) is the maximum likelihood estimate (MLE) of \(\theta \): \(\hat{\theta}_{ML} = \arg\max_{\theta \in \Theta} p(D \mid \theta) \). The posterior of parameters conditional on the MLE is \(p(\theta \mid \hat{\theta}_{ML}) = \frac{p(\hat{\theta}_{ML} \mid \theta)\pi(\theta)/p(\hat{\theta}_{ML})}{p(\hat{\theta}_{ML})} \), where \(p(\hat{\theta}_{ML} \mid \theta) \) is the p.d.f. of the MLE given \(\theta \). Besides, we are interested in models whose likelihoods are not tractable because of the dependence structure in the data, but for which we can build tractable pseudo-likelihoods, say \(\tilde{p}(D \mid \theta) \).

A pseudo-likelihood is generally built by ignoring some of the dependencies in the data (Gaetan and Guyon, 2008; Gourieroux et al., 1983). The vector \(\hat{\theta}_{MPL} \in \Theta \) is a maximum pseudo-likelihood estimate (MPLE) of \(\theta \): \(\hat{\theta}_{MPL} = \arg\max_{\theta \in \Theta} \tilde{p}(D \mid \theta) \). The posterior of parameters conditional on the MPLE is \(p(\theta \mid \hat{\theta}_{MPL}) = \frac{p(\hat{\theta}_{MPL} \mid \theta)\pi(\theta)/p(\hat{\theta}_{MPL})}{p(\hat{\theta}_{MPL})} \), where \(p(\hat{\theta}_{MPL} \mid \theta) \) is the p.d.f. of the MPLE given \(\theta \).

3. Posterior conditional on the MLE

The full sample posterior \(p(\theta \mid D) \) and the posterior conditional on the MLE \(p(\theta \mid \hat{\theta}_{ML}) \) exactly coincide in specific cases (e.g. when the MLE are sufficient statistics), but do not coincide in general. Our aim, in this section, is to provide an asymptotically equivalent distribution for \(p(\theta \mid \hat{\theta}_{ML}) \).

Bernstein – von Mises (BvM) theorems provide, for various statistical models, the asymptotic behavior of posteriors distributions. For example, following Walker (1969) and Lindley (1965, p. 130), we consider a set \(D = (D_1, \ldots, D_n) \) of \(n \) i.i.d. variables drawn from a parametric distribution with
density \(f(\cdot \mid \theta) \) with respect to a \(\sigma \)-finite measure on the real line, where \(\theta \) is in \(\Theta \subset \mathbb{R}^q \). Under this setting and additional regularity conditions, the BvM theorem establishes the asymptotic normality of the full sample posterior (Walker, 1969, Theorem 2 and conclusion): the full sample posterior density of \(\theta \), for large \(n \), equivalent to the normal density with mean vector equal to the MLE \(\hat{\theta}_{ML} \) and covariance matrix equal to \(\Omega_n(\hat{\theta}_{ML})^{-1} \):

\[
p(\theta \mid D) \xrightarrow{n \to \infty} \phi_{\hat{\theta}_{ML}, \Omega_n(\hat{\theta}_{ML})^{-1}}(\theta),
\]

where \(\phi_{\mu, \Sigma} \) denotes the density of the normal distribution with mean vector \(\mu \) and covariance matrix \(\Sigma \), and \(\Omega_n(\alpha) \) is the \(q \times q \) matrix with element \((i, j) \) equal to \(-\partial^2 \log p(D \mid \theta) / \partial \theta_i \partial \theta_j \) at \(\alpha \).

To provide an asymptotically equivalent distribution for \(p(\theta \mid \hat{\theta}_{ML}) \) as in BvM theorems, we assume in Lemma 1 (see below) that the MLE is asymptotically normal and consistent. For example, consider the same statistical model than above and assume that assumptions made in Lehmann and Casella (1998, Theorem 5.1 of the MLE asymptotic normality, p. 463) are satisfied. In particular, assume that data were generated with parameter vector \(\theta \). Then, the density of \(\hat{\theta}_{ML} \) is, for large \(n \) and given \(\theta \), equivalent to the normal density with mean vector equal to the true parameter vector \(\theta \) and covariance matrix equal to \(n^{-1}I(\theta)^{-1} \):

\[
p(\hat{\theta}_{ML} \mid \theta) \xrightarrow{n \to \infty} \phi_{\theta, n^{-1}I(\theta)^{-1}}(\hat{\theta}_{ML}). \tag{1}
\]

where \(I(\theta) \) denotes the \(q \times q \) Fisher information matrix.

