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Abstract. In this work, we study the Bloch wave homogenization for
the Stokes system with periodic viscosity coefficient. In particular, we
obtain the spectral interpretation of the homogenized tensor. The pres-
ence of the incompressibility constraint in the model raises new issues
linking the homogenized tensor and the Bloch spectral data. The main
difficulty is a lack of smoothness for the bottom of the Bloch spectrum,
a phenomenon which is not present in the case of the elasticity system.
This issue is solved in the present work, completing the homogenization
process of the Stokes system via the Bloch wave method.

1. Introduction and Main Result

We consider the Stokes system in which the viscosity is a periodically
varying function of the space variable with small period ǫ > 0. Many phys-
ical phenomena (boiling flows, porous media, oil reservoirs, etc.) lead to
mixture of fluids with different viscosities. For incompressible slow or creep-
ing flows, such a situation is modeled by the system (1) for a Stokesian fluid
with variable viscosity which is further assumed to be a periodic function.
From the point of view of application, it is difficult to realize such a peri-
odic distribution of droplets of one fluid in another without deforming the
periodic structure, and (1) may seem as too much of an idealized system.
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Therefore, we also treat another model, which is a variant of the Stokes
system and is physically more relevant. Namely, we consider the so-called
incompressible elasticity system (10) which corresponds to a mixture of in-
compressible elastic phases in a composite material (this situation is quite
common for rubber or elastomers).

The first goal of this paper is to study homogenization of the above sys-
tems via Bloch Wave Method which is based on the fact that the homoge-
nized operator can be defined using differential properties of the bottom of
the so-called Bloch spectrum. The second goal of the paper is to explore
this regularity issue which is delicate for the systems under consideration
because of the presence of the incompressibility condition. These points are
elaborated below.

Through out the paper, we will follow the usual Einstein summation con-
vention with respect to repeated indices. We introduce now our first model.
Assuming that the viscosity (denoted by µ in the sequel) is a periodic func-
tion, the goal is to capture the effective viscosity of the mixture. To write
down the model we start with a 1-periodic function µ = µ(y) ∈ L∞(Td)
or equivalently, a Y -periodic function where Y =]0, 1[d which represents
the viscosity of the fluids. Here Td is the unit torus in Rd. We assume
µ(y) ≥ µ0 > 0 a.e in Td. Denote by µǫ = µǫ(x) = µ

(
x
ǫ

)
the corresponding

scaled function which is ǫ-periodic. With f = f(x) ∈ L2(Ω)d representing
external force, we consider the Stokes system with no-slip boundary condi-
tion in a bounded connected nonempty open set Ω ⊂ Rd having Lipschitz
boundary, :

(1)

−∇ · (µǫ∇uǫ) +∇pǫ = f in Ω,

∇ · uǫ = 0 in Ω,

uǫ = 0 on ∂Ω.





As usual, uǫ and pǫ represent respectively the velocity and pressure fields of
the fluid. Well-posedness theory of (1) is classical [15]. We recall some of
its elements. To write down the weak formulation, we introduce the spaces

(2) V =
{
v ∈ H1

0 (Ω)
d; ∇ · v = 0 in Ω

}
,

Here ν denotes unit outward normal to ∂Ω. Multiplying (1) by v ∈ V gives
the following problem for uǫ which does not involve pǫ : Find uǫ ∈ V satis-
fying

(3)

∫

Ω

µǫ∇uǫ · ∇v dx =

∫

Ω

f · v dx ∀v ∈ V.
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The classical Lax-Milgram Lemma (essentially, Riesz Representation Theo-
rem due to the symmetry of our bilinear form) ensures existence and unique-
ness of a solution uǫ ∈ V for (3). To get the pressure field one applies de
Rham’s Theorem in the following form [15]:

(4)

V ⊥ :=
{
w ∈ H−1(Ω)d; 〈w, v〉H−1(Ω)d,H1

0
(Ω)d = 0,∀v ∈ V

}
=

{
∇p; p ∈ L2(Ω)

}
,

which implies that the pressure pǫ in (1) belongs to L2(Ω). Since Ω is a con-
nected set, the pressure is defined up to an additive constant. To guarantee
the uniqueness of the pressure, we seek p in the space L2

0(Ω) = {f ∈ L2(Ω) :∫
Ω f dx = 0} with L2 norm. Moreover, by using Poincaré inequality and inf-

sup inequality [15], one shows that the solution (uǫ, pǫ) ∈ (H1
0 (Ω))

d×L2
0(Ω)

of (1) are uniformly bounded, namely there exists a constant C, independent
of ǫ, such that

(5) ||uǫ||(H1

0
(Ω))d + ||pǫ||L2(Ω) ≤ C||f ||(L2(Ω))d .

We are interested here in the homogenization limit of (1), that is the asymp-
totic limit of the solution (uǫ, pǫ) as ǫ → 0. This problem is very classical
and its solution by means of a combination of two-scale asymptotic expan-
sions and the method of oscillating test functions was provided in various
references, including [8, 16, 20]. We recall their main results and follow
the notations of [8, chapter I, section 10]. The homogenized tensor (A∗)klαβ ,
which represents “effective viscosity”, is defined by

(6) (A∗)klαβ =

∫

Td

µ(y)∇(χkα + yαek) : ∇(χlβ + yβel) dy,

in which figure the cell test functions {χkα; α, k = 1 . . . d} ∈ H1(Td)d and
{Πkα; α, k = 1 . . . d} ∈ L2(Td) solutions of the following problem in the unit
torus Td:

(7)

−∇ · (µ∇(χkα + yαek)) +∇Πkα = 0 in Td

∇ · χkα = 0 in Td

(χkα,Π
k
α) is Y − periodic.





We impose
∫
Td χ

k
α dy =

∫
Td Π

k
α dy = 0 to obtain uniqueness of the solutions.

It is easy to see that the above homogenized tensor possesses the following
“simple” symmetry, for any indices 1 ≤ α, β, k, l ≤ d,

(8) (A∗)klαβ = (A∗)lkβα,

which corresponds to the fact that the fourth-order tensor A∗ is a symmetric
linear map from the set of all matrices (or second-order tensors) into itself.
Since we follow the notations of [8], the simple symmetry (8) seems a bit
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awkward since it mixes Latin and Greek indices but it is just the usual
symmetry for a pair of indices (k, α) and (l, β) in a fourth-order tensor. In
other words, (8) holds for a simultaneous permutation of k, l and α, β. It is
straight-forward (see [8]) to check that the tensor A∗ is positive-definite so
that the following system (9) is well-posed.

Theorem 1.1. The homogenized limit of the problem (1) is

(9)

− ∂
∂xβ

(
(A∗)klαβ

∂uk
∂xα

)
+ ∂p

∂xl
= fl in Ω, for l = 1, 2, ..., d,

∇ · u = 0 in Ω,

u = 0 on ∂Ω.





More precisely, we have the convergence of solutions:

(uǫ, pǫ)⇀ (u, p) in H1
0 (Ω)

d × L2
0(Ω) weak.

�

Note that the simple symmetry (8) does not imply that A∗ is symmetric
in k, l or in α, β. However, in the homogenized equation (9), since A∗ is
constant, only its symmetric version, obtained by symmetrizing in both k, l
and α, β, plays a role.

Let us next consider the second model of incompressible elasticity :

(10)

−∇ · (µǫE(uǫs)) +∇pǫs = f in Ω,

∇ · uǫs = 0 in Ω,

uǫs = 0 on ∂Ω.





Here the strain rate tensor is given by

E(v) =
1

2

(
∇v +∇tv

)
namely Ekl(v) =

1

2

(
∂vk
∂xl

+
∂vl
∂xk

)
.

As before, there exists a unique solution (uǫs, p
ǫ
s) of the above problem (10)

in (H1
0 (Ω))

d×L2
0(Ω) and using Korn’s inequality and the inf-sup inequality,

the following uniform bound can be proved :

(11) ||uǫs||(H1

0
(Ω))d + ||pǫs||L2(Ω) ≤ C||f ||(L2(Ω))d ,

where the constant C does not depend on ǫ. Here the homogenized tensor

(A∗
s)
kl
αβ is given by

(12) (A∗
s)
kl
αβ =

∫

Td

µ(y)E(χ̃kα + yαek) : E(χ̃lβ + yβel) dy

where the cell test functions χ̃kα ∈ H1(Td), Π̃kα ∈ L2(Td) are now solutions
in the torus Td of
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(13)

−∇ · (µE(χ̃kα + yαek)) +∇Π̃kα = 0 in Td

∇ · χ̃kα = 0 in Td

(χ̃kα, Π̃
k
α) is Y − periodic





We impose
∫
Td χ̃

k
α =

∫
Td Π̃

k
α = 0. It is known [10] that the above ho-

mogenized tensor possesses the following “full” symmetry, for any indices
1 ≤ α, β, k, l ≤ d,

(14) (A∗
s)
kl
αβ = (A∗

s)
αl
kβ = (A∗

s)
kβ
αl = (A∗

s)
lk
βα,

which corresponds to the fact that the fourth-order tensor A∗
s is a symmetric

linear map from the set of all symmetric matrices into itself (the conditions
(14) are the usual symmetry conditions for Hooke’s laws in linearized elas-
ticity). The homogenization limit of the problem (10) is again of the form
(9) with A∗

s replacing A∗.
The first goal of this paper is to give an alternate proof of Theorem 1.1

using the Bloch Wave Method instead of two-scale asymptotic expansions
and the method of oscillating test functions. The notion of Bloch waves
is well-known in physics and mathematics [8, 11, 19, 22]. Bloch waves are
eigenfunctions of a family of “shifted ”spectral problems in the unit cell Y for
the corresponding differential operator. Its link with homogenization theory
was first explored in [8, 13, 17]. The key point is that the homogenized op-
erator can be defined in terms of differential properties of the bottom of the
Bloch spectrum. The second goal of this paper is to explore this issue which
is especially delicate in the case of Stokes equations. Indeed, it was discov-
ered in [7] that the Bloch spectrum for the Stokes equations is not regular
enough at the origin because of the incompressibility constraint. Therefore,
its differential properties are all the more intricate to establish. Here we
complete the task started in [7] and in particular we prove a conjecture of
[7] on the homogenization of the Stokes system (1). Since the treatment of
the incompressible elasticity system (10) is almost analogous to that of (1),
we focus on (1) and we content ourselves in highlighting the main differences
for (10) throughout the sequel.

