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Classification of Outdoor 3D Lidar Data Based on
Unsupervised Gaussian Mixture Models

Artur Maligo, Simon Lacroix

Abstract—3D point clouds acquired with lidars are an im-
portant source of data for the classification of outdoor envi-
ronments by autonomous terrestrial robots. We propose a two-
layer classification model. The first layer consists of a Gaussian
mixture model. This model is determined in a training step in an
unsupervised manner, and classifies into a large set of classes. The
second layer consists of a grouping of these classes. This grouping
is determined by an expert during the training step, and leads to a
smaller set of classes that are interpretable in a considered target
task. Because the first layer relies on unsupervised learning,
manual labelling of data is not required. Supervision is only
necessary for the second layer, and in this case is assisted by the
classes provided by the first layer. The evaluation is done for two
datasets acquired with different lidars and possessing different
characteristics. It is done quantitatively using one of the datasets,
and qualitatively using another. The system design follows a
standard learning procedure with a training, a validation and a
test steps. The operation follows a standard classification pipeline.
The system is simple, with no requirement of pre-processing or
post-processing stages.

Note to practitioners. The classification model is a predictive
model and can be used to classify new data. An implementation
of the approach would consist in: (a) data acquisition; (b)
composition of the learning datasets; (c) feature extraction,
unsupervised training and supervised grouping for a few different
systems to be tested; (d) validation consisting of a qualitative,
visual inspection of the results of the tested systems; (e) selection
of the system which performed the best; (f) runtime operation
with the selected system. Applications of our system include
terrain traversability analysis, rapid production of an operational
semantic model in a case of search and rescue, reference in
a comparison of different classification systems, labelling of a
dataset, or equivalently, the production of a ground-truth.

I. INTRODUCTION

ERCEPTION is a key requirement for terrestrial au-
tonomous mobile robots operating in outdoor environ-
ments. In particular, the processing of 3D point clouds ac-
quired with lidars enable robots to build environment mod-
els, upon which various processes can be performed, such
as traversability analysis [1], object recognition [2], scan
registration, place recognition [3] and others involving data
association. Semantic models, in this context, are especially
interesting because they encode qualitative information, and
thus provide to a robot the ability to reason at a higher level
of abstraction.
At the core of a semantic modelling system, lies the capacity
to classify the sensor observations acquired from a target scene
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[4]. The challenges faced arise, firstly, from the difficulty of
modelling the variability encountered in outdoor environments,
which contain elements of all shapes and scales, possibly
cluttered together [5], [6]. Secondly, the manner in which
scene elements are sampled by a lidar depends on their
position relatively to the sensor, on occlusions, and on the
characteristics of the lidar. A classification system should be
robust with respect to these challenges.

Although supervised learning may be employed in the
classification [7], [8], it is not scalable with respect to the
amount and complexity of the data, due to the necessity
of manual labelling by a human domain expert. A different
approach is to apply unsupervised learning, which overcomes
this necessity because it is able to detect the classes that are
naturally represented in the data.

In this work, we propose a two-layer classification model.
The first layer consists of a Gaussian Mixture Model (GMM).
This model is determined in a training step in an unsupervised
manner, and classifies into a large set of classes. The first layer
effectively offers an intermediary classification, and for this
reason we use the term intermediary to indicate the elements
in this layer. The second layer consists of a grouping of the
intermediary classes. This grouping is determined by an expert
during the training step, and leads to a smaller set of classes
that are interpretable in a considered target task. The second
layer provides the final classification, and for this reason we
use the term final to indicate the elements in this layer.

Because the intermediary layer relies on unsupervised learn-
ing, manual labelling of data is not required. Supervision is
only necessary for the final layer, and in this case is assisted
by the classes provided by the intermediary layer. The two-
layer model is able to separate the factors that influence the
classification. Data-oriented factors, that is the sensor and
environment characteristics, are abstracted by the intermediary
layer. The final layer, in turn, introduces the task-oriented
factors, that is, it gives classes a semantic interpretation. The
full classification model is a predictive model and can be used
to classify new data.

We evaluate our method on two datasets acquired with
different lidars and possessing different characteristics. We
evaluate it quantitatively with the first set, and qualitatively
with both sets. Our system delivers consistent results, illus-
trating its generic nature and capacity of detecting the relevant
classes in a scene.

In section II, we review the related work. Section III
presents the main concepts of our approach and provides
details about its implementation. We then introduce the ex-
perimental setup in section IV, and evaluate our approach in



section V. The paper ends in section VI with a short discussion
and pointers to future work.

II. RELATED WORK
A. Classification Element

The classification element is the element being classified. It
can be a 3D point, a segment, a voxel, or another structure.
The choice of the classification element is linked to the type
of environment model to be built.

In pointwise classification, classification is applied directly
to 3D points [5], [7], [9]. Only local information, that is
information about the neighbourhood of a point, is used
for classification. Therefore, no assumptions regarding the
segmentation of the points are made, making this approach
agnostic with respect to shapes.

Some approaches apply a segmentation process on the
points and then use the segments as classification targets [2],
[6], [10]. This permits the use of global information in the
classification, i.e. information about the whole object. This
approach allows for a richer description of objects, but it
introduces the constraint of dealing with all the variety of
shapes — and the need to define of a segmentation process
that yields segments belonging to a single class, which is a
hard problem.