Lemma 1 (Asymptotic normality of the posterior conditional on the MLE). Consider the modeling setting described in Section 2 and suppose that the MLE satisfies Equation (1) with non-singular matrix \(I(\theta) \). Assume in addition that the prior \(\pi \) is a positive and Lipschitz function over \(\Theta \), that
\[\theta \mapsto |I(\theta)| \text{ (determinant of } I(\theta) \text{)} \text{ and } \theta \mapsto x' I(\theta) x \text{ (for all } x \in \mathbb{R}^q, x' \text{ being the transpose of } x) \text{ are Lipschitz functions over } \Theta, \text{ and that the constant which arises in the Lipschitz condition for } \theta \mapsto x' I(\theta) x \text{ and which is a function of } x, \text{ is also a Lipschitz function over } \mathbb{R}^q. \text{ Then, when } n \to \infty, \\
\text{the posterior density } p(\theta \mid \hat{\theta}_{ML}) \text{ conditional on the MLE is asymptotically equivalent to the density of the normal distribution with mean vector } \hat{\theta}_{ML} \text{ and covariance matrix } n^{-1} I(\hat{\theta}_{ML})^{-1} \text{ over a subset } B_n \text{ of } \Theta \text{ whose measure with respect to this normal density is asymptotically one in probability: } \\
p(\theta \mid \hat{\theta}_{ML}) \overset{n \to \infty}{\sim} \phi_{\hat{\theta}_{ML}, n^{-1} I(\hat{\theta}_{ML})^{-1}}(\theta), \quad \forall \theta \in B_n \\
\lim_{n \to \infty} \int_{B_n} \phi_{\hat{\theta}_{ML}, n^{-1} I(\hat{\theta}_{ML})^{-1}}(\theta) d\theta = 1.

Thus, over the subset } B_n \text{ which asymptotically contains all the mass of the normal density } \phi_{\hat{\theta}_{ML}, n^{-1} I(\hat{\theta}_{ML})^{-1}}(\cdot), \text{ the posterior conditional on the MLE is asymptotically equivalent to this normal distribution.}

From a frequentist point of view, the BvM theorem (which concerns the full sample posterior } p(\theta \mid D) \text{) is a justification of the Bayesian approach for parameter estimation since the Bayesian confidence sets asymptotically coincide with the frequentist limit confidence sets (Freedman, 1999). Lemma 1 shows a similar result for the posterior conditional on the MLE } p(\theta \mid \hat{\theta}_{ML}). \text{ Thus, Lemma 1 can also be viewed as a justification of the use of the posterior conditional on asymptotically normal MLE for parameter estimation. Note that results similar to the one provided by Lemma 1 have already been obtained for the estimation of an univariate location parameter; see Doksum and Lo (1990) and references therein.}

Regarding assumptions in Lemma 1, the asymptotic normality of the MLE (Equation (1)) requires classical but strong assumptions (even for the simple i.i.d. case). However, the asymptotic normality of the MLE has been
obtained for numerous modeling and sampling settings, even in non-i.i.d.
cases. Lemma 1 is also based on a series of Lipschitz assumptions concerning
the prior \(\pi \) and the Fisher information matrix \(I(\theta) \). These assumptions are
satisfied for classical distributions (e.g. when \(\pi \) is uniform on a bounded
domain and when \((D_1, \ldots, D_n) \) are independent normal variables with mean
\(\mu \) and variance 1).