The Bloch wave method for scalar equations and systems without dif-
ferential constraints (like the incompressibility condition) was studied in
[12, 13, 14, 21]. In such cases, this approach gives a spectral representa-
tion of the homogenized tensor A∗ = (A∗)klαβ in terms of the lowest energy

Bloch waves and their behaviour for small momenta (what we call the bot-
tom of the spectrum). For instance, the homogenized matrix in the scalar
case was found to be equal to one - half of the Hessian of the ground en-
ergy (or first eigenvalue) at zero momentum. For a system, several bottom
eigenvalues play a role and they are merely directionally differentiable by
lack of simplicity. In the present case of the Stokes system, the situation is
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more complicated. The main characteristic of the Stokes system is the pres-
ence of the differential constraint expressing incompressibility of the fluid.
One of its effects is that the Bloch energy levels are degenerate and the
corresponding eigenfunctions are discontinuous at zero momentum. Even
though energy levels are continuous at zero momentum, the second order
derivatives are not (cf. Theorem 3.1). Thus, we cannot really make sense
of the eigenvalue Hessian at zero momentum. Further, it is not clear if the
homogenized tensor can be fully recovered from the Bloch spectral data.
In fact, this issue is left open in [7]. In the non-self adjoint case treated
in [21], only the symmetric part of the homogenized matrix is determined
by Bloch spectral data and this is enough to determine the homogenized
operator uniquely. Combining all these difficulties, the homogenization of
Stokes system using Bloch waves is an interesting issue which is not a di-
rect extension of previous results. Our work, roughly speaking, shows that
Bloch spectral data does not determine the homogenized tensor uniquely,
but determines the homogenized operator uniquely. This is in sharp contrast
with the linear elasticity system treated in [14] in which the homogenized
tensor was uniquely determined from Bloch spectral data. We see thus the
effect of differential constraints (the incompressibility condition in the case
of Stokes equations) on the homogenization process via Bloch wave method.
For further discussion on this point, see Section 4. Bloch wave method of
homogenization presented in Section 5 consists of localizing (1), taking its
Bloch transform and passing to the limit to get the localized version of ho-
mogenized system in the Fourier space. Passage to the limit in the Bloch
method is straight forward, though arguments are long. We do not run
into the classical difficulty of having a product of two weakly convergent
sequences. In fact, we use the Taylor approximation of Bloch spectral ele-
ments which gives strongly convergent sequences. This is one of the known
features of the method. The required homogenized system is obtained by
making a passage to the physical space from the Fourier space. Extracting
macro constitutive relation and macro balance equation from the localized
homogenized equation in the Fourier space turns out to be not very straight
forward because of differential constraints.

Let us end this discussion with two general remarks on Bloch wave method.
First one is about the nature of convergence of the homogenization process.
It is well-known in the homogenization theory that the convergence in The-
orem 1.1 is only weak and not strong. To have strong convergence, we
need the so-called correctors [8]. Within Block wave theory, correctors are
discussed in [12] for the scalar equation. We do not construct explicitly
correctors for Stokes system in this paper, even though all necessary in-
gredients are presented. Because of the lack of smoothness of the bottom
level Bloch spectrum, corrector issue is worth considering separately. The
second remark is about non-periodic coefficients. Bloch wave approach to
homogenization is well developed only in the case of periodic coefficients. It
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is known that for some restricted class of locally-periodic/modulated coeffi-
cients, new phenomena (like localization) may appear [2, 3, 4]. We are not
aware of a Bloch wave approach for more general coefficients.

The plan of this paper is as follows. In section 2, we recall from [7] the
properties of Bloch waves associated with the Stokes operator. It turns out
that the Bloch waves and their energies can be chosen to be directionally
regular, upon modifying the spectral cell problem at zero momentum. Bloch
transform using eigenfunctions lying at the bottom of the spectrum is also
introduced in this section. Its asymptotic behaviour for low momenta is
also described. Next, Section 3 is devoted to the computation of directional
derivatives of Bloch spectral data. Even though these results are essentially
borrowed from [7], some new ones are also included because of their need
in the sequel. In particular we derive the so-called propagation relation
linking the homogenized tensor A∗ with Bloch spectral data, and the extent
to which it determines homogenized tensor is studied in Section 4. Using
this information, we prove Theorem 1.1 in Section 5 following the Bloch
wave homogenization method.

2. Bloch waves

In this section, we introduce Bloch waves associated to the Stokes opera-
tor following the lead of [7]. The Bloch waves are defined by considering the
shifted (or translated) eigenvalue problem in the torus Td parametrized by
elements in the dual torus which we take to be 2πTd. We denote by y the
points of the original torus and by η the points of the dual torus. The spec-
tral Bloch problem amounts to find λ = λ(η) ∈ R, φ = φ(η) ∈ (H1(Td))d,
with φ 6= 0 and Π = Π(η) ∈ L2(Td), satisfying

(15)

−D(η) · (µD(η)φ) +D(η)Π = λ(η)φ in Td,

D(η) · φ = 0 in Td,

(φ,Π) is Y − periodic,
∫
Y

|φ|2dy = 1.





The solutions of (15) φ,Π are a priori complex valued, so all functional
spaces are complex valued too. Here, we denote

D(η) = ∇y + iη

the shifted gradient operator, with i the imaginary root
√
−1. Its action on

a vector function φ yields a matrix: (D(η)φ)kl =
∂φl
∂yk

+ iηkφl for all k, l =

1, . . . , d. The corresponding divergence operation yields a scalar: D(η) ·φ =
∂φk
∂yk

+iηkφk. Analogously, if φ is a matrix function then its shifted divergence

D(η) · φ is a vector function obtained by acting D(η) on the column vectors
of φ. At this stage of discussion,spectral problem (15) is stated only formally.
Rigourous versions of it with modification will be formulated and used below.
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For reasons of self-adjointness, its eigenvalues will be real and that is why,
we take λ to be real, without any loss of generality. Though we may think
of eigen-solution Π as some sort of complex-valued pressure, there is no
guarantee that it represents physical pressure field of a real fluid. Let us
remark that the system (15) is only a mathematical model which appears
as an useful intermediate step in the study of a physical model.

The main feature of (15) is that the state space keeps varying with η due
to the differential constraints defined by the incompressibility of the fluid.
That is why, the standard spectral theory for elliptic operators does not
apply as such; it has to be modified. This is accomplished in [18]. Secondly,
it is easily seen that when η = 0, the corresponding eigenvalue λ(0) is
equal to zero and its multiplicity is d. In fact, we can take ek, k = 1 . . . d
as eigenvectors (with corresponding eigen-pressure being zero). Because of
this degeneracy, spectral elements of (15) are not guaranteed to be smooth
at η = 0.

As discussed in introduction, lack of regularity of the Bloch spectrum
at η = 0 is an issue because the representation of the homogenized tensor
in terms of Bloch spectral elements is then not clear. This was not the
case for the scalar problem, the lack of regularity of the Bloch spectrum at
η = 0 does not appear there, in fact the Bloch spectrum is analytic near
η = 0, see [13].To overcome the difficulty in the present case, the idea is to
consider directional regularity as we approach η = 0 [14]. Accommodating
the directional limit at η = 0 requires a modification of the above shifted
problem with the addition of a new constraint and corresponding Lagrange
multiplier in the equation [7]. Fixing a direction e ∈ Rd, |e| = 1 and taking
η = δe, with δ > 0, we consider the modified problem: find λ(δ) ∈ R,
φ(.; δ) ∈ (H1(Td))d, q(.; δ) ∈ L2

0(T
d) where L2

0(T
d) = {q ∈ L2(Td);

∫
Td q =

0} and q0(δ) ∈ C satisfying

(16)

−D(δe) · (µ(y)D(δe)φ(y; δ)) +D(δe)q(y; δ) + q0(δ)e = λ(δ)φ(y; δ) in Td,

D(δe) · φ(y; δ) = 0 in Td,

e ·
∫

Td

φ(y; δ) dy = 0,

(φ, q) is Y − periodic,
∫

Td

|φ(y; δ)|2 dy = 1.





Note that if δ 6= 0 then the relation e ·
∫
Td

φ(.; δ) = 0 can be easily obtained

from D(δe) · φ(.; δ) = 0 simply by integration. (However, this is not the
case if δ = 0.) Hence (16) is the same as (15) provided δ 6= 0 and η = δe.
However for δ = 0, (15) is not good because the condition e ·

∫
Td

φ(.; δ) = 0
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is not included. See [7] on the appearance of this new constraint and the
corresponding Lagrange multiplier q0(δ)e.

It is natural to consider the system (16) with δ small as a perturbation
from the following one which corresponds to δ = 0. We fix a unit vector
η̂ ∈ Sd−1 and we consider the eigenvalue problem: find ν(η̂) ∈ R, w(., η̂) ∈
(H1(Td))d, q(.; η̂) ∈ L2

0(T
d) and q0(η̂) ∈ C satisfying

(17)

−∇ · (µ∇w) +∇q + q0η̂ = ν(η̂)w in Td,

∇ · w = 0 in Td,

η̂ ·
∫
Y

w dy = 0,

(w, q) is Y − periodic,
∫
Y

|w|2 dy = 1.





Existence of eigenvalues and eigenvectors for either (16) or (17) is proved
in [7]. Let us recall their result, by specializing to the eigenvalue ν(η̂) = 0
of (17). Note that ν(η̂) = 0 is clearly an eigenvalue of multiplicity (d− 1) of
(17) with corresponding eigenfunctions being constants, namely q0m,η̂ = 0,

q00,m,η̂ = 0 and φ0m,η̂(y) is a constant unit vector of Rd orthogonal to η̂ for

m = 1, . . . , (d− 1), say {φ01,η̂ , . . . φ0d−1,η̂}. Doing perturbation analysis of the

above situation, the following result was proved in [7].

Theorem 2.1. Fix η̂ ∈ Sd−1. Consider the first (d − 1) eigenvalues of
(16). There exists δ0 > 0 and exactly (d − 1) analytic functions defined in
the real interval |δ| ≤ δ0, δ 7→ (λm,η̂(δ), φm,η̂(.; δ), qm,η̂(.; δ), q0,m,η̂(δ)), for

m = 1, . . . , (d− 1), with values in R× (H1(Td))d × L2
0(T

d)× C, such that

(i) λm,η̂(δ)

∣∣∣∣
δ=0

= 0, φm,η̂(.; δ)

∣∣∣∣
δ=0

= φ0m,η̂, qm,η̂(.; δ)

∣∣∣∣
δ=0

= q0,m,η̂(δ)

∣∣∣∣
δ=0

= 0,

(ii) (λm,η̂(δ), φm,η̂(.; δ), qm,η̂(.; δ), q0,m,η̂(δ) ) satisfies (16).

(iii) The set
{
φ1,η̂(.; δ), . . . .φ(d−1),η̂(.; δ)

}
is orthonormal in (L2(Td))d.

(iv) For each interval I ⊂ R with I containing exactly the eigenvalue
ν(η̂) = 0 of (17) (and no other eigenvalue of (17) then

{
λ1,η̂(δ) . . . , λ(d−1),η̂(δ)

}

are the only eigenvalues of (16) (counting multiplicities) lying in the
interval I.

�

The above theorem says that there are (d− 1) smooth curves emanating
out of the zero eigenvalue as δ varies in an interval (−δ0, δ0). We call them
Rellich branches. Using them, for m = 1, . . . , (d − 1), we can define the

corresponding mth Bloch transform of g ∈
(
L2(Rd)

)d
via the expression

(18) Bǫ
m,η̂g(ξ) =

∫

Rd

g(x) · φm,η̂
(x
ǫ
, δ
)
e−ix·ξ dx,
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where δ = δ(ǫ, ξ) = ǫ|ξ| and η̂ = ξ/|ξ|. This is well defined provided ǫ is
sufficiently small so that ǫ|ξ| ≤ δ0. For other ξ, we define Bǫ

m,η̂g(ξ) = 0.

For later purposes we need the Bloch transform for (H−1(Rd))d elements

also. Let us consider F ≡ (g0+
∑d

j=1
∂
∂xj

gj) ∈ (H−1(Rd))d, where F, g0, g1, ..., gd

are valued in Cd and gj ∈ ((L2(Rd))d for j = 0, 1, ..., d. Then we define
Bǫ
m,η̂F (ξ) in L

2
loc(R

d
ξ) by

Bǫ
m,η̂F (ξ) :=

∫

Rd

g0(x) · φm,η̂
(x
ǫ
; δ
)
e−ix·ξ dx

+

∫

Rd

i

d∑

j=1

ξjg
j(x) · φm,η̂

(x
ǫ
; δ
)
e−ix·ξ dx

− ǫ−1

∫

Rd

d∑

j=1

gj(x) · ∂φm,η̂
∂yj

(x
ǫ
; δ
)
e−ix·ξ dx .(19)

Definition (19) is independent of the representation used for F ∈ (H−1(Rd))d

in terms of {gj , j = 0, ..., d} and is consistent with the previous definition
(18) whenever F ∈ (L2(Rd))d.

Remark 1. Due to the property ∇ · (eix·ξφǫm,η̂) = 0 in Rd, we see from (19)
that

(20) Bǫ
m,η̂(F +∇ψ)(ξ) = Bǫ

m,η̂F (ξ), for all ψ ∈ L2(Rd).

In fact, by considering ∇ψ = g0 +
∑d

j=1
∂
∂xj

gj ∈ (H−1(Rd))d then we can

take g0 = 0 and gj = ψej j = 1, . . . , d, in (19) to obtain (20). That
is, Bloch transform of gradient field is zero. Therefore the kernel of the
Bloch transform Bǫ

m,η̂ : L2(Rd)d 7→ L2(Rd) contains the closed subspace

{∇ψ : ψ ∈ H1(Rd)} for each m = 1, . . . , d−1. Roughly speaking since Bloch
waves satisfy incompressibility condition the Bloch transform on gradient
field vanish. Thus we may anticipate that the pressure effects may not be
captured in the Bloch method. This impression is not correct. Indeed, as
shown Section 5, by means of localization via a cut-off function, we manage
to keep the pressure term. �

Our next result is concerned with the asymptotic behavior of these Bloch
transforms as ǫ → 0. In the physical space such convergence often modeled
as two scale convergence (or, multi scale convergence) can be found in [5,
1]. Here we will be studying such convergence in the Fourier space. Since
φm,η̂(y; 0) is a fixed unit vector (= φ0m,η̂) orthogonal to η̂ and independent

of y (see Theorem 2.1), we have

Theorem 2.2. Let gǫ be a sequence in (L2(Rd))d such that its support is
contained in a fixed compact set K ⊂ Rd, independent of ǫ. If gǫ converges
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weakly to g in (L2(Rd))d, then we have
(21)

χǫ−1Td(ξ)Bǫ
m,η̂g

ǫ(ξ)⇀ φ0m,η̂ · ĝ(ξ), weakly in L2
loc(R

d
ξ) for 1 ≤ m ≤ d− 1

where ĝ denotes the Fourier transform of g and we recall that η̂ = ξ
|ξ| .

Proof. Let us remark that Bǫ
m,η̂g

ǫ(ξ) is defined for ǫ ≤ δ0
M

if |ξ| ≤ M. We
can write

Bǫ
m,η̂g

ǫ(ξ) = χǫ−1Td(ξ)φ0m,η̂ ·gǫ(ξ)+
∫

K

gǫ(x)·
(
φm,η̂

(x
ǫ
; δ
)
− φm,η̂

(x
ǫ
; 0
))

e−ix·ξ dx .

By using Cauchy-Schwarz, the second term on the above right hand side can
be estimated by the quantity

CK‖φm,η̂(y; δ) − φm,η̂(y; 0)‖(L2(Y ))d

where CK is a constant depending on K but not on ǫ. Recall that δ is a
function of (ǫ, ξ), namely δ = ǫ|ξ|. This quantity is easily seen to converge
to zero as ǫ → 0 for each fixed ξ because of the directional continuity of
φm,η̂(., δ) 7→ φ0m,η̂ in (L2(Td))d as δ → 0. We merely use the continuity of

themth Rellich branch at δ = 0 with values in (L2(Td))d. On the other hand,
thanks to our normalization, the integral on K is bounded by a constant
independent of (ǫ, ξ). The proof is completed by a simple application of the
Dominated Convergence Theorem which guarantees that the second term
on the above right hand side converges strongly to 0 in L2

loc(R
d
ξ) as ǫ → 0.

�

Since compactly supported elements are dense in (L2(Rd))d, we have the
following:

Corollary 1. In the setting of Theorem 2.2, if gǫ be a sequence in (L2(Rd))d

such that its support is contained in a fixed compact set K ⊂ Rd, independent
of ǫ and gǫ → g in L2(Rd)d then we have the following strong convergence

(22) χǫ−1TdBǫ
m,η̂g

ǫ(ξ) → φ0m,η̂ ·ĝ, strongly in L2
loc(R

d
ξ) for 1 ≤ m ≤ d−1.

�

We recall the classical orthogonal decomposition [15] :

(23) L2(Rd)d = {∇ψ : ψ ∈ H1(Rd)} ⊕ {φ ∈ L2(Rd)d : ∇ · φ = 0}.
Let us denote

(24) X = {∇ψ : ψ ∈ H1(Rd)}, so that, X⊥ = {φ ∈ L2(Rd)d : ∇ · φ = 0}.
By our choice, {φ01,η̂, . . . , φ0d−1,η̂, η̂} forms an orthonormal basis in Rd, and
so we can deduce the following :

Proposition 1. If g ∈ X⊥ and φ0m,η̂ · ĝ = 0 for all m = 1, . . . , d − 1, then
g = 0.
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Proof. The proof is immediate, as {φ01,η̂, . . . , φ0d−1,η̂} forms an orthogonal

basis in Rd−1 and φ0m,η̂ · ĝ = 0 for all m = 1, . . . , d − 1, so ĝ(ξ) = c(ξ)ξ for

some scalar c ∈ L2(Rd). Now if c 6= 0, it contradicts the hypothesis g ∈ X⊥.
Thus c = 0. Consequently, g = 0. �

Corollary 2. In the setting of Theorem 2.2 and Proposition 1 if gǫ be a
sequence in X⊥ ⊂ L2(Rd)d such that its support is contained in a fixed
compact set K ⊂ Rd, independent of ǫ and gǫ ⇀ g in L2(Rd)d weak, and
φ0m,η̂ · ĝ = 0 for all m = 1, . . . , d− 1, then g = 0.

Proof. The proof simply follows as X⊥ is a closed subspace of L2(Rd)d, so
the limit g ∈ X⊥ and the result follows by applying Proposition 1. �

Theorem 2.2 and its corollaries give some sufficient conditions and specify
the sense in which the first Bloch transform tends to Fourier transform,
which is a sign of homogenization on the Fourier side. We do not believe
that these conditions are sharp and exhaust all possibilities. It would be
interesting to explore further in this direction.

Remark 2. Bloch waves being incompressible are transversal. Longitudi-
nal direction is missing and it has to be added to get the full basis. Natu-
rally, asymptotics of the Bloch transform contains information of the Fourier
transform only in transversal directions. It contains no information in the
longitudinal direction. Because of this feature, in the homogenization limit
also, there is no information in the longitudinal direction. This is however
proved to be enough to complete the homogenization process because the
limiting velocity field is incompressible. See Section 5. �

3. Computation of derivatives

In this section, we give the expressions of the derivatives (at δ = 0)
of the Rellich branches {φm,η̂(y; δ), qm,η̂(y; δ), q0,m,η̂(δ), λm,η̂(δ)} obtained in
Theorem 2.1. These results are essentially borrowed from [7] except for the
second order derivative of q0,m,η̂(δ) which is new. We differentiate, with
respect to δ ∈ R, (16) or equivalently the following system, fixing m =

1, . . . , d− 1 and η̂ = ξ
|ξ| ∈ Sd−1,

(25)
−D(δη̂) · (µ(y)D(δη̂)φm,η̂(y; δ)) + D(δη̂)qm,η̂(y; δ) + q0,m,η̂(δ)η̂

= λm,η̂(δ)φm,η̂(y; δ) in Td,

D(δη̂) · φm,η̂(y; δ) = 0 in Td,

η̂ ·
∫

Td

φm,η̂(y; δ) dy = 0,

(φm,η̂ , qm,η̂) is Y − periodic.





Zeroth order derivatives : For m = 1, . . . , d−1 and for a fixed direction
η̂ ∈ Sd−1 we have λm,η̂(0) = 0 and a corresponding eigenfunction is such that
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qm,η̂(y; 0) = 0, q0,m,η̂(0) = 0 and φm,η̂(y; 0) is a constant unit vector of Rd

orthogonal to η̂. We give a notation for this constant φm,η̂(y; 0) = φ0m,η̂ . We

recall that {φ01,η̂ , . . . , φ0d−1,η̂, η̂} is such that they form an orthonormal basis

for Rd.
First order derivatives : Let us differentiate (25) once with respect to δ to
obtain (prime denotes derivatives with respect to δ) :
(26)

−D(δη̂) · (µ(y)D(δη̂)φ′m,η̂(y; δ)) +D(δη̂)q′m,η̂(y; δ) + q′0,m,η̂(δ)η̂

−λm,η̂(δ)φ′m,η̂(y; δ) = f(δ) in Td,

D(δη̂) · φ′m,η̂(y; δ) = g(δ) in Td,

η̂ ·
∫

Td

φ′m,η̂(y; δ) dy = 0,

(φ′m,η̂, q
′
m,η̂) is Y − periodic





where,

f(δ) = λ′m(δ)φm,η̂(y; δ) − iqm,η̂(y; δ)η̂ + iη̂ · µ(y)D(δη̂)φm,η̂(y; δ)

+ iD(δη̂) · (µ(y)φm,η̂(y; δ) ⊗ η̂),

g(δ) = −iη̂ · φm,η̂(y; δ).

We put δ = 0 in (26) and by integrating over Td, we obtain

q′0,m,η̂(0)η̂ = λ′m,η̂(0)φ
0
m,η̂ .

Taking scalar product with η̂, we simply get λ′m,η̂(0) = q′0,m,η̂(0) = 0 as

η̂ ⊥ φ0m,η̂.

Using the above information in (26), we find that (φ′m,η̂(y; 0), q
′
m,η̂(y; 0))

is a solution of the following cell problem :
(27)

−∇ · (µ(y)∇φ′m,η̂(y; 0)) +∇q′m,η̂(y; 0) = i∇ · (µ(y)φ0m,η̂ ⊗ η̂) in Td,

∇ · φ′m,η̂(y; 0) = 0 in Td,

η̂ ·
∫

Td

φ′m,η̂(y; 0) dy = 0,

∫

Td

q′m,η̂(y; 0) dy = 0

(φ′m,η̂(y; 0), q
′
m,η̂(y; 0)) is Y − periodic.





Comparing this with (7), it can be seen that that φ′m,η̂(y; 0) is given by (see

[7]) :

(28) φ′m,η̂(y; 0) = iη̂αχ
r
α(y)(φ

0
m,η̂)r + ζm,η̂
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where ζm,η̂ ∈ Cd is a constant vector (independent of y), orthogonal to η̂.
In other words, the y-dependence of φ′m,η̂(y; 0) is completely determined by

the cell test function χrα(y), solution of problem (7).

In a similar manner, the derivative of the eigenpressure qm,η̂(y; 0) is given
by (see [7]):

(29) q′m,η̂(y; 0) = iη̂αΠ
r
α(y)(φ

0
m,η̂)r ,

That is, the y-dependence of q′m,η̂(y; 0) is completely determined by the cell

test function Πrα(y) , solution of problem (7).
Second order derivatives : Next we differentiate (26) with respect to δ to
obtain :
(30)

−D(δη̂) · (µ(y)D(δη̂)φ′′m,η̂(y; δ)) +D(δη̂)q′′m,η̂(y; δ) + q′′0,m,η̂(δ)η̂

−λm,η̂(δ)φ′′m,η̂(y; δ) = F (δ) in Td,

D(δη̂) · φ′′m,η̂(y; δ) = G(δ) in Td

η̂ ·
∫

Td

φ′′m,η̂(y; δ) dy = 0,

(φ′′m,η̂, q
′′
m,η̂) is Y − periodic





where
(31)
F (δ)

= −2µ(y)φm,η̂(y; δ) + 2iη̂ · µ(y)D(δη̂)φ′m,η̂(y; δ) + 2iD(δη̂) · (µ(y)φ′m,η̂(y; δ) ⊗ η̂)

− 2iη̂q′m,η̂(y; δ) + λ′′m,η̂(δ)φm,η̂(y; δ) + 2λ′m,η̂(δ)φ
′
m,η̂(y; δ),

G(δ) = −2iη̂ · φ′m,η̂(y; δ).

We consider (30) at δ = 0 and by integrating over Td, we get

q′′0,m,η̂(0)η̂k = −2

∫

Td

µ(y)(φ0m,η̂)k dy − 2

∫

Td

[η̂βµ(y)∇yχ
l
β(y)(φ

0
m,η̂)l]kαη̂α dy

+ λ′′m,η̂(0)(φ
0
m,η̂)k
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or,

−1

2

(
q′′0,m,η̂(0)η̂k − λ′′m,η̂(0)(φ

0
m,η̂)k

)
(32)

=

∫

Td

µ(y)
[
δlkδαβ + (∇χlβ)kα

]
dy η̂αη̂β(φ

0
m,η̂)l dy

=

∫

Td

µ(y)
[
∇(yβel) : ∇(yαek) +∇χlβ : ∇(yαek)

]
dy η̂αη̂β(φ

0
m,η̂)l dy

= (A∗)klαβ η̂αη̂β(φ
0
m,η̂)l.

= [(φ0m,η̂)
tM(η̂, A∗)]k = [M(η̂, A∗)(φ0m,η̂)]k(33)

where M(η̂, A∗) is the symmetric matrix whose entries are given by

M(η̂, A∗)kl = (A∗)klαβ η̂αη̂β .

This is nothing but a contraction of the homogenized tensor A∗. As a simple
consequence of (32), we get

−1

2
q′′0,m,η̂(0) =M(η̂, A∗)φ0m,η̂ · η̂ and

1

2
λ′′m,η̂(0) =M(η̂, A∗)φ0m,η̂ · φ0m,η̂.

It also follows that M(η̂, A∗)φ0m,η̂ ⊥ φ0m′,η̂ for all m 6= m′.

By summarizing the above computations, we have

Theorem 3.1. For m = 1, . . . , d − 1 and for a fixed direction η̂ ∈ Sd−1 we
have

(i) λm,η̂(0) = 0 and a corresponding eigenfunction is such that qm,η̂(y; 0) =
0, q0,m,η̂(0) = 0 and φm,η̂(y; 0) = φ0m,η̂ a unit vector orthogonal to η̂.

(ii) λ′m,η̂(0) = 0 and q′0,m,η̂(0) = 0.

(iii) The derivative of the eigenfunction φm,η̂(y; δ) at δ = 0 satisfies:

φ′m,η̂(y; 0) = iη̂αχ
r
α(y)(φ

0
m,η̂)r + ζm,η̂

where ζm,η̂ ∈ Cd is a constant vector (independent of y), orthogonal
to η̂.

(iv) The derivative of the eigenfunction qm,η̂(y; δ) at δ = 0 satisfies:

q′m,η̂(y; 0) = iη̂αΠ
r
α(y)(φ

0
m,η̂)r.

(v) The second derivative of the eigenvalue λm,η̂(δ) and q0,m,η̂(δ) at δ = 0
satisfy the relation

(34)
1

2
λ′′m,η̂(0)φ

0
m,η̂ =

1

2
q′′0,m,η̂(0)η̂ +M(η̂, A∗)φ0m,η̂

where M(η̂, A∗) is the symmetric matrix whose entries are given by

M(η̂, A∗)kl = (A∗)klαβ η̂αη̂β .
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Remark 3. The above matrix M(η̂, A∗) is precisely that which must be
positive definite in the Legendre-Hadamard definition of ellipticity. A rela-
tion analogous to (34) is called “propagation relation” in [14] in the study
of linearized elasticity system and it shows how the homogenized tensor A∗

enters into the Bloch wave analysis. The above relation (34) generalizes the
relation (22) in [7].