There are methods that consider a more specific form of
segments: voxels [8], [11]. In these works, points are grouped
into voxels of adaptive sizes, then a subsequent segmentation
step is applied, resulting in super-voxels, which are the targets
of classification.

B. Learning

Supervised learning is frequently applied in 3D data clas-
sification. A comparison is presented in [5]. [9] uses linear
classifiers, [2] uses a SVM, [7] uses a GMM and [8], [12]
use a CRF. The GMM used in [7] is supervised, with a fixed
number of Gaussian components for each class.

Supervised learning has the disadvantage of requiring man-
ual labelling of the dataset, hardly applicable if the amount
of data is large, or if the process of labelling is complex.
Moreover, in difficult cases, where the considered classes are
not well represented in the feature space, solutions tend to rely
on more complex models, although these might not provide
the most natural way of approaching the problem.

The use of unsupervised learning is relatively less common.
The work of [6] presents a method where 3D points are
segmented and the resulting segments are used for the un-
supervised discovery of classes. [13] uses online clustering to
incrementally learn classes, based on segments of a triangular
mesh. In x[14], an unsupervised method based on range image
features is used to generate a set of words, which are in turn
used to replace similar regions of a map to compress its size.
The work of [3] applies k-means clustering to range image
features in order to assist in the place recognition problem.

In unsupervised learning, no classes are imposed, which
leaves the model free to find the patterns that can be encoun-
tered in the data. A disadvantage is that the resulting classes
do not necessarily yield an immediate semantic interpretation,
and for this reason are not readily useful.

C. Scale

Classification is performed on a feature vector, resulting
from a feature extraction process [15]. When 3D data is
considered, scale arises as an essential factor in this process.

Considering pointwise classification, a standard method is,
given a target point, to take all points lying inside a spherical
support region centred around it, and use these in the feature
computation [3], [5], [7]. The specification of the sphere radius
defines a scale of analysis. This method is not efficient when
the classes present in the environment are characterized by
different scales.

To overcome the problem mentioned above, multi-scale
methods have been proposed. In [16], an adaptive process is
performed: the radius of the support region is chosen based
on the shape of the neighbourhood. This method is however
computationally expensive.

Another multi-scale approach was proposed in [9]. In this
work, multiple spherical support regions, with different radii,
are used simultaneously for feature extraction. The resulting
vector is a combination of the feature values extracted at the
different radii, and thus encodes how the shape of the point’s
neighbourhood is perceived at different scales.

[17] presents a hierarchical approach for dealing with mul-
tiple scales. A point cloud is firstly analysed as a whole. If it is
not considered flat according to a defined criterion, it is divided
in halves, following a 2D grid model. These halves, which
are 2D cells, are then submitted to the same analysis. This
procedure continues in a recursive manner, and the division
terminates if a cell is considered flat or if it has reached a
minimum size.

Works applying segment classification deal with the scale
problem in an implicit way, because segments assume different
sizes depending on the object being segmented [2], [6], [8],
[11].

D. Synthesis

We believe that pointwise classification has the advantage
of not biasing the classification by introducing an arbitrary
segmentation, be it a fixed discretization or a data-centred
segmentation. Moreover, the first layer of our model is oriented
towards representing the basic shape patterns that are present
in the considered environment. Hence we opt for this approach.

As for learning, our approach aims at avoiding manual
labelling and at finding a model which naturally adapts to the
data. We choose for this an unsupervised GMM. The works
closest to ours are [6], [13], but they stop at the class discovery
stage. The use of a final layer, in our approach, makes it
possible to add a semantic interpretation to the discovered
classes.

Scale being an important concern, besides considering a
single spherical support region for feature extraction, we also
explore the method of using multiple regions simultaneously,
as in [9]. In the first, single-scale case, what our model
learns is the classes existing at the given scale. In the second,
multi-scale case, the model learns the classes that present a
consistent, specific pattern over the scales.



III. APPROACH

Our approach relies on the proposed two-layer classification
model. We perform pointwise classification, such that a point,
associated with its support region, or neighbourhood, is the
element being classified. In the multi-scale case, a point is
characterized by multiple neighbourhoods. The whole process
consists of the stages of feature extraction, intermediary clas-
sification and final classification.

A. Feature Extraction

The feature extraction process is performed pointwise. In
the single-scale case, it takes into account a target point and
the points in its spherical neighbourhood of radius r. In the
multi-scale case, it takes into account multiple spherical neigh-
bourhoods, determined by a set of radii R = {r1, ..., 7N},
Npg being the number of radii. Three values are computed for
each scale, which leads to a feature vector x = [z1 =2 3]
with dimension 3, if single-scale, and to a feature vector
x = [z] ... 23, ]" with dimension 3Ng, if multi-scale. In
the latter case, x; indicates the feature values computed at
radius r;.

The input point cloud is assumed to be expressed in the
sensor reference frame. For the computation of the third
feature value, the transformation to a reference frame (“world”
reference frame) where the z axis oriented vertically is neces-
sary. This transformation is assumed to be given (by the robot
attitude estimation). Thus, the inputs of feature extraction are
actually a point cloud and its corresponding sensor-to-world
transformation. The reason behind these requirements will be
made clear in the remaining of the section.

The three feature values result from a Principal Component
Analysis (PCA) operation applied to the target point’s neigh-
bourhood. The knowledge about the points’ distribution brings
with it information about the local surface shape. Numerous
works on 3D lidar data processing exploit this property. [9]
uses the normalized eigenvalues at multiple scales to describe
the dimensionality of the shape. [7], [12] use the differences
between the eigenvalues to this end. [6], [13] use ratios, instead
of differences. [17] uses the eigenvalue of the most vertical
eigenvector to evaluate flatness. Our approach, in turn, builds
on the multi-scale PCA features found in [9], as we explain
hereafter.

Let A\; > Ay > A3 the eigenvalues output by PCA, and
v1, V2, v3 the eigenvectors. As done in [9], we can take the
following values as the first two feature values:
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These two values encode the shape of a distribution of points,
or more especifically, its dimensionality, as shown in figure 1.

Another form to exploit PCA is to interpret it as a plane
fitting operation, as explained in [18]. Through this point of
view, the eigenvector vs, associated to the smallest eigenvalue
g, represents an estimation of the surface normal. We use
the fact that the cloud is in the sensor reference frame, and
flip the normal in function of the viewpoint, which is the
frame’s origin. It is then possible to use the sensor-to-world

I
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Fig. 1: Eigenvalue features. This is the space generated by the
first two feature values, which correspond to the normalized
first two eigenvalues output by PCA. The feature values lie
inside the closed triangle. The edges of the triangle, [1.0 0.0]7,
[0.5 0.5]7 and [0.3 0.3] correspond to the cases where the 3D
points are organized in pure 1D, 2D or 3D shapes, respectively.
The definitive feature space is obtained after normalization,
and corresponds to a translated and scaled version of this
triangle.

transformation to transform the vector into the global reference
frame, resulting in the global normal n = [n, n, n.|’. The
third feature value is given by the z coordinate:

T3 = Ny.

In the 3D space, it makes no sense applying PCA on a set
with less than four points, because such points will always be
collinear or coplanar. Thus, during feature extraction we leave
out points for which the condition Ng < 4 holds. Such points
are then also excluded from the classification. A beneficial
consequence is that isolated outliers are naturally filtered out
from classification.

The feature extraction process concludes with a statistical
normalization step, relying on a mean u; and on a standard
deviation o; for each feature dimension i. These values are
determined during training. For every point x, for every
dimension 7, normalization is applied in the following manner:
Ti — hi

ag; '

Ty =

Parts of feature extraction were implemented using tools such
as Eigen [19] and Point Cloud Library (PCL) [20].

B. Intermediary Classification: GMM

The intermediary classification layer is a GMM. The GMM
is a member of the family of mixture models, which as
the name indicates, are models composed by mixtures of
distributions. The basic goal of such a model is to represent
a probability distribution, likely a complex one, by means of
mixing multiple distributions. The individual distributions are
called the model components.

Through feature extraction, a 3D point belonging to a point
cloud is associated with a point « in the feature space. A
GMM represents the distribution of x over the feature space
by employing Gaussian distributions as components [15]. Let
CY = {cy1, ..., cyngy } be the set of intermediary classes,



Ncy being the number of classes. The component, or class,
is indicated by the latent variable y = [y; ... yney )T . This is
done in the following manner:

Ncoy

p() =Y py)p(ly) = > mN (@], ).

=1

We note that y is a vector, and that we use y; to denote the
case where y; = 1 and y; = 0 for j # 4, meaning that class
cy; is assigned to x. Each class is Gaussian, and is defined by
the following parameters: the mixing coefficient 7;, the mean
p; and the covariance ;.

Having in hands the distributions p(y;), p(x|y;) and p(x),
we can compute p(y;|x):

N (x| i, Xi) '
SN N (2|, 55)

j=1

1) = Pdp(lys)
p(yilz) (@)

This is the Bayes equation. We call p(y;) the class prior prob-
abilities, p(x|y;) the likelihood and p(y;|x) the class posterior
probabilities. The computation of the posterior distribution
corresponds to the inference step of classification. In our case,
having obtained the posterior distribution through inference,
we perform the decision step in sequence, and assign to a
point the class that obtained the highest posterior probability.

The GMM intermediary classes are data-oriented. They
serve to capture all the different patterns that may be encoun-
tered. Ideally, if the model were powerful enough, it should
be able to capture, to abstract the different environmental and
sensorial factors influencing the perception. By environmental
factors, we refer to the variability and the clutter present in
the environment, while by sensorial factors, we refer to the
perception effects derived from the sensor sampling pattern.

Given a training set, the model parameters are found with
the unsupervised Expectation-Maximization (EM) method.
Nc¢y, the number of classes in the GMM, or the number
of intermediary classes, should be large enough so that the
GMM is able to provide a fine enough model of the patterns
in the environment. Under this condition, we ensure that the
corresponding intermediary classes can be grouped afterwards
into meaningful final classes.

The number of classes indicate the complexity of the GMM.
Increasing this number implies that the EM-based training will
be slower, and that a larger amount of training data will be
needed. Moreover, and perhaps most importantly, the grouping
stage will be made slower, because the expert will have to
look at and examine more classes. This layer is currently
implemented using scikit-learn [21].

C. Final Classification: Grouping

The final classification layer is a grouping of the interme-
diary classes into final classes. Viewing it purely through the
point of view of classes, the set of intermediary classes is
denoted by CY = {cy1, ..., CYncy }» While the set of final
classes is denoted by CZ = {cz1, ..., ¢zn.,}.- Neoy and
N¢z respect the condition that Noz < Ney. This operation
aims at giving a single semantic interpretation to multiple
intermediary classes. The semantics are ideally connected to

training ;

learning sets
composition
dataset —>|
feature extraction [—> system

prior ——»|

intermediary
classification

final
classification

system ;

Fig. 3: Learning. Multiple training instances ¢ are launched,
each one resulting in a classification system 7. These systems
are evaluated through validation and one is selected for test.
The inputs are the dataset and the prior, while the outputs are
the selected system together with its test evaluation.

useful properties in a target task. We say thus that the final
classes are task-oriented.

The main limitation of this method is that, in fact, not
all the intermediary classes can be exploited. Some of them
correspond to objects of different nature, and thus cannot be
grouped into a meaningful final class. In this case, the class
is marked as wunknown final class. The unknown points do
not contribute to the resulting semantic model. In a way, this
situation is analogous to the case where, in the decision stage,
we refrain from classifying a point, which is done based in
some uncertainty criterion.

The grouping is determined during training. This step is
done in a supervised manner, by a human expert. Overall, it
consists in examining the results of the intermediary classifica-
tion, by visual inspection, and assigning to each intermediary
class a final class, or the class unknown. This examination is
performed on a grouping set, which does not have to be the
same as the training set, although it usually is. To perform this
task, a graphical interface is required (for this purpose, we use
the ParaView visualization tool [22]). Some examples of the
grouping training are shown in figure 2.

D. Learning

The learning of the full classification system follows the
process of training, validation and test. A schematic overview
of this process, as applied in our case, is shown in figure
3. During training, we must go through four stages: learning
sets composition, feature extraction, intermediary classification
and final classification. Each stage has parameters that must
be determined. In a training instance, part of these parameters
is manually fixed, while the other part is determined auto-
matically. The result of training is a full classification system,
which however might not be optimal due to the choices for
the fixed parameters.

During validation, the systems resulting from multiple train-
ing instances, with different parameter choices, are evaluated,



(a) Single intermediary classes that fail to represent a single element, and thus
could represent either building or vegetation. In the Caylus case, it could represent either road or grass.

might not be grouped, depending on the target task. In the Freiburg case, it

case, it represents vegetation.

(b) Single intermediary classes that represent a single element, and thus are likely to be grouped. In the Freiburg case, it represents ground. In the Caylus

(c) Intermediary classes that are grouped into one final class. In the Freiburg case, they represent ground, while in the Caylus case, they represent vegetation.

Fig. 2: Grouping. These are examples of the actual interface used in the training process. Left: a scan from the Freiburg dataset.
Right: one from the Caylus dataset. The concerned classes are highlighted in colours.

and the one with the best performance is selected. In this way,
validation allows us to determine the parameters that are not
automatically computed in training. The selected system is
then submitted to a final evaluation in the test step.

Overall, the learning inputs are the dataset and the prior
information. The dataset is the source of the actual training,
validation and test sets chosen during the learning sets com-
position. The prior corresponds to any assumption, hypothesis
or choice made about the system. The features and the
classification model, for example, are part of the prior, as well
as the set of different parameters used in validation.

The learning outputs are the definitive classification system
and its evaluation through the test step. The system is pre-
dictive, able to classify new data, and must therefore be able
to achieve a certain degree of generalization. In our work,
we aim at achieving a basic level of generalization which

we call the dataset level. Generalizing at the dataset level
means that the system is capable of classifying data coming
from a similar environment and acquired with a similar sensor
setup. Achieving higher levels of generalization would mean
changing the environment or changing the sensor setup.

IV. EXPERIMENTAL SETUP

The evaluation of the proposed approach follows the train-
ing, validation and test steps. We evaluate the system under
two separate contexts, each one corresponding to a different
dataset. Both datasets contain 3D point clouds of outdoor
environments. The first one is the Freiburg public dataset [3],
for which we have ground-truth, made available in [5]. The
second one is a dataset acquired with our own robot and sensor
setup, for which there is no ground-truth available.



In each case, we train multiple systems to be compared
through validation. A complete validation is a search problem,
and would consist of training all the possible combinations
of parameters. This leads to a combinatorial problem. In our
approach, each training case includes the supervised grouping
process. Due to the time required in the grouping and the
combinatorial factor of the validation, it is not possible for us
to proceed in an exhaustive manner.

We choose to perform a constrained validation, selecting
a set of training cases considered as most informative. Con-
cretely, this means testing each parameter at a time, by varying
it while fixing the others at relevant values. In the end, this
leads to a system which is the best locally, under the selected
parameter set, yet it still leads to an informative exploration
of the different alternatives. The selection of the parameters is
done based on a preliminary training evaluation.

A. Freiburg Dataset

This is a public dataset, acquired at the Freiburg University’s
campus [3]. It contains artificial elements such as streets,
buildings of different types, road signs and lamp posts, but
also some natural elements such as trees of different shapes
and sizes, shrubs and vegetation areas. Some people appear
in the scans too. The dataset was acquired with a SICK LMS
lidar [23], [24], moved using a pan-tilt unit, on a mobile robot.

The acquisition was static: the laser acquired the points
while the robot was stopped. At each location, three scans
at different orientations were taken and merged together. The
individual scans overlap each other, creating different sampling
densities at the overlapping regions.

The Freiburg environment is relatively flat, structured and
uncluttered. The point clouds are relatively dense. There are
two main challenges encountered in the data. The first one is
the nonuniform sampling, consisting of significative changes
in the sampling density at the overlapping areas. The second
one is the variability of facade features, such as windows,
doors, roof and prominent features in general, all of them in
varied sizes and types. Figure 4 shows some examples of these.

The ground-truth presents a fine distinction of elements,
with twenty classes in total. These include, for example,
ground, sidewalk and lawn, as well as facade, window and
door. These are grouped into the smaller set of final classes.
We follow approximately the work done in [5], for which the
ground-truth was produced, and where the classes are also
grouped for the evaluation. The classes considered in their case
were: ground, facade, pole and vegetation. These are relatively
similar to ours, except that we include bicycles as vegetation,
whereas they leave out the bicycle points from the evaluation,
and that we include shrubs as facade, instead of as vegetation.

The ground-truth does not cover all the points in the scans.
Some complex features are left out, such as glass facades and
the roofs of bicycle stations. Isolated groups of points, and
some erroneous artifacts, are also filtered out. These points are
thus not used in the evaluation. They are, however, still present
in the training set, which means that they still contribute to
the training of the model.

Fig. 4: Freiburg dataset. The top image shows a region where
the individual scans overlap, causing important changes in
the point densities. The bottom image shows a facade with
a variety of window types.

B. Caylus Dataset

This dataset was acquired with our own robot and sensor
setup, in an artificial countryside village. It presents a great
variety of natural elements such as low and high grass, trees,
bushes and other vegetation, but also artificial elements like an
asphalted road, buildings, and some abandoned vehicles. The
operator of the robot can be seen in some scans. The scans
were acquired with a Velodyne HDL-32 lidar [25], mounted
on the top of a Segway RMP-400-based UGV.

The Velodyne lidars, including the HDL-32, are designed to
allow mobile acquisition. The dataset was acquired in this way.
The UGV was manually controlled by an operator, while the
lidar acquired data and a SLAM method, namely RT-SLAM
[26], provided the localization by fusing GPS, inertial and
visual information.

The area of the dataset presents some gentle slopes at
specific points. Otherwise, it is basically flat. It is much less
structured than the Freiburg area, with more grass, vegetation
and some natural terrain. However, the two main challenging
characteristics are the nonuniform sampling and the clutter.
Here, nonuniform sampling refers to the fact that the sampling
is relatively dense at close ranges, but becomes more and more
sparse at farther ranges. This effect is normally present in scans
from any lidar, but it is specially pronounced in the case of the
Velodyne. As a result, it constitutes a bigger factor in the scans
from the Velodyne, in Caylus, than in the scans from the SICK,
in Freiburg. As for clutter, the second challenge, it is present
in important amounts in the Caylus environment, and concerns
particularly tree trunks, often surrounded by vegetation. Figure



Fig. 5: Caylus dataset. The top image shows an example of
clutter found in the set. At the top-left of it, we can see two tree
trunks being surrounded by foliage and vegetation. The bottom
image shows the sampling sparsity problem. It is particularly
noticeable for the road, going from the bottom-center to the
top-center of the image, and presenting a dramatic decrease in
sampling.

5 shows examples of both phenomena.

C. Metrics

The Freiburg dataset contains ground-truth data, therefore
allowing a quantitative evaluation. We choose to use the
precision, recall and F; metrics, as shown in table I. These
metrics take into account the classwise performance, which
is necessary when dealing with unbalanced data, as is the
case in semantic modelling. Moreover, I} produces a generic
evaluation because it includes both precision and recall. For
certain target tasks, it might be desirable to prioritize either
precision or recall, and then other metrics can be used. The
total F score is computed as I}, ,, = @Zz Fy,, Fi,
indicating the classwise I} score. The accuracy metric is also
reported.

For the Caylus dataset, there is no associated ground-truth.
Actually, this is an example of a dataset for which ground-truth
is difficult to produce, due to two factors: the sampling sparsity
and the presence of more natural, non-structured elements. The
evaluation, in this case, is done only in a qualitative manner, by
visual inspection. This case represents a real implementation
of our system, starting from a dataset with no ground-truth,
and ending with a visual inspection of the classification results.

We note that the relative difference in recall between differ-
ent scans can be conveniently noticed. It is, most of the times,
clear enough to see missing points in one scan, compared

to another. Therefore, the evaluation is done in a relative
way. Scans are compared between them, and differences on
the recalls are noted down. This allows a ranking to be
established. This procedure is consistent with the grouping
method adopted, which also prioritizes the recall. The actual
criterion used in the visual evaluation would depend on the
target task, and could possibly prioritize different factors, other
than the recall.

V. EVALUATION

The implementation of the evaluation method is done by
defining one validation and one test sets. The training set,
however, may vary in each training case. The validation set is
used to evaluate every training case, while the test set is used
to evaluate the selected system.

From each dataset, 10 scans were reserved for use in the
different training sets, 5 for the validation set and 5 for the
test set. The training scans were the first ones to be chosen,
followed by the validation scans, and finally by the test scans.
Assigning the priorities in this manner ensures that the system
will learn with the best data available. The selected scans were
kept as spread as possible over the scenes, while at the same
time being picked from the most interesting areas, and aiming
at having as much balance as possible between the different
elements.

A. Preliminary Training Evaluation

The preliminary training evaluation uses all the scans re-
served for training. It allows us to select the parameters to
be evaluated in the validation. Three different training are
selected, containing respectively 2, 5 and 10 scans, picked
from the training scans. The feature parameters, r and R,
are also evaluated. Five different values of r are considered,
0.2m, 0.4m, 0.6m, 0.8m and 1.0m, as well as a multi-scale
version with R = {0.2m, 0.4m, 0.6m,0.8m, 1.0m}. Another
evaluated parameter is the number of intermediary classes,
Ncy. Using 50 classes is considered to be the maximum
number acceptable, because higher numbers would make the
grouping training slower, and therefore too cumbersome. We
thus test models with 10, 30 and 50 classes.

The final classes were not manually pre-selected, but in-
stead, discovered on the preliminary training evaluation. For
the Freiburg dataset, the set of final classes is composed
by four classes. They were checked against the ground-truth
available, to ensure that the latter could be used to support the
evaluation. The classes are the following:

e ground. It corresponds to road, lawn, sidewalks, and so
on. Geometrically, these are flat and planar, with normals
oriented upwards.

o building. It corresponds to buildings, including any facade
structure, roofs, and so on, and also to shrubs. Shrubs are
included here because they are so precisely trimmed that
they appear clearly as low walls. Only in scarce cases,
some edges present random traces indicating vegetation.
Geometrically, the facades and shrubs are planar with
normals oriented along the horizontal plane, whereas the
facade structures have more varied geometries.



unk cz1 cz; CZNg rec Py
cz1 fpia
czi friunk  frin . tp; friNe, | Teci Py,
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Evaluation metrics. This table shows the confusion matrix, with added information about the precision, recall and F% scores. The rows indicate the true
classes, while the columns indicate the predicted classes. unk refers to the unknown final class, cz; to the ¢-th final class, pre to precision, and rec to
recall. tp indicates the true positives, fp the false positives, and fn the false negatives.

TABLE 1

o trunk. It corresponds to tree trunks, posts and people.
Geometrically, these are linear, with normals oriented
along the horizontal plane.

o vegetation. It corresponds to vegetation, tree foliage and
to bicycles and bicycle stations too. Parked bicyles and
bicyles stations are common in the dataset, and their
relatively random and scatteered shape matches well that
of vegetation in general, therefore being included here.
Geometrically, they are scattered, three-dimensional, with
normals oriented in unpredictable directions.

For the Caylus dataset, after the preliminary training eval-
vation, the set of final classes was composed by the six
discovered classes:

e road. It corresponds to the asphalted road, and to side-
walks. Geometrically, these are planar, with normals
oriented upwards.

e building. It corresponds to buildings and facade features,
such as doors and windows. Geometrically, these are
planar, with normals oriented along the horizontal plane,
except from the facade features which have varied ge-
ometries.

o trunk. It corresponds to tree trunks, posts and people.
Posts are rare, but still present in the dataset. People
refers mainly to the robot operator who appears in most
of the scans. Geometrically, these are linear, with normals
oriented mainly horizontally, but sometimes in other
directions, for example when a trunk is inclined.

o vegetation. It corresponds to tree foliage and vegetation.
Some regions where the grass is high can be considered as
vegetation too. Geometrically, these are scattered, three-
dimensional.

o grass. It corresponds to grass. Geometrically, it is ba-
sically planar, but less than road, because of the more
scattered pattern of the grass.

e rough. It corresponds to rough terrain, usually found
at the interface of grass and vegetation, or at the base
of trees. It also corresponds to regions of medium-high
grass. In fact, the classes grass, rough and vegetation
represent a progression of unstructured terrain, and of
scatterness, in terms of geometric shape.

B. Freiburg Test Results

We now consider the systems which performed the best
in the validation stage, and submit them to the last step of
evaluation: the test. From the validation results, we retrieve

that the setup which obtained the best performance was {2-
scan-training-set, r = 0.6m, Ngy = 50}. In the set of
final classes, {ground, building, trunk, vegetation}, ground
has the purest semantic interpretation. building includes shrubs
too, as previously explained. trunk includes posts and people.
vegetation includes bicycles. Therefore, these classes mix
elements of different nature, to some extent. There is, however,
a consistent point underlying them, discussed previously in
their presentation: the geometry. A definitive judgement on
the semantic interpretation of the discovered classes depends
on the target task. In the case where geometry constitutes
the required information, these classes can be considered
relevant. Otherwise, a finer classification system would be
necessary, one that could for instance join shrubs to vegetation,
and exclude bicycles from vegetation. Such a finer system
would require as input more specific, detailed geometric
representations, or other types of information such as vision
or information from a knowledge-base.

Table II shows the quantitative results of the test. Figure 6
shows the classification on the test scans. The total F; obtained
is 0.74. It is lower than the score obtained in the validation
step, 0.77, yet close enough to confirm that the system was
able to generalize from the validation set to the test set. A
generalization at the dataset level, in this case, is therefore
verified.

In order to increase the performance, the complexity of the
system must be increased, by either using a more complex
feature extraction stage or a more complex classification
stage. Regarding the feature extraction, the selected system
already presents the feature parameters that obtained the best
performance, so the feature extraction process itself must be
improved. As for the number of intermediary classes, since
it is already at its maximum, complexifying the classification
model means changing the model itself.

As for the remaining of the test scores, we can note that the
precision scores are all higher than the recall scores. The main
reason behind this difference is the impossibility of using all
the intermediary classes provided by the GMM, leaving some
of them as umknown. This can be observed in the results:
apart from the case of the class trunk, the highest number
of false negatives always appears under unknown. This is a
characteristic of our two-layer approach: the data-oriented,
intermediary layer learns the different patterns encountered in
the data, but the task-oriented, final layer discards those which
fail to correspond to some meaningful semantics.



unk ground  building  trunk  vegetation | rec Fy
ground 4424 387200 110 54 1933 0.98 0.98
building 34955 248 93438 3961 22120 0.60 0.73
trunk 4212 55 1733 7614 4809 0.41 0.50
vegetation | 27389 4986 7405 666 106657 0.73 0.75
pre - 0.99 0.91 0.62 0.79 - F1, ... =074

Freiburg test results. Accuracy = 0.83.

TABLE II

Y, A

Fig. 6: Freiburg classification test results. Input at the left, output at the right. Colours: (ground, orange), (building, yellow),
(trunk, pink), (vegetation, blue). The misclassification of some facade regions as vegetation can be seen in some of the scans,
as well as the misclassification of the base of posts as vegetation.

Classwise, ground obtained the best [}, precision and
recall scores. This is understandable, because in the struc-
tured Freiburg environment, the ground can be consistently
distinguished due to its planar shape and upwards normal
orientation. trunk obtained the worst scores. It is confused
with borders of other objects, especially corners of buildings,
windows and doors. Additionally, the base and the top of
tree trunks, as well as the base of posts, are frequently
misclassified as vegetation. This factor can be spotted in the
confusion matrix, appearing as the high number of vegetation
false positives actually corresponding to trunk. In all these

cases, the confusions between frunk and building or vegetation
have a greater negative effect on trunk, because of its rarity.
vegetation suffers from misclassifications too, being confused
with elements such as corners and roofs of buildings.

The limitations encountered are, in a way, due to the
important density changes present in the data. Such changes
make the distinctions harder by multiplying the patterns cor-
responding to each element. However, this point is addressed
in part through the set of intermediary classes, which are able
to represent some of the different patterns. Overall, the main
problem seems to lie in the variability of the facade features,



such as windows, doors, roofs, prominent regions, corners and
so on. These are the elements most frequently misclassified,
either as post or vegetation, irrespective of sampling densities.
The main source of this problem, in turn, are the features
employed, which do not allow a better distinction of the
elements.

C. Caylus Test Results

In the validation, the setup which obtained the best perfor-
mance was {10-scan-set, 7 = 0.6m, Noy = 50}. The set of
final classes, {road, building, trunk, vegetation, grass, rough},
is larger than the Freiburg set. road, building and grass have
the purest semantic interpretations. frunk includes the road,
posts and people. vegetation includes high grass, bushes and
foliage. rough includes rough terrain, such as stony ground,
and medium grass. As in the Freiburg case, the common
underlying link is the geometry. It is interesting to note that the
classes ground, grass, rough and vegetation can be interpreted
as a progression in terms of scatterness of the geometry, while,
to some extent, still correspond to specific elements in the
environment.

Similarly to the Freiburg case, the test performance matched
the validation performance, so the system was able to gen-
eralize to the test set, confirming its capacity to achieve a
dataset-level generalization. As for Freiburg, the results corre-
spond to the system complexity. Because the best parameters
were already determined through the validation, increasing the
performance would require a change in the feature extraction
stage or in the classification stage.

Figure 7 shows the classification results on the scans of the
test set. The main problem is the non-distinction of the nearest
points to the sensor, which correspond either to the road or
to grass. In other words, the system was unable to separate
nearby road from nearby grass. Another problem was that,
at far range, vegetation was perceived as grass. Yet another
difficulty encountered was also present in the Freiburg dataset:
the confusion between vegetation, trunks and building features.
In the Caylus case, however, this effect was more constrained.
Firstly, because the Caylus facades are sampled in a relatively
similar manner, while the Freiburg facades are sampled in
a variety of ways due to the overlapping scans. Secondly,
because the Caylus facade features are simpler, corresponding
to simple squared windows and doors.

The nonuniform sampling in the data impacted the dis-
tinction between distant road and distant buildings. At far
range, because of the line-based sampling pattern of the
Velodyne lidar, these two elements appear simply as lines,
therefore having the same shape and normals oriented along
unpredictable directions. The sampling also played a part in
the confusion between distant vegetation and grass. Were
the sampling is denser, these two elements would maybe
have been better distinguished. Clutter, on the other side,
affected the classification of trunks, as many were considered
as vegetation because they were entirely surrounded by it.

In the end, among the class confusions, the nonuniform
sampling effects, and the clutter, the main source of difficulty
remains the class confusions: nearby road with grass, distant

vegetation with grass, buildings with trunks and vegetation.
These, in turn, are a consequence of the feature representation
used. Thus, as happened in the Freiburg case, the features do
not allow a better distinction between these elements.

VI. CONCLUSION

The approach proposed in this work takes as input a 3D
point cloud with its corresponding sensor-to-world transforma-
tion, and outputs a classified version of the point cloud. The
feature extraction represents the shape of a point neighbour-
hood using information from a PCA operation. Regarding the
classifier, the first, intermediary layer corresponds to a GMM
trained in an unsupervised manner, and the second, final layer
corresponds to a grouping of the intermediary classes into
final classes. The approach avoids the necessity of manually
labelling the input dataset, instead requiring a manual training
of the grouping which is based on the trained intermediary
layer.

The evaluations show that the approach is able to achieve a
dataset generalization. The main advantages are the following:

+ Data-orientation. The unsupervised training of the GMM
brings the data-oriented aspect to the system. The GMM
classes are able to capture, at least in part, the variety
of patterns in the data, addressing challenges such as
nonuniform sampling, sensor noise, environment variabil-
ity and clutter in an unsupervised manner.

+ Task-orientation. In spite of its unsupervised core, the
approach is able to deliver final classes which, under
certain conditions, can be semantically interpreted. In all
cases, the final classes are consistent with the geometry
represented through the features. The final classes are
defined with the grouping, which brings the task-oriented
aspect, in a principled and explicit manner. The system
can be used as a predictive model in a target task.

+ Standard design and operation. The design follows a stan-
dard learning procedure with a training, a validation and a
test steps. The operation follows a standard classification
pipeline. It is composed by a feature extraction and a
classification stages. The classification stage groups the
elementary stages of inference and decision.

+ Simplicity. There is no requirement of pre-processing or
post-processing stages, although these may be included.
The feature extraction and classification stages are simple.
The design procedure, mainly based on unsupervised
learning, is simple.

The main disadvantages are the following:

- Training noise. This refers to two factors. The first is
the randomness present in the GMM training due to
the random initialization method, constituting the GMM
training noise. The second is the randomness present in
the grouping training layer due to the expert supervision
process, which is bound to be erroneous from time to
time, constituting the grouping noise. They both con-
stitute the training noise. Such noise is a disadvantage
because it affects the final classification performance,
which ideally would be deterministic and predictable in
all cases.



Fig. 7: Caylus classification test results. Input at the left, output at the right. Colours: (road, orange), (building, yellow), (trunk,
pink), (vegetation, blue), (grass, green), (rough, brown). The missing nearby points can be clearly detected in the scans. Some
misclassifications of building features as frunk can also be observed.

- Supervision computational complexity. The approach re-
quires a supervised training of the grouping, which is
done for each system evaluated in the learning process.
In terms of computational complexity, this corresponds
to a linear complexity. A supervised approach, on the
contrary, requires a single, supervised labelling of the
input dataset, offering a lower computational complexity.
If taken individually, on the other hand, the grouping
training is much simpler than the dataset labelling, be-
cause it is guided by the intermediary classes discovered
by the GMM.

- Final performance. Considering the simplicity of the
system, the performance is reasonable. With respect to
the state-of-the-art, however, it does not compete with
more advanced classification systems.

Between the feature extraction, the intermediary GMM
and the final grouping, the feature extraction constitutes the
main factor limiting the performance of the approach. In

this context, a first extension could be the addition of an
extra feature value, x4, coming also from the PCA operation:
the z coordinate of the world-frame representation of ws,
the second PCA eigenvector. This value can be seen as the
natural complement for the current value x3, which is the z
coordinate of the world-frame representation of the normal, or
v3. This would add one extra dimension of information about
the orientation of the points. It would allow, for instance, to
isolate vertical linear elements such as vertical tree trunks and
posts, with z3 and x4 being both zero in this case.

It would be interesting to test the approach under an
application case. A natural case would be terrain traversability
analysis. A rough scheme of how our system can be used
in such context is given hereafter. The final classes are each
linked to a traversability class, which in turn are each linked
to a traversability cost. The output pointwise structure is trans-
formed to a 3D-voxel model. Under a conservative criterion,
the class of a voxel may be set as the highest-cost class among



the classes of the individual points within the voxel. For a
2D path planning, the voxels above a certain height may be
ignored, and the others projected onto a subsequent 2D-grid
model, using the same conservative criterion. For a 3D path
planning, the 3D-voxel model would already be enough. The
classes of the final model, corresponding to traversability costs,
would provide the cost criterion for a path planning algorithm.
As an example, we consider the model produced for the Caylus
dataset as being appropriate to tackle such a problem in that
environment.

Besides terrain traversability analysis, the proposed ap-
proach may also be useful in a number of other cases. An
example is the rapid production of an operational semantic
model in a case of search and rescue. The simplicity of design
of the system would be advantageous. The model produced
could be used as a preliminary but operational model, while
maybe a finer, more complete model would be put under
construction. Another example is the comparison of different
classification systems. In this case, our system could be used
as a baseline reference in the comparison, its simple and
unsupervised nature allowing it to be rapidly designed. Yet
another example is the labelling of a dataset, or equivalently,
the production of a ground-truth, which, after all, was one of
the main concerns behind this work. Because our system is
unsupervised at its core, it can justly be used as an aid in the
full labelling of a dataset. Lastly, our approach can, of course,
be used in any case where it already provides a fine-enough
model for the required target task.
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