Proof. Under the assumptions of the theorem of the MLE asymptotic nor-
mality (i.e. under Equation (1)),
\[
p(\hat{\theta}_{ML} \mid \theta) = \eta_n(\theta) + \varepsilon_n(\theta),
\]
where \(\eta_n(\theta) = \phi_{\theta,n^{-1}I(\theta)^{-1}}(\hat{\theta}_{ML}) \) and
\[
\varepsilon_n(\theta) = o(\eta_n(\theta)).
\]
Therefore,
\[
p(\theta \mid \hat{\theta}_{ML}) = \frac{\eta_n(\theta) + \varepsilon_n(\theta)}{\int_{\Theta} \eta_n(\alpha)\pi(\alpha)d\alpha + \int_{\Theta} \varepsilon_n(\alpha)\pi(\alpha)d\alpha} = \frac{\eta_n(\theta)\pi(\theta)(1 + o(1))}{\int_{\Theta} \eta_n \pi + \int_{\Theta} \varepsilon_n \pi}.
\]
The densities \(\pi \) and \(\eta_n \) being positive over \(\Theta \) and the density \(\eta_n \) converging
to the Dirac distribution at the true parameter vector \(\theta_0 \) when \(n \to \infty \),
\[
\int_{\Theta} \eta_n \pi \text{ is positive and its limit, namely } \pi(\theta_0), \text{ is also positive. Besides,}
\]
\(\theta \mapsto p(\hat{\theta}_{ML} \mid \theta) \) being asymptotically equivalent to \(\eta_n \), it also converges
to the Dirac distribution at the true parameter vector \(\theta_0 \) when \(n \to \infty \),
and \(\int_{\Theta} p(\hat{\theta}_{ML} \mid \theta)\pi(\theta)d\theta \to \pi(\theta_0) > 0 \). Therefore, \(\int_{\Theta} \varepsilon_n \pi = \int_{\Theta} p(\hat{\theta}_{ML} \mid \theta)\pi(\theta)d\theta - \int_{\Theta} \eta_n \pi \to 0 \), \(\int_{\Theta} \varepsilon_n \pi = o(\int_{\Theta} \eta_n \pi) \) and
\[
p(\theta \mid \hat{\theta}_{ML}) \underset{n \to \infty}{\to} \frac{\pi(\theta)}{\pi(\theta_0)}\eta_n(\theta)(1 + o(1)). \tag{2}
\]
Let \(B_n \) be the ball of center \(\theta_0 \) and radius \(r_n \) such that \(r_n \to 0 \) and
\(r_n\sqrt{n} \to \infty \) (\(r_n \) converges to zero at a lower rate than \(1/\sqrt{n} \)). Since \(\pi \) is
Lipschitzian (i.e. \(\exists A_1 < \infty, \forall \theta_1, \theta_2 \in \Theta, |\pi(\theta_1) - \pi(\theta_2)| \leq A_1 ||\theta_1 - \theta_2|| \)),
\[
\pi(\theta) = \pi(\theta_0)(1 + o(1)), \quad \forall \theta \in B_n. \tag{3}
\]
Let us now derive an equivalent function for \(\eta_n \) which can be written:
\[
\eta_n(\theta) = \phi_{\theta,n^{-1}I(\theta)^{-1}}(\hat{\theta}_{ML}) = \frac{\sqrt{n}|I(\theta)|^{1/2}}{(2\pi)^{d/2}} \exp\left(-\frac{n}{2}(\hat{\theta}_{ML} - \theta)'I(\theta)(\hat{\theta}_{ML} - \theta)\right),
\]
Using the Lipschitz condition on \(\theta \mapsto I(\theta) \) (i.e. \(\exists A_2 < \infty, \forall \theta_1, \theta_2 \in \Theta, |I(\theta_1)| - |I(\theta_2)| \leq A_2|\theta_1 - \theta_2| \)), one can state that for all \(\theta \in B_n \), \(|I(\theta)|^{1/2} = |I(\hat{\theta}_{ML})|^{1/2}(1 + o(1)) \). Besides, the two Lipschitz conditions concerning \(\theta \mapsto x'I(\theta)x \) can be written as follows:

\[
\forall x \in \mathbb{R}^q, \exists A_3(x) < \infty, \forall \theta_1, \theta_2 \in \Theta, |x'I(\theta_1)x - x'I(\theta_2)x| \leq A_3(x)|\theta_1 - \theta_2|
\]

\[
\exists A_4 < \infty, \forall x_1, x_2 \in \mathbb{R}^q, |A_3(x_1) - A_3(x_2)| \leq A_4|x_1 - x_2|.
\]

These conditions imply that over \(B_n \), \(|(\hat{\theta}_{ML} - \theta)'I(\theta)(\hat{\theta}_{ML} - \theta) - (\hat{\theta}_{ML} - \theta)'I(\hat{\theta}_{ML})(\hat{\theta}_{ML} - \theta)| \) is bounded from above by \(2r_n(A_3(0) + 2r_nA_4) \). Therefore, \((\hat{\theta}_{ML} - \theta)'I(\theta)(\hat{\theta}_{ML} - \theta) \to (\hat{\theta}_{ML} - \theta)'I(\hat{\theta}_{ML})(\hat{\theta}_{ML} - \theta)(1 + o(1)) \) and

\[
\eta_n(\theta) = \frac{\phi_{\hat{\theta}_{ML}, n^{-1}I(\hat{\theta}_{ML})^{-1}}(\theta)(1 + o(1))}{\forall \theta \in B_n}.
\]

Using Equations (2-4), we obtain the first equation of Lemma 1:

\[
p(\theta | \hat{\theta}_{ML}) = \frac{\phi_{\hat{\theta}_{ML}, n^{-1}I(\hat{\theta}_{ML})^{-1}}(\theta)(1 + o(1))}{\forall \theta \in B_n}.
\]

The 2nd equation of Lemma 1 is shown below. Let \(p \in (0, 1) \), and consider \(R_{n,p} \) the region consisting of the vectors \(\theta \in \Theta \) satisfying \(n(\hat{\theta}_{ML} - \theta)'I(\hat{\theta}_{ML})(\hat{\theta}_{ML} - \theta) \leq \chi^2_d(p) \), where \(\chi^2_d(p) \) is the quantile of order \(p \) of the chi-square distribution of order \(d \) (i.e. the dimension of \(\Theta \)). Using the link between the normal and chi-square distributions, \(R_{n,p} \) satisfies:

\[
\int_{R_{n,p}} \phi_{\hat{\theta}_{ML}, n^{-1}I(\hat{\theta}_{ML})^{-1}}(\theta)d\theta = p.
\]

Moreover, from a property of the Rayleigh quotient, \((\hat{\theta}_{ML} - \theta)'I(\hat{\theta}_{ML})(\hat{\theta}_{ML} - \theta) \geq \lambda_{min}\{I(\hat{\theta}_{ML})\}||\hat{\theta}_{ML} - \theta|| \), where \(\lambda_{min}\{I(\hat{\theta}_{ML})\} \) is the minimum eigenvalue of \(I(\hat{\theta}_{ML}) \). Therefore,

\[
\forall \theta \in R_{n,p}, \quad ||\hat{\theta}_{ML} - \theta|| \leq \lambda_{min}\{I(\hat{\theta}_{ML})\}^{-1}\sqrt{\frac{\chi^2_d(p)}{n}}.
\]

From the MLE asymptotic normality,

\[
\lim_{n \to \infty} \mathbb{P}\left((\hat{\theta}_{ML} - \theta_0)'I(\theta_0)(\hat{\theta}_{ML} - \theta_0) \leq \sqrt{\frac{\chi^2_d(p)}{n}} \right) = p.
\]
Moreover, \((\hat{\theta}_{ML} - \theta_0)'I(\theta_0)(\hat{\theta}_{ML} - \theta_0) \geq \lambda_{\min}\{I(\theta_0)\}\|\hat{\theta}_{ML} - \theta_0\|\), where \(\lambda_{\min}\{I(\theta_0)\}\) is the minimum eigenvalue of \(I(\theta_0)\). Therefore,

\[
\lim_{n \to \infty} \mathbb{P}\left(\|\hat{\theta}_{ML} - \theta_0\| \leq \lambda_{\min}\{I(\hat{\theta}_{ML})\}^{-1/2} \sqrt{\chi^2_d(p)/n}\right) \geq p.
\]

(6)

Since \(\|\theta - \theta_0\| \leq \|\hat{\theta}_{ML} - \theta\| + \|\hat{\theta}_{ML} - \theta_0\|\), one obtains using Eq. (5) and (6),

\[
\lim_{n \to \infty} \mathbb{P}\left(\forall \theta \in \mathbb{R}^{n,p},\|\theta - \theta_0\| \leq \left[\lambda_{\min}\{I(\hat{\theta}_{ML})\}^{-1} + \lambda_{\min}\{I(\theta_0)\}^{-1}\right]^{1/2} \sqrt{\chi^2_d(p)/n}\right) \geq p.
\]

Since \(r_n\) goes to zero more slowly than \(1/\sqrt{n}\), the previous inequality yields:

\[
\lim_{n \to \infty} \mathbb{P}(\forall \theta \in \mathbb{R}^{n,p},\|\theta - \theta_0\| \leq r_n) \geq p
\]

\[
\lim_{n \to \infty} \mathbb{P}(\mathbb{R}^{n,p} \subset B_n) \geq p
\]

\[
\lim_{n \to \infty} \mathbb{P}\left(\int_{B_n} \phi_{\hat{\theta}_{ML},n^{-1}I(\hat{\theta}_{ML})^{-1}}(\theta)d\theta \geq \int_{\mathbb{R}^{n,p}} \phi_{\hat{\theta}_{ML},n^{-1}I(\hat{\theta}_{ML})^{-1}}(\theta)d\theta \geq p\right) \geq p
\]

The last inequality obtained for any \(p \in (0,1)\) implies that \(\int_{B_n} \phi_{\hat{\theta}_{ML},n^{-1}I(\hat{\theta}_{ML})^{-1}}(\theta)d\theta\) converges to one in probability when \(n \to \infty\), i.e.

\[
\lim_{n \to \infty} \int_{B_n} \phi_{\hat{\theta}_{ML},n^{-1}I(\hat{\theta}_{ML})^{-1}}(\theta)d\theta = 1.
\]

\[
\square
\]

4. Posterior conditional on an MPLE

Here, we propose a lemma analogous to Lemma 1 but concerning an MPLE (maximum pseudo-likelihood estimate) instead of the MLE.

Lemma 2 (Asymptotic normality of the posterior conditional on an MPLE).

Consider the modeling setting provided in Section 2. Assume that, given the vector \(\theta\) under which the data \(D\) were generated, the p.d.f. of the MPLE
\(\hat{\theta}_{MPL} \) is equivalent to the normal density with mean vector \(\theta \) and covariance matrix \(g(n)^{-1}J(\theta)^{-1} \):

\[
p(\hat{\theta}_{MPL} | \theta) \xrightarrow{n \to \infty} \phi_{\theta,g(n)^{-1}J(\theta)^{-1}}(\hat{\theta}_{MPL}),
\]

where \(g \) is a positive increasing function such that \(g(n) \to \infty \) and \(J(\theta) \) is a positive-definite matrix. Assume in addition that the prior \(\pi \) is a positive and Lipschitz function over \(\Theta \), that \(\theta \mapsto |J(\theta)| \) and \(\theta \mapsto x'J(\theta)x \) (for all \(x \in \mathbb{R}^q \), \(x' \) being the transpose of \(x \)) are Lipschitz functions over \(\Theta \), and that the constant which arises in the Lipschitz condition for \(\theta \mapsto x'J(\theta)x \) and which is a function of \(x \), is also a Lipschitz function over \(\mathbb{R}^q \). Then, when \(n \to \infty \), the posterior density \(p(\theta | \hat{\theta}_{MPL}) \) conditional on the MPLE is asymptotically equivalent to the density of the normal distribution with mean vector \(\hat{\theta}_{MPL} \) and covariance matrix \(g(n)^{-1}J(\hat{\theta}_{MPL})^{-1} \) over a subset \(B_n \) of \(\Theta \) whose measure with respect to this normal density is asymptotically one:

\[
p(\theta | \hat{\theta}_{MPL}) \xrightarrow{n \to \infty} \phi_{\hat{\theta}_{MPL},g(n)^{-1}J(\hat{\theta}_{MPL})^{-1}}(\theta), \quad \forall \theta \in B_n
\]

\[
\lim_{n \to \infty} \int_{B_n} \phi_{\hat{\theta}_{MPL},g(n)^{-1}J(\hat{\theta}_{MPL})^{-1}}(\theta) d\theta = 1.
\]

Lemma 2 justifies the use of the posterior conditional on the MPLE for parameter estimation because the Bayesian confidence sets that are provided by this posterior asymptotically coincide with the frequentist limit confidence sets obtained by maximizing the pseudo-likelihood.

The asymptotic normality of the MPLE required in Lemma 2 has been obtained for various models, especially random Markov fields and spatial point processes; see Gaetan and Guyon (2008, chap. 5), Gourieroux et al. (1983), Møller and Waagepetersen (2004, chap. 9) and references therein. It has to be noted that information is lost when MPLE are used rather than MLE and, consequently, that estimation accuracy is decreased (e.g. this
has been shown for simple Markovian models using asymptotic estimation variances (Gaetan and Guyon, 2008, chap. 5)).

Proof. Follow the proof of Lemma 1 by assuming that the radius r_n of the ball B_n satisfies $r_n\sqrt{\log(n)} \to \infty$ instead of $r_n\sqrt{n} \to \infty$.

5. **Approximate posterior conditional on an MPLE**

Here, we derive implications of Lemma 2 in the framework of approximate Bayesian computation (ABC) when (some of) the summary statistics are MPLE (see Theorem 1 and Corollary 1). We consider the (simple) ABC–rejection algorithm based on independent simulations, on a set of summary statistics and on a tolerance threshold (Pritchard et al., 1999):

ABC-rejection. Perform the next 3 steps for i in $\{1, \ldots, I\}$, independently:

- Generate θ_i from π and simulate D_i from M_{θ_i};
- Compute summary statistics $S_i = s(D_i)$, where s is a function from D to the space S of statistics;
- Accept θ_i if $d(S_i, S) \leq \epsilon$, where d is a distance over S and ϵ is a tolerance threshold for the distance between the observed statistics $S = s(D)$ and the simulated ones S_i.

The set of accepted parameters, say $\Theta_{\epsilon, I} = \{\theta_i : d(S_i, S) \leq \epsilon, i = 1, \ldots, I\}$, forms a sample from the following posterior:

$$ p_\epsilon(\theta \mid S) = \frac{\left(\int_{B_d(S, \epsilon)} h(s \mid \theta) ds\right) \pi(\theta)}{\int_{\Theta} \left(\int_{B_d(S, \epsilon)} h(s \mid \alpha) ds\right) \pi(\alpha) d\alpha}, $$

where the ball $B_d(S, \epsilon)$ in the d-dimensional space S is the set of points from which the distance to S is less than ϵ, and $h(S \mid \theta)$ is the conditional
Theorem 1 (Asymptotic normality of the ABC–posterior conditional on an MPLE). Consider the ABC–rejection algorithm that samples in the posterior \(p_\epsilon(\theta \mid \hat{\theta}_{MPL}) \) of \(\theta \) conditional on the vector of summary statistics \(S = \hat{\theta}_{MPL} \). Assume that when \(\epsilon \to 0 \), \(p_\epsilon(\theta \mid \hat{\theta}_{MPL}) \) converges pointwise to \(p(\theta \mid \hat{\theta}_{MPL}) \). Then, under assumptions of Lemma 2, when \(n \to \infty \) and \(\epsilon \to 0 \), the posterior \(p_\epsilon(\theta \mid \hat{\theta}_{MPL}) \) is asymptotically equivalent to the density of the normal distribution with mean vector \(\hat{\theta}_{MPL} \) and covariance matrix \(g(n)^{-1} J(\hat{\theta}_{MPL})^{-1} \) over a subset \(B_n \) of \(\Theta \) whose measure with respect to this normal density goes to one in probability and that does not depend on \(\epsilon \):

\[
\lim_{n \to \infty} \int_{B_n} \phi_{\hat{\theta}_{MPL}, g(n)^{-1} J(\hat{\theta}_{MPL})^{-1}}(\theta) d\theta = 1.
\]

As explained in the introduction, this result leads us to conjecture that, for some stochastic implicit models, (i) the ABC–posterior distribution conditional on an MPLE is asymptotically normal and centered around the MPLE, and (ii) resulting point estimates and confidence sets converge to their frequentist analogues. Corollary 1 in Appendix A provides an analogous result when the MPLE is used in conjunction with supplementary statistics.

Proof. This result is directly obtained from Lemma 2 by simply noting that
the subset \(B_n \) does not depend on \(\epsilon \). Indeed, following the proof of Lemma 1, pointwise in \(\theta \) we have:

\[
p_{\epsilon}(\theta \mid \hat{\theta}_{MPL}) = p(\theta \mid \hat{\theta}_{MPL})(1 + o_\epsilon(1))
\]

\[
\xrightarrow{\epsilon \to 0, n \to \infty} \frac{\pi(\theta)}{\pi(\theta_0)} \eta_n(\theta)(1 + o_n(1))(1 + o_\epsilon(1)).
\]

Then, \(B_n \) is used to provide an equivalent of \(\pi(\theta)\pi(\theta_0)^{-1}\eta_n(\theta) \). This term does not depend on \(\epsilon \) and, consequently, \(B_n \) has not to be dependent on \(\epsilon \).

\[\square\]

6. Example

The simplified example presented here illustrates the application of ABC conditional on an MPLE and a supplementary statistic. The model \(\mathcal{M}_\theta \) under consideration is the following bivariate normal distribution:

\[
\mathcal{N}\left(\left(\mu, \frac{1}{\rho}\right), \left(1, \rho\right)\right),
\]

parameterized by the mean \(\mu \) and the correlation \(\rho \); we set \(\theta = (\mu, \rho) \).

Observed data \(\mathcal{D} = \{(D_k^{(1)}, D_k^{(2)}) : k = 1, \ldots, n\} \) are \(n = 100 \) vectors drawn under this normal distribution with \(\mu = 0 \) and \(\rho = 0.5 \). We use a uniform prior distribution \(\pi \) over the rectangular domain \((-3, 3) \times (-1, 1)\). The maximum likelihood estimates of \(\mu \) and \(\rho \) are the empirical mean of \((D_k^{(1)} + D_k^{(2)})/2 \) and the empirical correlation of \((D_k^{(1)}, D_k^{(2)}) \), \(k = 1, \ldots, n \). Here, we applied ABC with the two following statistics:

\[
S = s(\mathcal{D}) = \left(\frac{\hat{\mu}_{MPL}}{S_0}\right) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{D_k^{(1)}}{1\{\text{sign}(D_k^{(1)}) = \text{sign}(D_k^{(2)})\}}\right),
\]

where \(\hat{\mu}_{MPL} \) is an MPLE of \(\mu \) that uses only partial information contained in the sample (i.e. only the first component of sampled vectors), and \(S_0 \) is a
supplementary statistic that gives the mean number of vectors in the sample
whose components $D_k^{(1)}$ and $D_k^{(2)}$ have the same sign ($1\{\cdot\}$ is the indicator
function).

To assess the convergence of ABC when ϵ tends to zero, we applied ABC
with varying ϵ, with $I = 10^5$ simulations, and with the distance $d(S_i, S) =
(\hat{\mu}_{MPL,i} - \hat{\mu}_{MPL})^2 + (S_{0,i} - S_0)^2$, where $S_i = (\hat{\mu}_{MPL,i}, S_{0,i})$ is the vector of
statistics computed for the simulation i. As usual in ABC–rejection, instead
of fixing ϵ, we fixed the sample size τ of the posterior sample (i.e. the number
of accepted parameter vectors); note that ϵ decreases when τ decreases.
The sample size τ was fixed at values ranging from 10 to 5000. For each
value of τ, we computed the local posterior probability (LPP) around the
true parameter vector $\theta = (0, 0.5)$ as the proportion of accepted parameter
evectors in the small rectangle $[-0.015, 0.015] \times [0.495, 0.505]$ whose center
is $\theta = (0, 0.5)$ and whose sides are 200 times smaller than the sides of the
parameter space $(-3, 3) \times (-1, 1)$. We expect that this LPP increases with
the efficiency of the inference procedure. The LPP was computed for 50000
datasets and Figure 1 shows its mean and standard deviation when τ varies.
The mean LPP around the true parameters increases when the sample size
τ (and ϵ) tends to zero; meanwhile, the dispersion of the LPP increases.
This is the signature of the classical bias–variance trade-off.

To automatically select the sample size τ, we applied the procedure
proposed by Soubeyrand et al. (2013) where the distance between summary
statistics is also optimized. In this procedure, the distance is weighted:
$d(S_i, S; w_1, w_2) = w_1(\hat{\mu}_{MPL,i} - \hat{\mu}_{MPL})^2 + w_2(S_{0,i} - S_0)^2$, and the triplet
(τ, w_1, w_2) is optimized under constraints using an integrated mean square
error criterion. For one of the 50000 datasets simulated above, Figure 2
shows ABC–posterior samples obtained when d is not weighted and τ is
fixed at 5000, 1000 and 200, and when d is weighted and (τ, w_1, w_2) is optimized. The grey contour line shows the smallest 95%-posterior area obtained with the classical Bayesian computation. The first three panels illustrate the bias–variance trade-off when τ tends to zero. The fourth panel illustrates the difference between the classical Bayesian inference conditional on all data and the ABC inference conditional on partial information and with optimized τ (here $\tau = 585$). The relevancy of the optimized sample size $\tau = 585$ can be seen by projecting this value on Figure 1: (i) the expected LPP around the true parameters is comparable to expected LPP obtained with lower τ, and (ii) the standard deviation of the LPP is strongly decreased compared with standard deviations obtained with lower τ.

Figure 1: Mean (solid line), pointwise 95%-confidence envelopes (dashed lines) and standard deviation (dotted line) of the local posterior probability around the true parameter vector $\theta = (0, 0.5)$ as a function of sample size τ.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{local_posterior_probability}
\caption{Local posterior probability around true parameter values}
\end{figure}
Figure 2: ABC-posterior samples (dots) obtained when d is not weighted and τ is fixed at 5000 (top left), 1000 (top right) and 200 (bottom left), and when d is weighted and (τ, w_1, w_2) is optimized (bottom right). Dashed lines are intersecting at the true value $(0, 0.5)$ of the parameter vector $\theta = (\mu, \rho)$. The grey contour line gives the smallest 95%-posterior area obtained with the classical Bayesian computation.
7. Discussion

We provided a frequentist justification for the use of posterior distributions conditional on MPLE, both in the classical Bayesian framework and in the ABC framework. The asymptotic results presented above were obtained for a large but limited class of models satisfying regularity assumptions. In real-life studies where ABC is applied, these assumptions cannot be checked and, consequently, our asymptotic results may not hold. Therefore, it is crucial (i) to combine MPLE and supplementary summary statistics to tend to a set of sufficient summary statistics (Joyce and Marjoram, 2008), and (ii) to apply a method for selecting, weighting or transforming the summary statistics to avoid to take into account non-relevant statistics. In Section 6, we used the weighted distance between summary statistics proposed by Soubeyrand et al. (2013) where the weights are optimized with respect to an integrated mean square error. Other approaches could be applied. For example, Barnes et al. (2012), Joyce and Marjoram (2008) and Nunes and Balding (2010) propose a dimension reduction (that can be viewed as a binary weighting), and Wegmann et al. (2009) proposes a PLS transformation followed by a binary weighting of the PLS axes (see also Blum et al., 2013; Fearnhead and Prangle, 2012; Jung and Marjoram, 2011).

The strong implication of our approach is that an analytic work has to be made: the dependence structure of the model has to be simplified to write a tractable pseudo-likelihood and, eventually, to find an analytic expression for the maximizer. This additional work is however expected to yield relevant summary statistics directly informing (a subset of) the parameters.

In this article, we did not precisely define what is a pseudo-likelihood. This deliberate choice is justified in the sense that the MPLE could be
replaced, in Theorem 1, by any other estimates with similar normal weak
convergence. Thus, our approach could be generalized by replacing the
pseudo-likelihood by a quasi-likelihood or a contrast. Another extension
of Theorem 1 could be derived by conditioning ABC on the score function
of the pseudo-likelihood instead of the MPLE as proposed by Gleim and
Pigorsch (2013), Ruli et al. (2013) and Mengersen et al. (2013).

Acknowledgements. We thank Denis Allard, Rachid Senoussi and the re-
viewers for their suggestions. This work was supported by the ANR grant
EMILE.

Appendix A. Combining an MPLE and supplementary statistics

Corollary 1. Consider the posterior \(p_\epsilon(\theta \mid \hat{\theta}_{MPL}, S_0) \) of \(\theta \) conditional on the
vector of summary statistics \(S = (\hat{\theta}_{MPL}, S_0) \) in which the ABC–rejection
algorithm samples. Assume that when \(\epsilon \to 0 \), \(p_\epsilon(\theta \mid \hat{\theta}_{MPL}) \) converges pointwise
to \(p(\theta \mid \hat{\theta}_{MPL}) \). Assume that there exists a vector \(T_0 \) independent of \(\hat{\theta}_{MPL} \)
such that \((\hat{\theta}_{MPL}, T_0) \) brings the same information on \(\theta \) than \(S = (\hat{\theta}_{MPL}, S_0) \).
Then,

\[
p_\epsilon(\theta \mid \hat{\theta}_{MPL}, S_0) \rightarrow \epsilon \to 0 \tilde{p}(\theta \mid T_0)(1 + o(1)),
\]

where \(\tilde{p}(\theta \mid T_0) \) is the posterior density of \(\theta \) conditional on the subset of
statistics \(T_0 \) given the modified prior \(p(\theta \mid \hat{\theta}_{MPL}) = p(\hat{\theta}_{MPL} \mid \theta)\pi(\theta)/p(\hat{\theta}_{MPL}) \).

If in addition assumptions of Lemma 2 hold, the modified prior \(p(\theta \mid \hat{\theta}_{MPL}) \) is asymptotically equivalent to the density of the normal distribution
with mean vector \(\hat{\theta}_{MPL} \) and covariance matrix equal to \(g(n)^{-1}J(\hat{\theta}_{MPL})^{-1} \)
over a subset \(B_n \) of \(\Theta \) whose measure with respect to this normal density
goes to one in probability and that does not depend on \(\epsilon \).
Under the first set of assumptions of Corollary 1, we can also write that

\[p(\theta \mid \hat{\theta}_{MPL}, S_0) = \hat{p}(\theta \mid \hat{\theta}_{MPL})(1 + o_\epsilon(1)), \]

where \(\hat{p}(\theta \mid \hat{\theta}_{MPL}) \) is the posterior density of \(\theta \) conditional on the MPLE with the modified prior

\[p(\theta \mid T_0) = p(T_0 \mid \theta)\pi(\theta)/p(T_0). \]

Moreover, the existence of \(T_0 \) is a strong assumption that reduces the applicability of the corollary (a trivial but certainly rare example where \(T_0 \) exists is obtained when one assumes that

\[(\hat{\theta}_{MPL}, S_0) \]

is a normal random vector; Indeed, in this case \(T_0 \) can be defined as

\[T_0 = S_0 - E(S_0 \mid \hat{\theta}_{MPL}). \]

Nevertheless, if \((\hat{\theta}_{MPL}, S_0) \) is asymptotically normal, we conjecture that a result similar to Corollary 1 can be obtained.

Proof. The first part of the corollary is straightforward:

\[
p_\epsilon(\theta \mid \hat{\theta}_{MPL}, S_0) = p(\theta \mid \hat{\theta}_{MPL}, S_0)(1 + o_\epsilon(1)) = p(\theta \mid \hat{\theta}_{MPL}, T_0)(1 + o_\epsilon(1))
\]

\[
= \frac{p(\hat{\theta}_{MPL} \mid \theta)\pi(\theta)}{p(\hat{\theta}_{MPL}, T_0)}(1 + o_\epsilon(1)) = \frac{p(T_0 \mid \hat{\theta}_{MPL}, \theta)p(\hat{\theta}_{MPL} \mid \theta)\pi(\theta)}{p(T_0)p(\hat{\theta}_{MPL})}(1 + o_\epsilon(1))
\]

\[
= \frac{p(T_0 \mid \theta)p(\hat{\theta}_{MPL} \mid \theta)\pi(\theta)}{p(T_0)p(\hat{\theta}_{MPL})}(1 + o_\epsilon(1)) = \frac{p(T_0 \mid \theta)p(\theta \mid \hat{\theta}_{MPL})}{p(T_0)}(1 + o_\epsilon(1)).
\]

The term \(p(\theta \mid \hat{\theta}_{MPL}) \) can be viewed as a prior that is based on information contained in \(\hat{\theta}_{MPL} \) and that is independent from data \(T_0 \) used for the final inference. The second part of the corollary corresponds to Theorem 1.

\[\square \]

19

Drovandi, C. C., Pettitt, A. N., Faddy, M. J., 2011. Approximate Bayesian

Soubeyrand, S., Carpentier, F., Guiton, F., Klein, E. K., 2013. Approximate