Remark 4. In the linearized elasticity system, the propagation relation is
an eigenvalue relation. Here, relation (34) can again be seen as an eigenvalue
problem, posed in the (d − 1)-dimensional subspace orthogonal to η̂. More
precisely, 1/2λ′′m,η̂(0) is an eigenvalue and φ0m,η̂ (which is orthogonal to η̂)

is an eigenvector of the restriction of the matrix M(η̂, A∗) to the subspace
η̂⊥. In (34) 1/2q′′0,m,η̂(0) is the Lagrange multiplier corresponding to the

constraint that the eigenvalue problem is posed in the (d − 1)-dimensional
subspace orthogonal to η̂.

Case of Symmetrized gradient :

We recall the incompressible elasticity system (10) with the symmetrized
gradient introduced in Section 1

(35)

−∇ · (µǫE(uǫs)) +∇pǫs = f in Ω,

∇ · uǫs = 0 in Ω,

uǫs = 0 on ∂Ω





where E(v) = 1
2

(
∇v +∇tv

)
.

We introduce Bloch waves associated to the Stokes operator defined in (35).
Find λs = λs(η) ∈ R, φs = φs(η) ∈ H1(Td)d, φs 6= 0 and Πs = Πs(η) ∈
L2(Td) satisfying

(36)

−D(η) · (µE(η)φs) +D(η)Πs = λs(η)φs in Rd

D(η) · φs = 0 in Rd

(φs,Πs) is Y − periodic
∫
Y

|φs|2 dy = 1.





As usual D(η) = ∇y + iη is the shifted gradient operator and the shifted
strain rate tensor is defined by :

2E(η)ψ = (∇+ iη)ψ + (∇+ iη)tψ,

(2E(η)ψ)kl =
(
∂ψk

∂xl
+ iηlψk

)
+

(
∂ψl

∂xk
+ iηkψl

)
.

As earlier, we modify the spectral problem (36) as follows : Find λs(δ) ∈
R, φs(.; δ) ∈ H1(T)d, qs(.; δ) ∈ L2

0(T
d) and q0,s(δ) ∈ C satisfying
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(37)
−D(δe) · (µ(y)E(δe)φs(y; δ)) +D(δe)qs(y; δ)

+ q0,s(δ)e = λs(δ)φs(y; δ) in Td

D(δe) · φs(y; δ) = 0 in Td

e ·
∫

Td

φs(y; δ) dy = 0,

(φs, qs) is Y − periodic,
∫

Td

|φs(y; δ)|2 dy = 1.





As before, we can compute directional derivatives of the solution of (37) and
prove a result completely analogous to Theorem 3.1. In particular, we will
have the following propagation relation : For m = 1, . . . d − 1 and for fixed
direction η̂ ∈ Sd−1 the second derivative of the eigenvalue λs,m,η̂(δ) at δ = 0
satisfies the relation

(38)
1

2
λ′′s,m,η̂(0)φ

0
s,m,η̂ =

1

2
q′′0,s,m,η̂(0)η̂ +M(η̂, A∗

s)φ
0
s,m,η̂,

where M(η̂, A∗
s) is the matrix whose entries are given by

M(η̂, A∗
s)jl = (A∗

s)
jl
αβ η̂αη̂β .

4. Recovery of homogenized tensor from Bloch waves

In the scalar self-adjoint case, it is known that the homogenized matrix is
equal to one-half the Hessian of the first Bloch eigenvalue at zero momentum
[13]. In the general (non-symmetric) scalar case, treated in [21], it was shown
that only the symmetric part of the homogenized matrix is determined by
the Bloch spectrum and it is given again by the same one-half of the Hessian
of the first Bloch eigenvalue (which exists by virtue of the Krein-Rutman
theorem). The fact that only the symmetric part of the homogenized matrix
plays a role is not a big surprise since, the homogenized tensor A∗ being
constant, the differential operator

∇ · A∗∇ =

d∑

k,l=1

A∗
kl

∂2

∂xk∂xl

depends only on the symmetric part of A∗.
In the case of systems, another phenomenon takes place. For example, the

linearized elasticity system (in which there are no differential constraints)
was treated in [14] where it was recognized that not only Bloch eigenvalues
but also Bloch eigenfunctions at zero momentum are needed to determine the
homogenized tensor. More precisely, this connection between Bloch eigen-
values and eigenfunctions, on the one hand, and the homogenized tensor, on
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the other hand, was expressed via a relation called propagation relation in
[14] which uniquely determines the homogenized tensor.

In the case of Stokes system, a new phenomenon arises because of the
presence of a differential constraint (the incompressibility condition). Even
though there is an analogue of the propagation relation (see (34) above),
it does not determine uniquely the homogenized tensor. In fact the prop-
agation relation (34) is unaltered if we add a multiple of I ⊗ I (where I
is the d × d identity matrix) to the homogenized tensor. The homogenized
Stokes operator clearly remains the same under such an addition since it
corresponds to adding a gradient of the velocity divergence which vanishes
because of the incompressibility constraint. The authors in [7] conjectured
that the homogenized Stokes tensor is uniquely characterized by the propa-
gation relation up to the addition of a term c(I ⊗ I) (where c is a constant).
We prove this assertion in the case of the Stokes system (10) with a sym-
metrized gradient. For the other Stokes system (1), the homogenized tensor
is not uniquely determined by the propagation relation (34). In this sec-
tion, we investigate this non-uniqueness. Neverheless, we shall prove that
for both Stokes systems the homogenized operators (9), and its equivalent
for the symmetric gradient case of (10), are uniquely determined.

Our concern now is the following question: to what extent do the Bloch
spectral elements determine the homogenized tensor A∗ via the propagation
relation (34) ? Since λ′′m,η̂(0), q

′′
0,m,η̂(0), φ

0
m,η̂ are known from Bloch spectral

data, it follows that M(η̂, A∗)φ0m,η̂ is uniquely determined via the relation

(34). But it may happen that different tensors A∗ give rise to the same
matrixM(η̂, A∗). Three main results are proved in this section and they are
stated in the following three propositions.

Proposition 2. Let A∗ and B∗ be two fourth order tensors possessing the
simple symmetry (8). They satisfy the same propagation relation (34), if
and only if

(39) B∗ −A∗ = c(I ⊗ I) +N

where I is the d×d identity matrix and N is a fourth order tensor satisfying,
on top of the simple symmetry (8), the following anti-symmetry property
(40)

N jl
αβ = −N jl

βα = −N lj
αβ whenever, (α, β) 6= (j, l) and (β, α) 6= (j, l)

N ii
ii = 0.

}

Proof. Let us observe that the addition of c(I⊗ I) and N , having properties
(8) and (40), to A∗ does not alter the propagation relation (34). Indeed, we
have,

M(η̂, A∗ + c(I ⊗ I) +N)jl = (A∗)jlαβ η̂αη̂β + cδαjδβlη̂αη̂β +N jl
αβ η̂αη̂β

= M(η̂, A∗)jl + cη̂j η̂l .
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Since φ0m,η̂ is orthogonal to η̂, we deduce

M(η̂, A∗ + c(I ⊗ I) +N)φ0m,η̂ =M(η̂, A∗)φ0m,η̂ .

Conversely, let us assume that there are two fourth-order tensors A∗ and
B∗, possessing the simple symmetry (8) and such that M(η̂, A∗)φ0m,η̂ =

M(η̂, B∗)φ0m,η̂, m = 1, ..., d− 1, for all η̂ ∈ Sd−1. We must then deduce (39).
For convenience, the proof is divided into five steps.

Step 1. We begin with showing the matrix M(η̂, A∗) is symmetric. By
interchanging the dummy indices α and β and using the simple symmetry

(8) of the homogenized coefficients, (A∗)jlαβ = (A∗)ljβα, we get

(41) M(η̂, A∗)jl = (A∗)jlαβ η̂αη̂β = (A∗)jlβαη̂β η̂α = (A∗)ljαβ η̂αη̂β =M(η̂, A∗)lj

which shows the required symmetry.

Step 2. For Ñ = B∗−A∗ define M(η̂) =M(η̂, Ñ) =M(η̂, B∗)−M(η̂, A∗).
Since A∗ and B∗ satisfy (34), it follows thatM(η̂)φ0m,η̂ = 0 for m = 1, ..., d−
1. Since the family φ0m,η̂ is a basis of the orthogonal space to η̂, it implies that

M(η̂) = c(η̂)η̂ ⊗ η̂ for some scalar c(η̂). Since M(η̂) depends quadratically
on η̂, it must be that c(η̂) is independent of η̂. Thus, for c ∈ R, we have
M(η̂) = c η̂ ⊗ η̂, that is, for any η̂ ∈ Sd−1,

(42) Ñ jl
αβ η̂αη̂β = cη̂j η̂l 1 ≤ j, l ≤ d.

Step 3. Under condition (42), we verify that

Ñ ii
ii = c ∀ i.(43)

and Ñ jl
ik + Ñ jl

ki = 0 if (i, k) 6= (j, l) and (k, i) 6= (j, l).(44)

For this purpose, let us take η̂ = ei in (42). We obtain Ñ jl
ii = cδijδil and so

Ñ ii
ii = c(45)

and Ñ jl
ii = 0 if i 6= j or i 6= l.(46)

In particular, (43) is proved. Next, choosing η̂ = ei + ek in (42), we get

(47) Ñ jl
ii + Ñ jl

kk + Ñ jl
ik + Ñ jl

ki = c(δji + δjk)(δli + δlk).

To check (44), there are several cases to consider.

(i) (i 6= j and k 6= j). In this case, (44) is a direct consequence of (46)
and (47).

(ii) Similarly, for (k 6= l and i 6= l) (44) is a direct consequence of (46)
and (47).

(iii) (i 6= j, k = j). In this case,

(48) Ñ jl
jj + Ñ jl

ij + Ñ jl
ji = c(δli + δlj).
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Now together with i 6= l we have

(49) Ñ jl
jj + Ñ jl

ij + Ñ jl
ji = cδlj .

Then both j = l or j 6= l cases lead to verify (43) and (44) respec-
tively.

(iv) Similarly, for (k 6= l and i = l)

(50) Ñ ji
ii + Ñ ji

ik + Ñ ji
ki = c(δji + δjk).

Together with k 6= j we have

(51) Ñ ji
ii + Ñ ji

ik + Ñ ji
ki = cδji.

Then both i = j or i 6= j cases lead to verify (43) and (44) respec-
tively.

Step 4. Now we consider the two remaining cases not covered in (44).

(i) (i, k) = (j, l). Then from (47) we have

Ñ ik
ii + Ñ ik

kk + Ñ ik
ik + Ñ ik

ki = c(1 + δik)
2.

For i 6= k it gives using (46)

(52) Ñ ik
ik + Ñ ik

ki = c.

(ii) Similarly, for (k, i) = (j, l), together with i 6= k we have

(53) Ñki
ik + Ñki

ki = c

Step 5. Let us set N = Ñ − c(I ⊗ I). Thanks to the properties (43) and
(44), we can easily check that N is an anti-symmetric tensor in the sense
that it satisfies

(54) N jl
ik = −N jl

ki = −N lj
ik. whenever, (i, k) 6= (j, l) and (k, i) 6= (j, l)

From its very definition N also possesses the symmetry N jl
ik = N lj

ki. Thus N
has all the properties listed in (40). �

Next we extend Proposition 2 to the Stokes system (10), featuring a sym-
metric gradient tensor. In this case the propagation relation (34) is replaced
by (38) and the homogenized tensor is denoted by A∗

s.

Proposition 3. The propagation relation (38) characterizes uniquely the
tensor A∗

s, up to the addition of a constant multiple of I ⊗ I. In other
words, A∗

s and B∗
s satisfy the same propagation relation (38) if and only if,

for some c ∈ R,

(55) B∗
s −A∗

s = c(I ⊗ I).

Proof. The proof continues from the Step 5 of the previous proof of Propo-

sition 2. We defined N = Ñ − c(I ⊗ I) satisfying (54) i.e.

N jl
ik = −N jl

ki = −N lj
ik. whenever, (i, k) 6= (j, l) and (k, i) 6= (j, l)
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Now as Ñ = B∗
s − A∗

s possess with the symmetry of coefficients of linear
elasticity, so we have

(56) N jl
ik = N il

jk = N lj
ki = N jk

il for all i, j, k, l.

This symmetry combined with the anti-symmetry established in the previous
step implies that N = 0. Note that antisymmetry property holds precisely
for the interchange of those pairs of indices for which symmetry property
does not hold.
This can be seen as follows: whenever (i, k) 6= (j, l) and (k, i) 6= (j, l)

N jl
ik = −N lj

ik = −N ij
lk = N ji

lk = N ij
kl = Nkj

il = −N jk
il = −N jl

ik(57)

Thus N jl
ik = 0.(58)

Similarly, whenever (i, k) = (j, l) or (k, i) = (j, l) together with i 6= k; from
(52), (53) we have

Ñ ik
ik + Ñ ik

ki = c = Ñki
ik + Ñki

ki .

Then using (56) and (46) we clearly have

(59) N ik
ik = 0 = Nki

ki .

Therefore (58), (59) imply that N = 0 or, Ñ = c(I⊗I) and hence B∗
s−A∗

s =
c(I ⊗ I). �

Remark 5. The conclusion of the above proposition was conjectured in [7]
and it is proved here to be true whenever we are working with the system (10)
with symmetrized gradient. However, it is not true with the full gradient
Stokes system (1) as shown by Proposition 2. However, in both of these
cases the propagation relation fixes the homogenized operator (9) uniquely,
as is stated in the following proposition.

Proposition 4. If (39) is satisfied, then A∗ and B∗ give rise to the same
homogenized operator (9).

Proof. We have to check that A∗ and B∗ define the same Stokes differential
operator for divergence-free vector fields. Indeed the Fourier symbol of the
operator

u = (uk)1≤k≤d →
(
− ∂

∂xβ

(
(A∗ −B∗)klαβ

∂uk
∂xα

))

1≤l≤d

is (A∗−B∗)klαβξαξβ which, by virtue of (42), is equal to cξkξl which is precisely

the symbol of the operator u→ −c∇(∇ · u) which vanishes on the space of
divergence free functions. �
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5. Homogenization result

This section is devoted to a proof of Theorem 1.1, our main homogeniza-
tion result stated in the first section. It is based on the tools that we have
introduced so far. A similar proof is given for the linear elasticity problem in
[21]. However, the presence of a pressure and a differential constraint in the
Stokes system seriously complexifies the analysis and has a non-trivial effect
in the homogenization process. Besides, we also bring some simplifications
to the proof given in [21].

We consider a sequence of solutions (uǫ, pǫ) ∈ (H1
0 (Ω))

d × L2
0(Ω) solving

the Stokes system (1). It is classical to derive the following bound [8] :

(60) ||uǫ||(H1

0
(Ω))d + ||pǫ||L2(Ω) ≤ C||f ||(L2(Ω))d ,

where C is independent of ǫ. Then there exist (u, p) ∈ (H1
0 (Ω))

d × L2
0(Ω)

and a subsequence (uǫ, pǫ) converging weakly to (u, p) in (H1
0 (Ω))

d×L2
0(Ω).

Our aim is to show that (u, p) satisfies the homogenized Stokes system (9).
Due to the uniqueness of solutions for the system (9), it follows that the
entire sequence (uǫ, pǫ) converges to (u, p) weakly in (H1

0 (Ω))
d × L2

0(Ω).

There are several steps in the proof. First, we localize the Stokes system
(1) by applying a cut-off function technique to the velocity u in order to get
the equation (61) in the whole Rd. Next, by taking the Bloch transforma-
tion Bǫ

m,η̂ (1 ≤ m ≤ d− 1) of the equation (61) and passing to the limit, we
arrive at the homogenized equation in the Fourier space. Finally, we take
the inverse Fourier transform to go back to the physical space which gives
our desired result.

Notation: in the sequel L.H.S. stands for left hand side, and R.H.S. for
right hand side.
Step 1. Localization of the velocity u : Let v ∈ D(Ω) be arbitrary. Then
vuǫ and pǫ satisfy (for l = 1, . . . , d)

(61) − ∂

∂xα
(µǫ

∂

∂xα
)(vuǫl ) +

∂pǫ

∂xl
v = vfl + gǫl + hǫl in Rd,

where,

(62) gǫl = −2µǫ
∂uǫl
∂xα

∂v

∂xα
− µǫ

∂2v

∂xα∂xα
uǫl and hǫl = − ∂µǫ

∂xα

∂v

∂xα
uǫl .

Note that, gǫl and hǫl correspond to terms containing zero and first order
derivatives of µǫ respectively. In the sequel, we extend uǫ and pǫ by zero
outside Ω and such extensions are denoted by the same letters.
Step 2. Limit of Bǫ

m,η̂ applied to the L.H.S. of (61) : We consider the fol-

lowing ǫ-scaled spectral problem of (25) as follows : Let η̂ = ξ
|ξ| ∈ Sd−1,
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δ = ǫ(ξ · η̂);

φǫm,η̂(x; δ) = φm,η̂(
x

ǫ
; ǫ(ξ · η̂)), and λǫm,η̂(δ) = ǫ−2λm,η̂(ǫ(ξ · η̂))

qǫm,η̂(x; δ) = ǫ−1qm,η̂(
x

ǫ
; ǫ(ξ · η̂)), and qǫ0,m,η̂(δ) = ǫ−2q0,m,η̂(ǫ(ξ · η̂)).

They satisfy the following system because of (25) :

(63)

−D(δη̂) · (µǫ(x)D(δη̂)φǫm,η̂(x; δ)) + D(δη̂)qǫm,η̂(x; δ)

+ qǫ0,m,η̂(δ)η̂ = λǫm,η̂(δ)φ
ǫ
m,η̂(x; δ) in Rd,

D(δη̂) · φǫm,η̂(x; δ) = 0 in Rd,

η̂ ·
∫

Rd

φǫm,η̂(x; δ) dx = 0,

(φǫm,η̂ , q
ǫ
m,η̂) is ǫY − periodic,

∫

ǫTd

|φǫm,η̂(x; δ)|2 dx = 1.





Let us first consider the L.H.S. of (61). For g ∈ H1(Rd)d with compact
support in Ω, using the definition Bloch transformation (19) and spectral
equation (63), we obtain for m = 1, . . . d− 1,

Bǫ
m,η̂

(
− ∂

∂xα
(µǫ

∂

∂xα
)g

)
(ξ)

=

〈
eix·ξφǫm,η̂(.; δ),−

∂

∂xα
(µǫ

∂

∂xα
)g

〉

=

〈
g,− ∂

∂xα
(µǫ

∂

∂xα
)(eix·ξφǫm,η̂(.; δ))

〉

=
〈
g, λǫm,η̂(δ)e

ix·ξφǫm,η̂(.; ξ) −∇(qǫm,η̂(.; δ)e
ix·ξ)− qǫ0,m,η̂(δ)η̂e

ix·ξ
〉

= λǫm,η̂(δ)B
ǫ
m,η̂g(ξ) −

〈
g,∇(qǫm,η̂(.; δ)e

ix·ξ)
〉
−

〈
g, qǫ0,m,η̂(δ)η̂e

ix·ξ
〉
.

In the previous equation the duality bracket is between H1
comp(R

d)d and

H−1
loc (R

d)d.
Therefore, Bǫ

m,η̂ applied to the L.H.S. of (61) (1 ≤ m ≤ d− 1) is equal to

λǫm,η̂(δ)B
ǫ
m,η̂(vu

ǫ)(ξ)−
〈
vuǫ,∇(qǫm,η̂(.; δ)e

ix·ξ)
〉
−
〈
vuǫ, qǫ0,m,η̂(δ)η̂e

ix·ξ
〉

+Bǫ
m,η̂(v∇pǫ)(ξ).

(64)

Below, we treat each term of (64) one by one.
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1st term of (64) : By using the Taylor expansion

(65) λǫm,η̂(δ) = ǫ−2λm,η̂(ǫ(ξ · η̂)) =
1

2
λ′′m,η̂(0)(ξ · η̂)2 +O(ǫ(ξ · η̂)3)

and then using Theorem 2.2, we get

χǫ−1Td(ξ)λǫm,η̂(δ)B
ǫ
m,η̂(vu

ǫ)(ξ)

→ 1

2
λ′′m,η̂(0)(ξ · η̂)2φ0m,η̂ · (̂vu)(ξ) in L2

loc(R
d
ξ) strongly,

(66)

where we recall that φ0m,η̂ is a constant unit vector of Rd orthogonal to η̂.

Note that λ′′m,η̂(0) is linked to A∗ via the propagation relation (34). Using
this relation, the above limit can be written as

(ξ · η̂)2
(
1

2
q′′0,m,η̂(0)η̂ +M(η̂, A∗)φ0m,η̂

)
· (̂vu)(ξ)

= (ξ · η̂)2 1
2
q′′0,m,η̂(0)η̂k (̂vuk) + (ξ · η̂)2(A∗)klαβ η̂αη̂β(φ

0
m,η̂)l(v̂uk)(ξ).(67)

2nd term of (64) :

−
〈
vuǫ,∇(qǫm,η̂e

ix·ξ)
〉
=

〈
∇ · (vuǫ), eix·ξqǫm,η̂

〉

=
〈
uǫ · ∇v, eix·ξqǫm,η̂

〉
(as ∇ · uǫ = 0).(68)

Using the Taylor expansion of qǫm,η̂(.; δ) :

qǫm,η̂(x; δ) = ǫ−1qm,η̂(
x

ǫ
; ǫ(ξ · η̂))

= ǫ−1qm,η̂(
x

ǫ
; 0) + (ξ · η̂)q′m,η̂(

x

ǫ
; 0) +O(ǫ(ξ · η̂)2),(69)

(prime denotes the derivative with respect to the second variable), with the
properties that (cf. Theorem 2.1)
(70)

qm,η̂(
x

ǫ
; 0) = 0 and

q′m,η̂(
x

ǫ
; 0)⇀MTd(q′m,η̂(y; 0)) = 0 weakly in L2(Rd); (as q′m,η̂(y; 0) ∈ L2

0(T
d))

where, MTd(f) =
∫
Td f(y) dy.

Then by using uǫ → u strongly in L2(Ω)d from (68) we get
(71)

−
〈
vuǫ,∇(qǫm,η̂e

ix·ξ)
〉
→

〈
u · ∇v, eix·ξMTd(q′m,η̂)

〉
= 0 in L2

loc(R
d
ξ) strongly.

It is also used that, the error term O(ǫ(ξ · η̂)2) in the above Taylor expansion
tends to 0 in the space L2

loc(R
d
ξ ;L

2
loc(R

d)). Thus the oscillating eigen-pressure
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qǫm,η̂ does not contribute to the homogenized system.

3rd term of (64) : We use the Taylor expression of qǫ0,m,η̂(ξ) with the

property q0,m,η̂(0) = q′0,m,η̂(0) = 0 (cf. Theorem 3.1) to have

(72) qǫ0,m,η̂(δ) = ǫ−2q0,m,η̂(ǫ(ξ · η̂)) =
1

2
q′′0,m,η̂(0) +O(ǫ(ξ · η̂)2).

So,

−
〈
vuǫ, qǫ0,m,η̂(δ)e

ix·ξ η̂
〉
→− 〈vu, 1

2
q′′0,m,η̂(0)(ξ · η̂)2η̂eix·ξ〉 in L2

loc(R
d
ξ) strongly.

= −1

2
q′′0,m,η̂(0)(ξ · η̂)2(̂vu) · η̂.(73)

4th term of (64) : Finally, we consider the remaining fourth term in (64),
and doing integration by parts we get

Bǫ
m,η̂(v∇pǫ)(ξ) =

〈
v∇pǫ, eix·ξφǫm,η̂

〉

= −
〈
pǫ,∇v · eix·ξφǫm,η̂

〉
(as ∇ · (eix·ξφǫm,η̂) = 0).(74)

We use the Taylor expansion

φǫm,η̂(x; ξ) = φm,η̂(
x

ǫ
; 0) + ǫ(ξ · η̂)φ′m(

x

ǫ
; 0) +O((ǫ(ξ · η̂))2)

= φ0m,η̂ + ǫ(ξ · η̂)φ′m,η̂(
x

ǫ
; 0) +O((ǫ(ξ · η̂))2)

→ φ0m,η̂ in L2
loc(R

d
ξ , (L

2(Ω))d) strongly.(75)

And from (60) as ||pǫ||L2(Ω) is uniformly bounded, so up to a subsequence
we have

(76) pǫ ⇀ p in L2(Ω).

Thus by passing to the limit in the R.H.S. of (74), we get

−
〈
pǫ,∇v · eix·ξφǫm,η̂

〉
→−

〈
p,∇v · eix·ξφ0m,η̂

〉

=
〈
∇p, veix·ξφ0m,η̂

〉
(as ∇ · (eix·ξφ0m,η̂) = 0).(77)

Thus

(78) χǫ−1TdBǫ
m,η̂(v∇pǫ)(ξ) → φ0m,η̂ · (̂v∇p)(ξ) in L2

loc(R
d
ξ) strongly.

This property proved for H−1 elements is analogous to Theorem 2.1.
Summary so far : Combining the previous results, therefore, by taking the
Bloch transformation Bǫ

m,η̂ of the L.H.S. of (61) (1 ≤ m ≤ d − 1) and
multiplying by χǫ−1Td , we see that it converges to
(79)

(A∗)klαβ η̂αη̂β(ξ · η̂)2(φ0m,η̂)l(̂vuk)(ξ) + φ0m,η̂ · (̂v∇p)(ξ) in L2
loc(R

d
ξ) strongly.
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Step 3. Limit of Bǫ
m,η̂ applied to the R.H.S. of (61) : Applying Bǫ

m,η̂ to the

R.H.S. of (61) (1 ≤ m ≤ d− 1 ), we obtain

(80) Bǫ
m,η̂(vf)(ξ) +Bǫ

m,η̂(g
ǫ)(ξ) +Bǫ

m,η̂(h
ǫ)(ξ).

We treat below each of these terms separately. Passing to the limit in the
first term is straightforward (cf. Corollary 1) and we obtain

(81) χǫ−1Td(ξ)Bǫ
m,η̂(vf)(ξ) → φ0m,η̂ · (̂vf) in L2

loc(R
d
ξ) strongly.

Limit of Bǫ
m,η̂(g

ǫ) : We pose σǫ = µǫ∇uǫ (σǫlα = µǫ
∂uǫ

l

∂xα
) which is a bounded

matrix in (L2(Ω))d×d and so there exists a weakly convergent subsequence
in (L2(Ω))d×d. Let σ be its limit as well as its extension by zero outside Ω.
Then via Theorem 2.2,
(82)

χǫ−1Td(ξ)Bǫ
m,η̂(σ

ǫ
lα

∂v

∂xα
)(ξ)⇀

̂
(σlα

∂v

∂xα
)(ξ)(φ0m,η̂)l in L2

loc(R
d
ξ) weakly.

Due to the strong convergence of uǫ in L2(Rd)d, (cf. Corollary 1) we have
(83)

χǫ−1Td(ξ)Bǫ
m,η̂(µ

ǫ∆v uǫ)(ξ)⇀MTd(µ(y))(̂∆v u)(ξ)·φ0m,η̂ in L2
loc(R

d
ξ) weakly.

Combining the above two convergence results and doing integration by parts,
we obtain

χǫ−1Td(ξ)Bǫ
m,η̂(g

ǫ)(ξ)

⇀ −2(̂σ∇v)(ξ) · φ0m,η̂ −MTd(µ(y))(̂∆v u)(ξ) · φ0m,η̂ in L2
loc(R

d
ξ) weakly.

(84)

Limit of Bǫ
m,η̂(h

ǫ) : We decompose it into two terms:

Bǫ
m,η̂(h

ǫ) = −Bǫ
m,η̂((∇µǫ · ∇v)uǫ)(ξ)

= −
〈
(∇µǫ · ∇v)uǫ, eix·ξφ0m,η̂

〉

−
〈
(∇µǫ · ∇v)uǫ, eix·ξǫ(ξ · η̂)φ′m(

x

ǫ
; 0) +O((ǫ(ξ · η̂))2)

〉
.

We start with the second term. By doing integration by parts, it becomes

(85) (ξ · η̂)
∫

Rd

e−ix·ξ
(
µǫ∇yφ′m(

x

ǫ
; 0)uǫ

)
· ∇v dx+O(ǫ(ξ · η̂)).

Thanks to the strong convergence of uǫ in L2(Rd)d, the above quantity
converges in L2

loc(R
d
ξ) strongly to

(86) (ξ · η̂)
∫

Rd

e−ix·ξ
(
MTd

(
µ(y)∇yφ′m(y; 0)

)
u
)
· ∇v dx.
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Next, we consider the first term of the R.H.S. of (85). After doing integration
by parts, one has
(87)∫

Rd

e−ix·ξ
[
µǫ∆v (uǫ · φ0m,η̂) +

(
(µǫ∇uǫ)φ0m,η̂

)
· ∇v − iµǫ

(
(φ0m,η̂ ⊗ ξ)uǫ

)
· ∇v

]
dx.

In a manner similar to the above arguments, the limit of (87) would be
∫

Rd

e−ix·ξ
[
MTd(µ(y))∆v (u · φ0m,η̂) +

(
σφ0m,η̂

)
· ∇v

]
dx

−
∫

Rd

e−ix·ξ
[
iMTd(µ(y))

(
(φ0m,η̂ ⊗ ξ)u

)
· ∇v

]
dx.

(88)

Now combining (86) and (88) and using the fact

φ′m(y; 0) − iη̂βχ
l
β(y)(φ

0
m,η̂)l

is a constant vector of Cd independent of y, which in turn implies that

∇yφ
′
m(y; 0) = iη̂β∇yχ

l
β(y)(φ

0
m,η̂)l,

we see that χǫ−1TdBǫ
m,η̂(h

ǫ)(ξ) converges strongly in L2
loc(R

d
ξ) to

−i(ξ · η̂)
[
MTd

(
µ(y)η̂β∇yχ

l
β(y)(φ

0
m,η̂)l

)]
kα

̂
(
∂v

∂xα
uk)(ξ)

+MTd(µ(y)) ̂(∆v uk)(ξ)(φ
0
m,η̂)k +

̂
(σlβ

∂v

∂xβ
)(ξ)(φ0m,η̂)l

− iMTd(µ(y))(φ0m,η̂)kξα
̂

(
∂v

∂xα
uk)(ξ).(89)

Step 4. Limit of Bǫ
m,η̂ applied to (61) : By equating the limiting identities

that we have derived in the last two steps, we obtain

(A∗)klαβξαξβ (̂vuk)(ξ)(φ
0
m,η̂)l +

̂
(v
∂p

∂xl
)(ξ)(φ0m,η̂)l

= (̂vfl)(ξ)(φ
0
m,η̂)l − 2

̂
(σlβ

∂v

∂xβ
)(ξ)(φ0m,η̂)l −MTd(µ(y)) ̂(∆v uk)(ξ)(φ

0
m,η̂)k

− i
[
MTd

(
µ(y)∇yχ

l
β(y)

)]
kα

(φ0m,η̂)lξβ
̂

(
∂v

∂xα
uk)(ξ) +MTd(µ(y)) ̂(∆v uk)(ξ)(φ

0
m,η̂)k

+
̂

(σlβ
∂v

∂xβ
)(ξ)(φ0m,η̂)l − iMTd(µ(y))δαβδlk(φ

0
m,η̂)lξβ

̂
(
∂v

∂xα
uk)(ξ).

(90)
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The above equation has to be considered as the localized homogenized equa-
tion in the Fourier space. The conclusion of Theorem 1.1 will follow as a
consequence of this equation.
Step 5. Passage from Fourier space (ξ) to physical space (x) : We note
that the L.H.S. and the R.H.S. of (90) can be written as L(ξ) · φ0m,η̂ and

R(ξ) · φ0m,η̂, respectively, so that we have

[L(ξ)−R(ξ)] · φ0m,η̂ = 0 for m = 1, .., (d − 1).

Observe that, the quantity [L(ξ)−R(ξ)] is independent of m. Varying m =
1, .., (d − 1) and using the fact ξ ⊥ φ0m,η̂, ξ ∈ Rd and {φ01,η̂ · · ·φ0d−1,η̂} forms

a basis of Rd−1, we get

[L(ξ)−R(ξ)] = c(ξ)ξ for some scalar c(ξ).

Therefore, for all test functions w ∈ (L2(Rd))d satisfying ξ · ŵ(ξ) = 0 (i.e.
divw = 0 in Rd ) we also have

[L(ξ)−R(ξ)] · ŵ(ξ) = 0.

Now by using the Plancherel’s theorem, we have
(91)∫

Rd

F−1 [L(ξ)−R(ξ)] (x)·w(x) dx = 0, ∀w ∈ (L2(Rd))d satisfying divw = 0

where F−1 denotes the inverse Fourier transformation.
We easily compute I(x) = F−1 [L(ξ)−R(ξ)] (x) to obtain

Il(x) =

(
−(A∗)klαβ

∂2(vuk)

∂xβ∂xα
+ v

∂p

∂xl

)

−
(
vfl − σl,β

∂v

∂xβ
− (A∗)klαβ

∂

∂xβ
(
∂v

∂xα
uk)

)
in Rd,

which simplifies in

Il =

(
−(A∗)klαβ

∂2uk
∂xβ∂xα

+
∂p

∂xl
− fl

)
v −

(
(A∗)klαβ

∂uk
∂xα

− σl,β

)
∂v

∂xβ
in Rd.

We pose
(92)

F 1
l =

(
−(A∗)klαβ

∂2uk
∂xβ∂xα

+
∂p

∂xl
− fl

)
and F 2

lβ = F 2
βl = −

(
(A∗)klαβ

∂uk
∂xα

− σl,β

)

to write Il in the form

Il = F 1
l v + F 2

lβ

∂v

∂xβ
.

Using (91), it follows from de Rham’s theorem that I is a gradient and fur-
thermore this is true whatever be v ∈ D(Ω). This imposes restriction on
F 1, F 2. In fact, we show using (91) that F 2

lβ = qδlβ and F 1 = ∇q for some

scalar q ∈ L2(Ω) so that I = v∇q + q∇v = ∇(vq).
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Step 5A. To show F 2
lβ = qδlβ : Let us choose v = v0e

inx·ω, where ω is a unit

vector in Rd and v0 ∈ D(Ω) is fixed. Next, we choose w = ψζ,ω ∈ (L2(Rd))d

where for any two constant perpendicular vectors ζ and ω in Rd, ψζ,ω ∈
(L2(Rd))d solves

(93) divψζ,ω = 0 in Rd with ψζ,ω = ζe−inx·ω in Ω, where ζ ⊥ ω.

The existence of such a function ψζ,ω can be shown as follows. Let R0 > 0 be

such that Ω ⊂ B(0, R0) and consider the following boundary value problem

(94)
divψζ,ω = 0 in B(0, R0) \ Ω,
ψζ,ω = 0 on ∂B(0, R0),
ψζ,ω = ζe−inx·ω on ∂Ω.

There exists a solution of (94) (see [15, Page No. 24]) since the boundary
data satisfies the required compatibility condition (recall that we assume
ζ · ω = 0) ∫

∂Ω
ζe−inx·ω · ν dσ =

∫

Ω
(ζ · ω)e−inx·ω dx = 0.

Then extending ψζ,ω by 0 outside B(0, R0) and by ζe−inx·ω in Ω, clearly the
extended function ψζ,ω solves (93).

Now using these v and w in (91), we have
∫

Ω
F 1
l ζl v0 dx+

∫

Ω
F 2
lβ

∂v0
∂xβ

ζl dx+ n

∫

Ω
F 2
lβωβζl v0 dx = 0

and dividing by n and letting n→ ∞ in the above relation, we get

(95)

∫

Ω
(F 2 ω · ζ)v0 dx = 0.

As v0 ∈ D(Ω) is arbitrary, (95) gives F 2 ω · ζ = 0 in Ω. As F 2 is symmetric,
and further using that ω, ζ are arbitrary satisfying ω · ζ = 0, we conclude
F 2
lβ = F 2

βl = qδlβ for some scalar function q ∈ L2(Ω). This means that we
have the relation :

(96) σlβ = qδlβ + (A∗)klαβ
∂uk
∂xα

.

Step 5B. To show F 1 = ∇q : We choose v ∈ D(Ω) and w = ψek,0 with ψek,0
as in (93) with ζ = ek and ω = 0. Then using these v and w in (91) and
using the conclusion from Step 5A, we have

∫

Ω

(
F 1
k v + q

∂v

∂xk

)
dx = 0 for all v ∈ D(Ω),

which implies (F 1
k − ∂q

∂xk
) = 0 for k = 1, .., d or, F 1 = ∇q.
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Step 5C. Using Step 5A and Step 5B in (92), and considering the relation
F 1 −∇F 2 = 0 in Ω, we get the macro balance equation :

(97) −∂σlβ
∂xβ

+
∂p

∂xl
= fl in Ω, l = 1, . . . , d.

Step 5D. In this step, we prove that q = 0 in Ω by using the divergence-free
condition. Indeed, as ∇ · uǫ = 0 in Ω, we have

σǫll = µǫ
∂uǫl
∂xl

= 0 in Ω.

Passing to the limit ǫ → 0, we get

σll = 0 in Ω.

Using this relation in (96) with β = l, we get

(98) (A∗)klαl
∂uk
∂xα

+ qd = 0.

On the other hand, from (6) and (7) we have

(A∗)klαl =

∫

Td

µ(y)∇(χkα + yαek) : ∇(ylel) dy =

∫

Td

µ(y)
∂

∂yl
(χkα + yαek)l dy.

Thus for fixed k, α = 1, . . . , d summing over l, since divχkα = 0 in Y , we
obtain

(99) (A∗)klαl =MTd(µ)δkα.

Using (98) and (99), as div u = 0, we deduce

q = −1

d
(A∗)klαl

∂uk
∂xα

= −1

d
MTd(µ)δkα

∂uk
∂xα

= 0.

Finally, the macro constitutive law follows as a consequence from (96) :

σlβ = (A∗)klαβ
∂uk
∂xα

.

Step 5E. Since q = 0, we deduce from Step 5B that F 1 = 0 and from (92)
we get the following homogenized Stokes system satisfied by u, p :

(100)

−(A∗)klαβ
∂2uk

∂xα∂xβ
+
∂p

∂xl
= fl in Ω for l = 1, .., d.

div u = 0 in Ω

u = 0 on ∂Ω.

This completes the proof of Theorem 1.1.
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