
HAL Id: hal-01522246
https://hal.science/hal-01522246v1

Submitted on 13 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

System simulation of a fleet of drones to probe cumulus
clouds

Rafael Bailon-Ruiz, Christophe Reymann, Simon Lacroix, Gautier
Hattenberger, Hector Garcia de Marina, Fayçal Lamraoui

To cite this version:
Rafael Bailon-Ruiz, Christophe Reymann, Simon Lacroix, Gautier Hattenberger, Hector Garcia
de Marina, et al.. System simulation of a fleet of drones to probe cumulus clouds. Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), Jun 2017, Miami, United States. 8p.,
�10.1109/ICUAS.2017.7991448�. �hal-01522246�

https://hal.science/hal-01522246v1
https://hal.archives-ouvertes.fr

System simulation of a fleet of drones to probe cumulus clouds

Rafael Bailon-Ruiz1, Christophe Reymann1,2, Simon Lacroix1,
Gautier Hattenberger3, Hector Garcia de Marina3, Fayçal Lamraoui4

Abstract— Simulation plays an essential role in the de-
velopment of complex systems. This paper reports on the
development of a simulation infrastructure for a fleet of UAVs
conceived to probe clouds, using an adaptive sampling scheme
that calls for cloud mapping and trajectory planning. The
mission is presented, the global approach to solve it and
the ensemble of required processes are sketched. An overall
simulation architecture is then depicted, and the details of
its development using the Robot Operating System (ROS) are
presented.

I. INTRODUCTION

Atmospheric scientists have been early users of UAVs,
that bring forth several advantages over manned flight to
probe atmospheric phenomena: low cost, ease of deployment,
possibility to evolve in high turbulences, etc. UAVs are now
used for missions like volcanic emissions analysis, polar
research, or climatic and meteorological sciences, and the
yearly conferences organized by the International Society
for Atmospheric Research using Remotely piloted Aircraft –
ISARRA1 gather a growing audience. An in-depth overview
of the various fixed-wing airframes, sensor suites and state
estimation approaches that have been used so far in atmo-
spheric science is provided in [1].

The objective of the SkyScanner project2, which brings
together atmosphere and drone scientists, is to conceive and
develop a fleet of micro UAVs to better assess the formation
and evolution of low-altitude continental cumulus clouds.
There remain uncertainties in the modelling of these natural
phenomena, which could be alleviated by the mapping of
a variety of data within and in the close vicinity of the
cloud. Wind currents, pressure, temperature, humidity, liquid
water content, radiance and aerosols are variables of interest
that must be collected over a spatial and temporal extent: a
fleet of UAVs let foresee the ability to fully characterize the
evolution of such atmospheric phenomena.

Contribution: The development of a fleet of drones
able to acquire data in such conditions calls for a series
of technological and scientific advances, that span from the
conception of the UAVs and their on-board sensors to the
definition of a cooperation strategy so as to optimize data
throughput and endurance, via flight control algorithms to
track 3D trajectories in the presence of significant winds.
Designing, testing and deploying such a complex system

1LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
2LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
3ENAC, 7 avenue Edouard-Belin, F-31055 Toulouse, France
4Météo-France / CNRS, CNRM/GAME, Toulouse, France
1https://isarra.org/
2https://www.laas.fr/projects/skyscanner/

certainly benefits from the use of simulation tools, which
allow preliminary testing and validation before field trials.
The work presented here reports on the development of
a system level simulation infrastructure, which is meant
to support, validate and benchmark the integration of the
various software components that drive the fleet.

Although the exploration of clouds context is a specific
one, the principles on which the simulation relies on are
generic, and can apply to any other kind of mission for
fleets in which UAVs embark environment perception and
decisional capacities.

Outline: The following section describes the problem
at hand, briefly reviews the state of the art and sketches our
approach. Section III states the requirements of a simulation
for a fleet of UAVs, and presents its architecture. Section
IV is the core of the paper: it depicts the implementation of
various components that constitute the system simulation. It
ends with an illustration, and a conclusion recaps the paper.

II. PROBING CLOUDS WITH UAVS

A. Problem statement

To fulfill the needs of atmosphere scientists, the fleet
should collect data with a spatial and temporal resolution
of respectively about 10 m and 1 Hz over the cloud lifespan.
For this purpose, the overall control of the fleet must address
the two following challenges:

• It is a poorly informed problem. On the one hand the
UAVs perceive the variables of interest only at the
positions they reach (all the atmosphere sensors perform
pointwise measures at their position), and on the other
hand these parameters evolve dynamically. The mapping
problem in such conditions consists in estimating a
4D structure with a series of data acquired along one-
dimensional manifolds.

• It is a highly constrained problem. The mission duration
must be of the order of a cumulus lifespan, that is
about one hour, and the winds considerably affect both
the possible trajectories of the UAVs and their energy
consumption – all the more since we are considering
small sized motor glider aircrafts with a maximum take
off weight of 2.0 kg. Winds are the most important
variables that influence the definition of the trajectories
and are mapped as the fleet evolves: mapping the cloud
is a specific instance of a classic “explore vs. exploit”
robotic problem.

Exploring clouds with a fleet of UAVs is therefore a
particularly complex task. The challenge to overcome is

http://isarra.org
https://www.laas.fr/projects/skyscanner/

to develop non-myopic adaptive strategies using myopic
sensors, that define UAV motions that maximize both the
amount of gathered information and the mission duration.

B. Related work

In the context of atmosphere probing, so far UAVs follow
pre-planned trajectories to sample the atmosphere. In the
robotics literature, recent works have tackled the problem
of autonomously exploring or exploiting atmospheric phe-
nomena. The possibility of using dynamic soaring to extend
the mission duration for sampling in supercell thunderstorms
has been presented in [2]. In this case, only the energetic
consumption is optimized, and the gathered information does
not drive the planning. [3] presents an approach where
a glider explores a wind field trying to exploit air flows
to augment flight duration. The problem of tracking and
mapping atmospheric phenomena with a UAV is also studied
in [4]. The authors use Gaussian Process Regression (GPR)
to map the updraft created by a smoke plume. Even though
the mapped currents are not taken into account for the
navigation, it is worth to remark that contrary to the previous
contributions, here experiments with a real platform are
presented. This shows the possibility of online mapping of
atmospheric phenomena by a fixed-wing UAV using GPR.
An other significant contribution on wind-field mapping is
presented in [5]: aiming at autonomous dynamic soaring
with a small UAV, the authors present and approach in
which the wind field is modelled by polynomials, which
parameters are estimated with a Kalman Filter. Experiments
in which the mapped wind-field is compared to an “air-
truth” obtained by tracking lighter than air balloons small are
presented. Finally, autonomous exploration of current fields
is not exclusively related to aerial applications: the use of
Autonomous Underwater Vehicles for oceanographic studies
has been recently investigated (e.g. [6]). Apart from this latter
contribution, in all the aforementioned work only the use of
a single vehicle to achieve the mission is considered, and no
multi-UAV systems are proposed.

C. Overall approach and architecture

The mapped phenomenon being a dynamic one, we opted
for an adaptive data collection scheme, which can be much
more efficient than predefined acquisition patterns. A global
approach has been defined, which casts the overall problem
in a hierarchy of two modeling and decision stages. A
macroscopic parametrized model of the cloud (Fig. 1) is
built and exploited at the higher level by an atmospheric
scientist, which sets information gathering goals, such as
“map this volume”. A UAV or a subset of the UAV fleet is
allocated to each goal, considering the UAVs current position
in the cloud, their on-board energy level, and their sensing
capacities. These high level goals typically consist of cloud
regions to explore, and are autonomously handled by the
lower fleet control level, which optimizes the selected UAVs
trajectories using an on-line updated dense model of the
variables of interest.

Fig. 1: Schematic representation of a cumulus cloud. The
arrows represent wind velocities, the orange blobs denote
areas where mixing is occurring between the cloud and the
surrounding atmosphere. This representation is very coarse:
for instance the updrafts in the center of the cloud are known
to behave as “bubbles” when the cloud is young. The cloud
dimensions can vary from one to several hundreds of meters.
Such a conceptual model encodes various laws, e.g. that
relate the cloud dimensions to the inner wind speeds.

So far we have concentrated our efforts on the fleet
control level, iming at mapping the wind, which is the most
relevant variable to guide the UAVs. The various processes
required to implement the fleet control are organized along
the architecture depicted figure 2. The approach follows a
classic sense / plan / act scheme for autonomous systems : the
wind measures acquired by the UAVs [7], [8] are integrated
in a centralized manner within a map of the cloud using GPR
(sense), which is exploited to define the trajectories of the
UAVs that optimize the gathering of information while mini-
mizing the energy expense (plan), the trajectories being then
executed by the UAVs flight controller (act). This architecture
is centralized: the acquired data are sent through a serial
link to a ground central station, which runs the mapping
and planning algorithms, and the resulting trajectories are
uploaded to the AUVs. Details on the mapping and planning
algorithms can be found in [9].

III. SIMULATION OVERVIEW

The simulation infrastructure must allow the deployment
and testing of the same software that is to be eventually
deployed on the field. We have developed the overall archi-
tecture using ROS (the Robot Operating System [10]), a now
well-known framework for robot software development and
integration. ROS provides an operating system-like environ-
ment, with libraries and tools for heterogeneous computer
clusters. Within this scheme we can engineer a modular
multi-UAV system with well-defined interfaces such that real
and simulated drones run the same software, connecting the
necessary independent realistic simulators, and letting the
possibility to easily integrate new functions.

Cloud
Mapping

Cloud
map

Trajectory
planning

Control

Cloud
conceptual

model

Trajectories

Area to
map

Flight
dynamic
model

Estimated
state

Measured
wind

Fig. 2: Overall architecture of the fleet control. Orange,
yellow and purple boxes respectively denote information,
processes and models. Given a coarse conceptual model
of the cloud and the map built by the UAVs so far, the
user tasks the fleet with an area to explore. The trajectory
planner exploit the cloud map to find the trajectories that
optimize the information gathering and the energy expenses,
which are sent to the UAVs. Note the importance of the
Flight Dynamic Model of the UAVs, which is used by three
different processes.

A. Simulating the environment

Realistic cloud simulations that involve microphysical,
dynamical, optical and radiative properties of clouds have
been used to produce the evolution of a cloud model. The
atmospheric model used for this simulation is Meso-NH
[11], a Non-Hydrostatic model with the flexibility to simulate
atmospheric phenomena at a wide range of resolutions that
extends from one meter up to tens of kilometers. For this
work, non-precipitating shallow cumulus clouds over land
are simulated with the Large-Eddy Simulation version of
Meso-NH. To capture the details about clouds and their
surroundings, the atmospheric model has been set at its
highest resolution. The considered simulation domain is a
cube representing a volume of 4 km × 4 km × 4 km with
spatial resolutions of 10 m, and a time-step of 0.2 s. This
setup is a compromise between the desired high resolutions
and a reasonable simulation computation time (days of
computing on a large cluster are required to run such simu-
lations). The simulation estimates the following atmospheric
variables: cloud liquid water content, water vapor, pressure,
temperature, and the three components of wind.

The lower left picture of Figure 3 illustrates the 3D cloud
water content of simulated convective cumulus clouds at
a given time. The overall simulation covers a time period
of 15 hours, but the variables of interest have been saved
every second only during one hour that corresponds to the
maximum of surface fluxes. These variables are the 3D
wind components, pressure, humidity, temperature and liquid
water content (this latter defining the presence or not of a

Measured
wind

Estimated
state

Cloud
Mapping

Cloud
map

Trajectory
planning

Flight
dynamic
model

Trajectories

Wind
ground
truth

State
ground
truth

NoiseNoise

GuidanceFlightGear

Control

Simulated
cloud
and

simulated
UAVs

Paparazzi

Area to
map

Fig. 3: Schematic view of the architecture of the simulated
system. The figure focuses on the simulated processes. The
same processes of figure 2 are integrated in the overall
simulation, and a second option to control the UAVs using
a guidance scheme to follow the trajectories has been added
(dashed arrows with the Guidance process).

cloud). As wind is the variable that significantly affects the
flight, it is the only one introduced into the ROS architecture
loop. Future work will include the rest of the atmospheric
variables for cloud mapping purposes – but these variables
do not influence the UAVs flights.

B. Simulating the UAVs

Two options have been developed to simulate the UAVs:
• Paparazzi3 [12] is an open source autopilot and ground

control software for small UAVs. It is able to drive both
simulated planes, using the JSBsim Flight Dynamic
Model (FDM), and real planes with the same interface.
It has been chosen as the first flight simulator for our
architecture.

• Despite the a priori convenience of Paparazzi, the guid-
ance law it provides is a simple one, and can hardly
follow arbitrary trajectories. In order to overcome this
problem, we implemented an interface with a second
flight simulator: FlightGear[13]. FlightGear is initially
designed to manually fly regular planes: it provides
minimal controllers for autonomous systems, only a sta-
bilization autopilot. This required the implementation of
a guidance control loop based on [14]. Figure 4 shows
the main differences between Paparazzi and FlightGear.

The ROS software architecture allows to seamlessly switch
from one UAV simulation option to the other.

IV. SIMULATION IMPLEMENTATION

The overall simulation architecture, further denoted as the
“SkyScanner package”, is composed of two types of ROS
nodes: the ones that are required by the simulation, and the

3http://paparazziuav.org

Trajectory
P
a
p

a
ra

zz
i

Navigation Vz, ψd

Guidance T, θ, ψ

Stabilization T, φ, θ, ψ

Actuation M1, M2...

Aircraft
FDM

Trajectory

Navigation Vz, ψd

Guidance T, θ, ψ

Stabilization T, φ, θ, ψ

Actuation M1, M2...

Aircraft
FDM

M1, M2...
F

li
g

h
tG

e
a
r

Fig. 4: Two different options to simulate the UAVs. Left,
Paparazzi solution, where the full control stack is available
and trajectories are tracked using a carrot chasing approach.
Right, FlightGear solution: the guidance stage of the control
stack must be ensured by an external process to track
trajectories.

functional nodes that encapsulate the functional software to
evaluate, and that will run on the real system.

A. Interface nodes with simulation backends

This section describes the interface of the simulation
architecture with the three simulators. Prior to this, one must
introduce a specific time management service to ensure syn-
chronization among all the nodes that compose the system,
so that they share timely consistent data.

1) Time management: ROS does not provide dedicated
synchronization signals between nodes, yet it exploits a clock
topic which uses by default the computer’s system clock,
known as “wall-clock”. This can be changed by a node
publishing in this topic, which allows to have a fine control
of simulation execution by setting the speed of time, e.g. to
run faster than real time simulations if the simulators allow
it, or on the contrary to pace the system at the speed of the
slowest simulator.

The SkyScanner package includes a node clock generator
that handles ROS time. It sets the ROS clock by publishing
the wall-clock multiplied by a constant into clock, so ROS
sees time faster or slower than the computer. This constant
can be set arbitrarily in the ROS parameter server, and
time can be stopped and resumed at any time by sending
a message to the clock control topic.

Using the ROS simulated time, the execution is synchro-
nized at two speeds with clock messages on these topics
(figure 5):

• tick, running at 1 Hz, for data gathering and path
planning.

• fast tick, running at 50 Hz, for the UAV guidance and
control loops.

Fig. 5: Clock generator ROS graph

2) MesoNH: The atmosphere ROS node, which runs the
get wind service, queries wind speed from MesoNH off-line
simulated data, stored in a hard drive. Then, the paparazz-
ienvironment and flightgearenvironment nodes feed the wind
into the respective flight simulators. As shown in fig. 6,
these two nodes provide position and time to atmosphere
and put the corresponding wind speed into the simulation.
Any other flight simulator could be attached following the
same procedure.

atmosphere

flightgear
environment

FlightGearReal
wind

Position
Time

paparazzi
environment

PaparazziReal
wind

Position
Time

/get_wind
service

...

/get_wind
service

/get_wind
service

MesoNH
data

Fig. 6: Interface between MesoNH data (the cloud environ-
ment) and the two flight simulators

3) Paparazzi: Communication between UAVs and Pa-
parazzi ground control software is done through the Ivy bus
protocol4 [15]. Involved systems put on the bus messages
that are broadcasted along this channel. Then, subscribers
filter the information they are interested in by using regular
expressions. Each Paparazzi aircraft sends periodical teleme-
try messages with its position, attitude, energy consumption
and task execution status (among others). The ground control
station or other custom software subscribes to these messages
and put back in the up-link commands for the planes.

paparazziuav

Ivy bus

ROS topics

paparazzi
environment Paparazzi

SkyScanner
ROS package

Real
wind

Position

Position / Attitude
Wind measurement
Energy consumption

Task

atmosphere

Position / Attitude
Wind measurement
Energy consumptionTask

UDP

/get_wind
service

Fig. 7: Interface scheme between Paparazzi and SkyScanner
ROS package

4http://www.eei.cena.fr/products/ivy/documentation/ivy/index.html

Fig. 8: ROS graph of paparazziuav

Fig. 7 shows how the SkyScanner ROS package commu-
nicates with the Ivy bus and exposes the data of interest
into ROS topics (possibly after having added noise to the
wind and state estimates). Paparazzi puts on the bus all
the messages received from the UAVs telemetry link. This
includes position, attitude and energy consumption which are
the ones the paparazziuav node reads. As the information
from all aircrafts is in the same channel, each node filters
the ones that matches the matching aircraft id. Fig. 8 shows
the ROS graph of a paparazziuav node and related topics.

On the other hand, paparazziuav puts task messages which
can be waypoints, circles, segments and a combination of
those. Given that the trajectories produced by the path
planner are more complex [9], Paparazzi path options are
quite restricted. Moreover, Paparazzi uses a carrot-chasing
guidance algorithm: if this guidance law is suitable for track-
ing steady circular and linear trajectories, it does not perform
well for the complex trajectories regularly updated by the
trajectory planning node (see section IV-B.1). Approximating
these trajectories with a sequence of close waypoints or short
line segments did not show satisfactory trajectory tracking
behavior.

4) FlightGear: Due to the trajectory following issues of
Paparazzi, we explored an other option and implemented a
back-end for the open source FlightGear flight simulator.
FlightGear was selected for the following reasons:

• It can use JSBSim as Flight Dynamic Model library, the
same one as Paparazzi,

• It comes with numerous aircraft models,
• Most of simulation parameters, commands and states

can be controlled externally with remote protocols.

FlightGear simulation state, inputs, outputs and settings
are organized as a categorized tree. Every value can be
read and modified from the program itself or by an exter-
nal software. Communication between FlightGear and other
software can be achieved by UDP, TCP, HTTP or Telnet.
HTTP and Telnet servers in FlightGear have a slow update
rate, but are easy to use. HTTP allows to show data in a
web browser and Telnet provides the capability of monitoring
and changing values through the command line using client
software available in all operating systems. On the other
hand, communication is faster using UDP and TCP: since
data transfer between FlightGear and the SkyScanner ROS
package should happen at 50 Hz at least, the UDP protocol
was chosen over TCP because it is stateless.

flightgearuav

ROS topics

flightgear
environment

FlightGear

Real
wind

Position
Time

Position
Attitude

Speed

Target heading
Target AGL

/get_wind
service

Wind

Autopilot activation

atmosphere

Fig. 9: Interface scheme between FlightGear and SkyScanner
ROS package

The interface between FlightGear and the SkyScanner
package is shown Figure 9. Dashed lines correspond to the
values sent by UDP. To each line is associated a socket:
position, attitude and speed are received together at fast tick
frequency; the heading and height Above Ground Level
setpoints are transmitted via an other socket at the same
frequency; and finally wind is sent and measured back
in two different channels running at 1 Hz. Other control
messages that are not sent regularly, like autopilot activation
or deactivation, are transmitted using Telnet, and are shown
as dotted lines in fig. 9.

Furthermore, an important difference between Paparazzi
and FlightGear interfaces is that FlightGear sets a target
heading and a target AGL. This is due to the fact that
Paparazzi is a whole autonomous flight control system and
FlightGear just a flight simulator. As a consequence, to use
FlightGear we had to introduce the guidance node which
translates geometric trajectories into heading and height AGL
setpoints (see section IV-B.3).

B. Functional nodes

1) Path planning and mapping integration: The path plan-
ner and mapping libraries have been developed in previous
stages of the project [9], but were not designed to work
in a time managed environment, nor to communicate with
realistic simulators. Because of the amount of data exchanged
between these two libraries (the current map of the cloud),
we opted to integrate them in a single pathplanner ROS node,
that takes as inputs for mapping and planning the wind and
UAV state estimates, and outputs the trajectories.

At each tick message, the module updates the mapping
according to the received data. The mapping and planning
algorithms have not been optimized and do not operate in
real-time, hence some time management is needed. The loop
works as shown in Fig. 10 for every drone in the fleet. While
a plan is being executed, the next one is created. At the
beginning of each cycle, e.g. t = t0, the state of planner’s
virtual UAVs are updated to the expected position at t0+∆tp,
where ∆tp is the planner’s cycle period. This time is actually

planning phase

execution phase

t0 t0+Δtp t0+2Δtp

plan n+1

plan n plan n+1

plan n+2

t0
t0+Δtp t0+2Δtp

execution
planning

Fig. 10: Planning chronogram

the fraction of the planning that is executed. Then, a new plan
for the next period is generated from this base position.

The time horizon of the planned trajectories depends on
the desired optimization level and is not formally bounded,
but it is limited in practice to 10 seconds, which is a sufficient
time span to plan new trajectories, while not being too far
in the future, where the map becomes unreliable.

Fig. 11 presents the input and output topics related to
the pathplanner node. It takes the position and wind mea-
surements from each aircraft namespace. After processing
the data, the library gives two types of output: a set of
commands for the plane, turn radius and propulsion power;
and a sequence of expected states, position and attitude,
which forms the trajectory to track. Using these outputs, the
node forms a trajectory expressed as mathematical functions,
which are fed to the guidance controller (encoding trajectory
as time valued mathematical functions is a requirement from
the chosen guidance law [14]).

Fig. 11: Path planner ROS graph

2) Improving mapping through machine learning: The
mapping algorithm computes a map of the atmosphere using
GPR. Its prediction accuracy depends on some process pa-
rameters that can be improved from observed data. This opti-
mization is a very time-consuming operation, and is therefore
integrated within a different node: the gpr optimizer node.
Fig. 12 shows its inputs, wind samples from each UAV;
and outputs, the new GPR hyperparameters, which are then
exploited by the mapping algorithm. The execution of this
optimization process is not mandatory, so the implementation
as an independent ROS node allows to not launch it if we
want to reduce the computer load.

While the current implementation of this node is very
specific to the GPR mapping approach, it is an instance of a
low-rate complex procedure. Other learning or optimization
algorithms that behave similarly could be integrated within
the same architecture.

Fig. 12: GP optimizer ROS graph

3) The guidance node: The guidance node, fig. 13 takes
the mathematical expression of a trajectory and the actual
position of the aircraft to compute the heading that will
lead the UAV to the right path, using the law presented
in [14]. This node first determines which part of the track
to follow and accordingly computes headings. The Height
AGL setpoints are directly taken from the expected position,
leaving the task of tracking it to FlightGear, which is able
to do so.

Fig. 13: guidance node ROS graph

C. Deploying multiple UAVs

The main reason of designing this architecture is to be
able to deploy easily a reasonable number of UAVs, not
necessarily homogeneous: each UAV can have its own set
of parameters. Every aircraft to be launched runs in a
different namespace. Involved nodes, topics and parameters
are preempted by an aircraft code so that no conflicts occur.
Common nodes like paparazziuav or paparazzienvironment
nodes run on their own namespace but they read and put
messages on the aircrafts namespaces. Note also that the
system could work with aircrafts running in different flight
simulator backends.

Figure 14 shows all the developed ROS nodes to im-
plement the simulation of the SkyScanner package, and
Figure 15 shows the whole ROS architecture for the UAV
ac 1 (“AirCraft 1”). The source code of the ROS nodes that
encapsulate the Paparazzi and FlightGear simulators can be
found in this repository5.

5https://github.com/rafael1193/skyscannner integration

https://github.com/rafael1193/skyscannner_integration

Fig. 15: ROS graph of the complete FlightGear execution loop.

Mapping &
Path planning

Clock generator

Simulated
UAVs

Paparazzi FlightGear

FlightGear
environment

Paparazzi
environment

Atmosphere

FlightGear UAVs Paparazzi UAVs

Guidance

Hyper-parameter
optimization

MesoNH

Fig. 14: All the ROS nodes involved in the SkyScanner
package when running in simulation (blue ellipses). This
figure depicts the ROS implementation of the conceptual
architecture shown in figure 3.

D. Illustration

The overall architecture has been fully implemented, and
can be used to evaluate the developed algorithms to achieve
the cloud probing mission. Figure 16 show an example of the
achieved trajectory in a simulation trial. It is actually thanks
to the simulation that the poor performance of Paparazzi to
properly track complex trajectories has been assessed, which
called for the development of the guidance law presented in
[14], and the use of the FlightGear flight simulator. Indeed,
before the fully integrated simulation, the cloud mapping
and trajectory software, which constitute the heart of the

system, were simulated in an open-loop fashion, the planned
trajectory being considered faithfully executed by the UAVs:
such a non-integrated simulation does not allow to assess the
overall system integration issues.

V. CONCLUSION

This paper presented the development of a system simu-
lation infrastructure for a fleet of UAVs designed to probe
clouds, according to an adaptive sampling scheme. Such
an infrastructure is essential to validate software integration
before field trials: it allows to evaluate the required communi-
cation bandwidths, the proper functioning of each developed
functionality, and their sound integration. It also allows to
assess statistical performances of the developed algorithms,
by thoroughly testing the developed system under various
circumstances, which span from the definition of algorithms
parameters to the simulated environments. In this work, the
use of ROS to integrate all the developed functions and the
simulators has shown to be very efficient, particularly by
allowing easily to control time.

Future work will consider the development of a distributed
architecture, in which the cloud mapping and trajectory plan-
ning processes would run on-board the UAVs, thus removing
the need for a permanent communication link with the
ground station. The proposed simulation infrastructure will
undoubtedly play a key role to support these developments
and assess their validity: thanks to its modular structure, its
evolution can easily be foreseen.

REFERENCES

[1] J. Elston, B. Argrow, M. Stachura, D. Weibel, D. Lawrence, and
D. Pope, “Overview of small fixed-wing unmanned aircraft for
meteorological sampling,” Journal of Atmospheric and Oceanic
Technology, vol. 32, pp. 97–115, 2015.

[2] J. Elston and B. Argrow, “Energy efficient UAS flight planning for
characterizing features of supercell thunderstorms,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2014, pp.
6555–6560.

Fig. 16: Trajectories resulting from the simulation of the exploration of a cloud by two UAVs

[3] N. R. Lawrance and S. Sukkarieh, “Autonomous exploration of a
wind field with a gliding aircraft,” Journal of Guidance, Control, and
Dynamics, vol. 34, no. 3, pp. 719–733, 2011.

[4] S. Ravela, T. Vigil, and I. Sleder, “Tracking and Mapping Coherent
Structures,” in International Conference on Computational Science
(ICCS), 2013.

[5] J. W. Langelaan, J. Spletzer, C. Montella, and J. Grenestedt, “Wind
field estimation for autonomous dynamic soaring,” in Robotics and
Automation (ICRA), 2012 IEEE International Conference on, 2012.

[6] M. Michini, M. A. Hsieh, E. