
HAL Id: hal-01522252
https://hal.science/hal-01522252

Submitted on 13 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating realistic simulation engines within the
MORSE framework

Arnaud Degroote, Pierrick Koch, Simon Lacroix

To cite this version:
Arnaud Degroote, Pierrick Koch, Simon Lacroix. Integrating realistic simulation engines within the
MORSE framework. International Conference on Intelligent Robots and Systems (IROS), Oct 2016,
Daejeon, South Korea. pp.2723 - 2728, �10.1109/IROS.2016.7759423�. �hal-01522252�

https://hal.science/hal-01522252
https://hal.archives-ouvertes.fr


Integrating Realistic Simulation Engines
within the MORSE Framework

Arnaud Degroote1, Pierrick Koch2,3 and Simon Lacroix2,4

Abstract— The complexity of robotics comes from the tight
interactions between hardware, complex softwares, and envi-
ronments. While real world experience is the only way to assess
the efficiency and robustness of a robotics system, simulations
help to pave the way to actual experiments. But an overall
robotics system requires simulations at a level of realism which
no holistic simulator can provide, given the wide spectrum
of disciplines and physical processes involved. This paper
presents a way to integrate various simulators, in a distributed,
scalable and repeatable way, to benefit from their different
advantages and get the best fitted and accurate simulation for
a given robotics system. It depicts how the MORSE open-source
robotics simulator is adapted to comply with the High Level
Architecture standard, thus allowing the reuse of numerous
dedicated realistic simulators. Two examples of the integration
of simulators are provided.

I. INTRODUCTION

As complex systems, robots integrate a variety of sub-
systems that rely on a large spectra of physical processes.
Dynamics is of course the primal concern, and it varies
a lot depending on the environment and kind of robots
considered: rigid-body mechanics, fluid dynamics or wheel-
soil interactions for instance. Perception implies optics, elec-
tromagnetism, acoustics, also depends on the kind of sensors
used and the considered environments. Besides these robot-
related physical processes, the environment itself is defined
by a series of properties and dynamic processes, that either
pertain to physics (e.g. atmospheric phenomena that may
impact flight mechanics or perception) or are related to other
actors governed by specific models (e.g. crowd dynamics,
road traffic, humans interacting with the robots).

Robotics simulators developed within the robotics commu-
nity are far from integrating this whole spectrum of processes
and associated models. Their design is mostly driven by other
concerns, such as real-time property, compliance with the
software architecture within which the functions to evaluate
are integrated, ease of deployment and use. They are mostly
used to test, evaluate or validate the integration of a series
of functions, and the realism of the simulated processes is
often not an important concern.

While such simulators are very beneficial to robotics
developments, their lack of realism does not properly fill
the gap between simulations and actual tests: there is a
growing interest in exploiting more realistic models within
robotics simulators. The literature abounds with specialized
simulators, that focus on a given physics phenomenon:

1Institut Supérieur de l’Aéronautique et de l’Espace, 31055 Toulouse,
France. arnaud.degroote at isae.fr

2CNRS, LAAS, 7 av du colonel Roche, F-31400 Toulouse, France;
{firstname.lastname} at laas.fr

4Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
3Univ de Toulouse, LAAS, F-31400 Toulouse, France

the issue of integrating such simulators within a robotics
simulator, in a composable and reusable manner, pertains to
the simulator architecture.

This paper presents a way to tackle this integration issue,
in a distributed (and also scalable) way. The current work is
based on the existing open-source robotics simulator Morse
[1] and the High Level Architecture standard (HLA, [2]).
In the following section, we discuss the general software
architecture of robotics simulators, and in particular, the
architecture of Morse. Section III provides an overview of the
HLA standard and the evolution of the Morse architecture
to comply with this standard, and section IV presents two
illustrations of distributed simulations deployement using
Morse and HLA. A discussion concludes the paper.

II. ROBOTICS SIMULATORS

Robotics simulators such as Gazebo, V-REP, or Morse rely
on a similar architecture: they are built upon one (or more)
classic physics engine such as ODE or Bullet, and a graphical
engine to edit the environment and simulate vision and depth
sensors. Simulated sensors and controllers are embedded in
a component / plug-in system. All these components run
in the same process, using multiples threads for parallel
computations 1. While such a design allows to test in real
time the integration of different robotics components and
rather ”high-level” algorithms, it fails to scale along two
dimensions:

• The increase in the number of simulated robots;
• The augmentation of the realism of the simulated sen-

sors, actuators and environments.
Besides performance limitations, integrating an existing

specialized simulation may be difficult in practice, as existing
simulators usually do not provide the interfaces defined by
the component / plug-in system. Also, even if several physics
engines are supported, only one can be used for a given
simulation run: this is an issue for fine-grained simulation of
teams of heterogeneous robots for instance, that may include
aerial, marine and ground robots.

The Morse simulator relies on the open-source modeller
Blender and the physics engine Bullet. This tight integration
within Blender allows to easily construct realistic robots and
environments. Blender being fully scriptable in Python, one
can import scenes from third party environment models, e.g.
multi-layered terrain maps provided by geographic agencies
or companies. As it is usual for robotics simulators, Morse
provides a component system, allowing to easily integrate
new sensors and actuators on-board the simulated robot.

1In Gazebo, there are in fact two processes: a viewer allowing interactions
with the simulation gzclient, and gzserver, the simulator itself



init()

main()

foreach sensors

foreach actuators

foreach datastream manager do
run datastream action

end
clock.update()
service.action()
foreach request manager do

process requests
end
multinode.synchronize()

sensor default action
foreach sensor output modifier do

alter(data)
end
foreach sensor output function do

send(data)
end

foreach actuator input function do
receive(data)

end
foreach actuator input modifier do

alter(data)
end
actuator default action

data

data

E
x
te
rn
al

C
li
en
t
S
of
tw

ar
e

(c
om

m
u
n
ic
at
io
n
v
ia

m
id
d
le
w
ar
e)

Fig. 1. Morse main loop overview

But Morse goes further in the component decomposition
and the separation of concerns, by providing modifiers and
datastream handlers:

• Modifiers are pieces of code allowing to change slightly
the behaviour of a sensor, from simple data type con-
version to arbitrarily complex noise models.

• Datastream handlers adapt the data to robotics middle-
ware specific format, for both data-oriented interfaces
and service-oriented interfaces. This feature allows to
transparently use Morse with a variety of robotics archi-
tectures, such as standard ROS, GeNoM-based, Orocos-
YARP, Orocos-ROS, and MOOS. Robots running differ-
ent architectures can hence be jointly simulated – which
proved to significantly ease multiple partners integration
in collaborative projects [1].

Figure 1 illustrates how the different Morse components
interact during one simulation loop. Simulation scenes, in-
cluding the components to use, their configurations and
interactions are described using the Builder API, an internal
Domain-Specific Language (DSL) based on Python. This
API hides the Blender complexity to users, but also allows
to dynamically program a scene, thus easing robustness tests
of algorithms in various situations, e.g. by triggering events
in the environment according to specified scenarios.

III. DISTRIBUTED SIMULATIONS USING HLA

To augment the level of realism of a robotics simulator
using additional specialized simulators, or to augment the
number of robots involved in a simulation, the only way is
to distribute the simulation processes over a network of CPUs
– which is largely used in more mature industries, such as

space [3] or aeronautic [4] industries, because it allows to
run precise and realistic simulations.

Distributed simulations raise the issue of synchronization,
as the simulators deployed on the various CPUs have their
own computation requirements and scheduler, or the CPUs
may differ – not to mention the delays induced by the
network. Besides, one needs tools to allow the exchange of
information between the simulators. This is made possible
thanks to the High Level Architecture standard, which de-
fines solutions to the issues of information exchanges and
time management between the simulators.

A. Overview of the High Level Architecture (HLA)

HLA (IEEE-1516) [5] is an open international standard,
developed by the Simulation Interoperability Standards Or-
ganization (SISO) and published by IEEE. In the HLA
terminology, a federate is an HLA compliant simulator,
while a federation is the set of simulators connected for
one distributed simulation. HLA defines an API covering the
different needs for distributed simulations, allowing to:

• model the content of one simulator (the Simulation
Object Model or SOM), and what is exchanged in the
federation (the Federation Object Model or FOM) (i.e.
the set of objects exchanged in a given simulation);

• manage the federation itself (simulator entering or going
out the federation), and the objects that each federate
manages;

• dynamically exchange objects update between federates
and interactions (interactions as explicit actions between
federates, at some discrete time);

• control time following different strategies.
Various implementations of this standard are available

(e.g. [6]): these RunTime Infrastructures can be viewed as
simulation middlewares (not to be confused with robotics
middleware). One of the great benefits of using HLA is
that a wide variety of specific simulators are compliant with
the interfaces it defines. In robotics, there has been a few
attempts to develop distributed simulation suites using HLA
[7], [8], [9], but none became widely used yet.

B. Time management in HLA

Time management is particularly important, as it is the
core of the correctness of the simulation. HLA defines two
kinds of strategies for messages ordering:

• Receive Order strategy. This strategy basically sends
messages to federates as soon as they are emitted. This
strategy does not guarantee correctness or repeatability
of the simulation, but allows the interactions with real
systems. It is a ”real” time mode.

• Time Stamp Order (TSO) strategy. In this strategy,
senders assign a timestamp to each messages. The HLA
implementation guarantees to deliver messages to each
federate following the timestamp order. This ensures
that the distributed simulation is repeatable and allows
proper analyses.

To support this second strategy, a federate relies on the
Time Management API described in the HLA standard.
Each federate must explicitly request to the HLA RunTime
Infrastructure (RTI) an advance of its logical time (LT) and



Federate RTI

LT = 10

LT = 20

TAR(20)

RAV (14)

RAV (17)

TAG(20)

Fig. 2. Typical execution sequence.

waits from the RTI that this advance is granted (through a
Time Advance Grant (TAG) message). Depending on the kind
of federate, time advance can be requested through:

• Time Advance Request (TAR) for time-stepped federates;
• Next Event Request (NER) for event-stepped federates.
In one federation, the two methods can be used by

different federates. The TAR mechanism, used for the Morse
simulator, illustrated by a typical sequence for a time-stepped
federate in Figure 2, consists of the following:

1) A federate sends a TAR(T ) message to the RTI
2) The RTI delivers, in order, the TSO messages which

timestamp is ≤ T
3) The RTI sends the TAG(T ) when it can guarantee that

all TSO messages have been delivered
4) The federate can now advance its internal time, and

compute a new simulation loop.

C. Adaption of Morse to HLA
We present here how Morse has been adapted for dis-

tributed heterogeneous simulations using the standard pro-
tocol HLA, allowing in particular a more formal and guar-
anteed way to deploy heavy simulations. The HLA Object
Management API is analogous to publish-subscribe API’s
exposed by most middlewares for data exchanges, where:

• Update Attribute Value (UAV) allows to publish new
data for an object (as port in YARP or topic in ROS);

• the Reflect Attribute Value (RAV) callback informs the
interested federate about these new information;

• Request Attribute Value Update can be used to request
the new or last value for an object.

To integrate HLA in Morse, it is natural to handle HLA as
a standard datastream protocol and not as a specific custom
mode. In particular, this allows to reuse all the existing
infrastructure of Morse, both to build and run the simulations.
This also leaves the possibility to adopt another technology
or standard in the future, without breaking any other part of
Morse.

1) Time management: As already mentioned, a key point
for any distributed heterogeneous simulation is the time
handling. Thanks to the reasonably simple design of Morse
(single threaded loop as shown in 1), handling time according
the HLA rules is relatively easy. The synchronization pattern
can be implemented in the HLA specific datastream action,
as shown in Algorithm 1.

As a consequence, the main loop is basically blocked
until the RTI yields the authorization to advance time. Then,
Morse executes normally the rest of the loop. Sensors will

Algorithm 1 HLA datastream action handler
1: request time progression sending a Time Advance Re-

quest
2: granted ← False
3: while not granted do
4: On Reflect Attribute Value reception : store received

update
5: On Time Advance Grant reception : granted ← True
6: end while

execute their code, and publish if needed the information us-
ing an Update Attribute Value with the right timestamp. The
actuators will decode the last stored update of information
and process them.

2) Complex interactions between simulators: Time man-
agement allows to export sensors computed by Morse to
other simulators, and to get actuators driven by external
simulators. But this does not enables to grab the sensor
computation from another simulator or have an actuator
driven by Morse with answers computed by an external
simulator. For that purpose, we introduce the notion of
ExternalObject: this is an object which can read streams
for both input or output. Standard loop execution for such
objects is described in Algorithm 2. No real new concept
is integrated here, it is just a generalization of the existing
Sensor or Actuator concepts in Morse. The only difficult part
was to modify the builder API to be able to specify to which
direction a modifier or a datastream handler is applied to an
object.

Algorithm 2 Action of an ExternalObject
1: for all input datastream do
2: new data, data ← read(datastream)
3: end for
4: if new data then
5: for all input modifier do
6: alter(data)
7: end for
8: end if
9: Custom Action (can be void)

10: for all output modifier do
11: alter(data)
12: end for
13: for all output datastream do
14: write(data)
15: end for

These two mechanisms allows Morse to inter-operate with
various other simulators through HLA. Thanks to the simple
design of Morse, the process was relatively easy, with less
than 500 lines of code modified to support a large part of the
HLA possibilities and the new object kind ExternalObject.

IV. ILLUSTRATIONS

We now illustrate the presented architecture with three
different instantiations. The two first examples exhibit inter-
operability between Morse and two very different simulators,
one based on a graphical modeling tool, and the other based



on a plain C++ library. The third example shows how the
HLA architecture allows to better handling big simulation
with numerous robots. Lastly, we briefly discuss the possible
bottlenecks of the architecture, and ways to overcome them.

A. Interaction between Morse and Ptolemy
Ptolemy II [10] is an open-source modeling and simula-

tion tool for heterogeneous systems, developed at the UC
Berkeley. It provides different models of computations such
as continuous time or discrete events, allowing to model
different aspects of a cyber-physical system. HLA actors to
allow the interaction of the Ptolemy II model with other
simulators have been recently proposed in [11].

Here, we want to design a command law for an Unmanned
Aerial Vehicle to keep the drone at a constant height over
the ground. Ptolemy is used here to model both the physical
model of the quadrotor, and the cascading command law.
Morse is used to simulate the environment and the drone’s
sensors, the drone being equipped of a radar altimeter
(allowing to retrieve the distance to the ground) and a GPS.
This model is showed in Figure 4: the model exports its
position (x, y, z) through HLA, and receives a value Height
from altimeter, and the drone position from the GPS.
Various parameters related to the federation are configured
in the HLA manager named quad1. On the Morse side,
this scenario is described by the builder script shown in
figure 3. Morse receives the position (x, y, z) from Ptolemy,
processes it through read pose, and then passes it to
the teleport actuator2. Whereas the radar computes the
height to the ground, and processes it before sending it
through the write height method. The script looks like a
nominal use of Morse datastream: the only HLA specificity
is in the configuration line 16, to specify the file’s location
describing the Federation Object Model, and the specific
federation name. The required Python conversion scripts are
less than 20 lines each. This example is interesting for the
following reasons:

• it validates the integration of several time management
methodologies in the same federation (and the correct-
ness of the Morse implementation), since Ptolemy uses
here the NER approach while Morse use TAR,

• it shows how easy it is to define a HLA scenario for
Morse,

• and it demonstrates the benefits of a HLA-distributed
simulation, allowing to easily reuse a model defined in
a high-level graphical language.

Note that a very similar assembly would be possible using
the closed-source Matlab/Simulink and its associated HLA
toolbox 3.

B. JSBSim and Morse
Morse includes simplistic flight models for quadrotors

or helicopters. These models are good enough for testing
integration of high-level algorithms, but are far from allowing
the testing and validation of flight control laws. We present
here how Morse can be coupled to the realistic Flight
Dynamic Model (FDM) JSBSim [12], so as to be able to

2The teleport actuator changes the position of a robot in one step.
3http://www.forwardsim.com/products/hla-toolbox

1 robot = Quadrotor()

2

3 teleport = Teleport()

4 robot.append(teleport)

5 teleport.add_stream(’hla’, ’read_pose’)

6

7 radar = RadarAltimeter()

8 radar.add_stream(’hla’, ’write_height’)

9 robot.append(radar)

10

11 gps = GPS()

12 radar.add_stream(’hla’, ’write_pos’)

13 robot.append(gps)

14

15 env = Environment(’...’)

16 env.configure_stream_manager(’hla’, fom = ’...’,

17 name = ’Morse’, federation = ’morse_ptII’)

1

Fig. 3. Morse builder script to describe a HLA scenario

Fig. 4. A Ptolemy Actor modeling a control-law connected to the external
world through HLA

test flight control laws. JSBSim includes fine aerodynamic
model, several atmospheres and wind models, and numerous
propulsion and engines models. It is already used in flight
simulators such as FlightGear or OpenEagles, and is also
exploited to test autopilot systems, such as PixHawk or the
Paparazzi system. JSBSim provides a C++ interface under
a dynamic library, so it is possible to use it directly into a
Morse component. But this kind of integration is generally
not possible, depending on the specialized simulator archi-
tecture, and it is not scalable. A better way to proceed is to
develop in C++ a HLA wrapper for JSBSim, which makes it
possible to couple JSBSim and Morse – and actually with any
other HLA-compliant simulator. The development of such
node is not very complex, the wrapper we developed is less
than 1000 lines long.

Figure 6 depicts the interactions between an Orocos soft-
ware architecture and a Morse/JSBSim integrated simulator.
Orocos components communicates with the Morse simulator
using the YARP middleware, while the Morse core interacts
through HLA with the JSBSim node, sending commands
(coming directly from Orocos, or after some computation
of a Morse actuator), and receiving pose and velocity up-
dates. These values can then be used to simulate on-board
sensors output (e.g. IMU). The figure 5 provides a simplified
configuration script for Morse of such a scenario. We can
retrieve classic sensors (line 13 and 17), but also some
ExternalSensor (line 21) and ExternalActuator (line 8) (hence
we configure both input and output stream). The presence of
the geodetic modifier (line 5) is worth noticing: JSBSim, as
most of FDMs, is working in geodetic coordinates, while
Morse is working internally in the Local Tangent Plane

http://www.forwardsim.com/products/hla-toolbox


1 robot = Quadrotor()

2

3 teleport = Teleport()

4 robot.append(teleport)

5 teleport.alter(’geodetic’)

6 teleport.add_stream(’hla’, ’AircraftPoseInput’)

7

8 ctrl = DirectControl()

9 robot.append(ctrl)

10 ctrl.add_stream(’yarp’, direction=’IN’)

11 ctrl.add_stream(’hla’, ’AircraftCtrl’, direction=’OUT’)

12

13 pose = Pose()

14 robot.append(pose)

15 pose.add_stream(’yarp’)

16

17 imu = IMU()

18 robot.append(imu)

19 imu.add_stream(’yarp’)

20

21 jsbsim_mag = JsbsimMagnetometer()

22 robot.append(jsbsim_mag)

23 jsbsim_mag.add_stream(’yarp’, direction=’OUT’)

24 jsbsim_mag.add_stream(’hla’, ’MagnetometerInput’, direction=’IN’)

25

26 env = Environment(’sandbox’)

27 env.properties(longitude=1.26, latitude=43.26, altitude=130.0)

28 env.configure_stream_manager(’hla’, name=’Morse’,

29 fom=’aircraft.fed’, federation=’morse_fdm’)

30 JSBSimExporter(env).dump()

1

Fig. 5. A simplified Morse-JSBSim scenario builder script

coordinate system. The geodetic modifier allows to do the
conversion between the two coordinates systems, based on
the properties identified line 27. Of course, in this case, it
is also possible to do the conversion in the JSBSim C++
wrapper, but it would break the common usage in FDMs.
Lastly, the line 31 ”analyses” the rest of the builder script,
and generates a parameter file for the JSBSim node, to share
common information, such as initial position, model to use,
and timestep. This capacity to generate automatically these
parameters, due to the fact that builder DSL is based on the
Python programming language, eases a lot the deployment
of distributed simulations.

This coupling between Morse and JSBSim allows to sim-
ulate, test and validate in the same environment a complete
aerial robot that comprises an autopilot to handle flight
control and higher level processes, e.g. exteroceptive sensors
data processing and mission re-planning.

C. Multiple robot simulations

Previous examples demonstrate the use of HLA to couple
heterogeneous simulators to allow more realistic simulation.
We now describe how HLA can be used to scale the
simulation for scenarios with a large number of robots.

The idea here is to distribute the simulation between
several Morse nodes, each node handling only a subset of
robots (and their associated sensors and actuators). Nodes
are synchronised through HLA, by exchanging the robot
positions 4. This guarantees that all nodes, at each logical
instant, have the same view of the global simulation, and so,
typically, that exteroceptives sensors perceive a correct and
up-to-date state of the world (i.e. the other robots present
in the environment). The overall configuration is depicted in
Figure 7. The same mechanism can also be used for hybrid

4Hence the call to multinode.synchronize() in the main() of
the Morse loop shown Figure 1.

Simulation world

Real world

J
S
B
S
im

MORSE

H
L

A
A

d
ap

te
r

F
ee

t
↔

ge
o
d

et
ic

m
o
d

ifi
er

Morse core components

YARP Adapter

OROCOS components

engine control

pose, velocity

im
u

,
m

ag

co
n
tr

ol

Fig. 6. An Orocos-based robot simulation with Morse and JSBSim. The
red area denotes the simulation world, where data are exchanged through
HLA. The green area denotes the interaction between the simulation and
real software to be tested, using a robotic middleware (here YARP).

Simulation world

RTIG

Morse node A Morse node B Morse node C

Robot1 Robot2 Robot3 Robot4

pose robot{1, 2}
pose robot{3, 4}

pose robot3 pose robot{1, 2, 4}

pose robot4

pose robot{1, 2, 3}

Robot1 softwares Robot2 softwares Robot3 softwares Robot4 softwares

ROS messages YARP messages ROS messages Mavlink messages

Fig. 7. A Morse multinode instantiation with four robots on three different
nodes. Each robot software layer interacts with Morse using its specific
middleware. The red area denotes the simulation world, where data are
exchanged through HLA. The green area denotes the interaction between
the simulation and real software to be tested.

simulation, i.e. in which real robots interact with simulated
robots – this specific case imposing that the simulation runs
in real-time.

The HLA multi-node mode supersedes the historical in-
house multi-node socket protocol developped for Morse. It
can handle more complex scenarios (such as ’as fast as pos-
sible’ simulation) and provides guarantee on the correctness
of the distributed simulation. Moreover, through the reuse of
a standard architecture, it eases the deployment and debug
of large multi-robots simulations.

D. On performance

One possible performance bottleneck in such distributed
scenario is the volume of data exchanged on the network.
HLA designers took this in consideration, and defined the
DDM (Data Distribution Management). The aim of DDM
API is to limit and control the volume of data exchanged
between federates. It allows to define multi-dimensional
coordinates system, and so to register and grab informa-
tion only from specific geometric zones. [13] reviews and
analyzes (from a performance point of view) most of the
approaches proposed to implement this API.



Another possible issue is the centralized aspect of the
RTIG. Several proposals has been made, such as a hi-
erarchical federations approach [14] or a bridge system
[15] or surrogates [16] between heterogeneous federations.
Unfortunately, none of these solutions has yet reached the
HLA standard.

V. DISCUSSION

We have presented an approach allowing the existing
Morse simulator to inter-operate with various other special-
ized simulators / tools, thus fostering the deployment of
more realistic simulations in robotics. It demonstrates the
versatility architecture of Morse, which clearly separates
components, modifiers, and middleware interfaces. The use
of a DSL to describe simulation scenarios also eases the
deployment of such simulations. The use of the HLA stan-
dard is very beneficial, as it is a heavily tested standard
for distributed simulation (in space, aeronautic, defense, . . .
communities). It allows in particular the reuse of mature
tools, in a distributed, scalable and repeatable way. Moreover,
the use of HLA also allows the deployment of hybrid
simulations.

Examples presented in Section IV illustrate the different
possibilities of the new architecture, mainly interoperability
with heterogeneous simulators, and scalability over large
simulations. No performance analysis has been conducted.
There is no equivalent simulation model in a homogeneous
centralized framework for the two first ones, and not efficient
enough hardware to execute large scale multi-robot simula-
tions. The essential point is that HLA guarantees a sound
state of the simulation, independently of the underlying
simulators performance. The implementation of the presented
architecture is integrated in the current implementation of
Morse 5, the JSBSim part is in a specialized repository 6.

Future work will consist in consolidating the current
implementation and extending the realism of simulations by
integrating additional specialized simulators (e.g. an atmo-
sphere simulator for autonomous soaring developments, or
a traffic simulation for smart vehicle development). Another
important point is the user-interface, which should ease the
definition and deployment of distributed simulations. Among
the longer term issues that remain to be tackled, the two
following are worth to consider:

• The definition of simulation descriptions in order to
provide generic interfaces and interoperability between
simulators. Indeed, while HLA defines a grammar, it
does not define the vocabulary exchanged between
federates. To provide real interoperability between sim-
ulators, this vocabulary (the Federation Object Manage-
ment) must be generic and descriptive enough. This
model problem is still open, and should be discussed
within the community.

• The maintenance of the consistency of the environment
models that are distributed over an HLA federation: e.g.
when ruts are caused by robot traversing a terrame-
chanics terrain model, the terrain appearance must be
updated accordingly for the vision / Lidar simulators.

5https://github.com/morse-simulator/morse
6https://github.com/adegroote/morse-jsbsim

Solving this mainly pertains to the ability to maintain a
consistent soil model and propagate its variations to the
visual layer: HLA could easily handle the propagation
of such changes.

Recently, a consortium of industrials and academics devel-
oped Functional Mockup Interface (FMI), a new standard to
ease the interoperability between simulators 7. This standard
is relatively orthogonal to HLA and focuses more on inter-
faces between simulators, by giving standardized access to
simulation model equations. It is even possible to combine
them [17], using HLA technologies as a master (”scheduler”)
for the different simulators exporting FMI interfaces. Morse
interoperability with the FMI standard will be an interesting
point to investigate.

REFERENCES

[1] G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg,
P. Koch, C. Lesire, and S. Stinckwich, “Simulating Complex Robotic
Scenarios with MORSE,” in SIMPAR, 2012.

[2] F. Kuhl, R. Weatherly, and J. Dahmann, Creating computer simulation
systems: an introduction to the high level architecture. Prentice Hall
PTR, 1999.

[3] M. R. Reid and E. I. Powers, “An evaluation of the high level archi-
tecture (HLA) as a framework for NASA modeling and simulation,”
in 25th NASA Software Engineering Workshop, Goddard Space Flight
Center, Greenbelt (USA), 2000.

[4] J.-B. Chaudron, D. Saussié, P. Siron, and M. Adelantado, “Real-time
aircraft simulation using HLA standard,” in IEEE AESS Simulation in
Aerospace 2011, Toulouse (France), June 2011.

[5] “IEEE standard for modeling and simulation (M&S) high level ar-
chitecture (HLA)-IEEE std 1516-2000, 1516.1-2000, 1516.2-2000.
Institute of Electrical and Electronics Engineers, New York,” 2000.

[6] E. Noulard, J.-Y. Rousselot, and P. Siron, “CERTI, an Open Source
RTI, why and how,” in Spring Simulation Interoperability Workshop,
2009, pp. 23–27.

[7] L. Winkler and H. Wörn, “Symbricator3D – a distributed simulation
environment for modular robots,” in Intelligent Robotics and Applica-
tions. Springer, 2009.

[8] L. Xiang, L. Xunbo, and C. Liang, “Multi-disciplinary modeling and
collaborative simulation of multi-robot systems based on HLA,” in
International Conference on Robotics and Biomimetics, 2007.

[9] P. Nebot, J. Torres-Sospedra, and R. J. Martı́nez, “A New HLA-
Based Distributed Control Architecture for Agricultural Teams of
Robots in Hybrid Applications with Real and Simulated Devices or
Environments,” Sensors, vol. 11, no. 4, pp. 4395–4400, April 2001.

[10] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs,
Y. Xiong, and S. Neuendorffer, “ Taming heterogeneity - the Ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[11] G. Lasnier, J. Cardoso, P. Siron, C. Pagetti, and P. Derler, “Distributed
Simulation of Heterogeneous and Real-Time Systems,” in Proceedings
of the 2013 IEEE/ACM 17th International Symposium on Distributed
Simulation and Real Time Applications, Washington, DC, USA, 2013.

[12] J. S. Berndt, “JSBSim: An open source flight dynamics model in
C++,” in AIAA Modeling and Simulation Technologies Conference and
Exhibit, Providence, Rhode Island. Citeseer, Aug. 2004.

[13] C. Dzermajko, “Performance comparison of data distribution
management strategies in large-scale distributed simulation,” Master’s
thesis, University of North Texas, Denton, Texas, 2004. [Online].
Available: http://digital.library.unt.edu/ark:/67531/metadc4524

[14] W. Cai, S. J. Turner, and B. P. Gan, “Hierarchical federations: an
architecture for information hiding,” in Workshop on Parallel and
Distributed Simulation. IEEE Computer Society, 2001.

[15] B. Bréholée and P. Siron, “Design and Implementation of a HLA Inter-
federation Bridge,” in European Simulation Interoperability Workshop,
Stockholm (Sweden), 2003.

[16] M. W. Yoo and T. G. Kim, “Design and implementations of surrogates
for interoperation of hla federations,” in Proceedings of the 2009 SISO
European Simulation Interoperability Workshop. Citeseer, 2009.

[17] M. Awais, P. Palensky, A. Elsheikh, E. Widl, and S. Matthias, “The
high level architecture RTI as a master to the functional mock-up in-
terface components,” in Computing, Networking and Communications
(ICNC), 2013 International Conference on, Jan 2013, pp. 315–320.

7https://www.fmi-standard.org

https://github.com/morse-simulator/morse
https://github.com/adegroote/morse-jsbsim
http://digital.library.unt.edu/ark:/67531/metadc4524
https://www.fmi-standard.org

	Introduction
	Robotics Simulators
	Distributed simulations using HLA
	Overview of the High Level Architecture (HLA)
	Time management in HLA
	Adaption of Morse to HLA
	Time management
	Complex interactions between simulators


	Illustrations
	Interaction between Morse and Ptolemy
	JSBSim and Morse
	Multiple robot simulations
	On performance

	Discussion
	References

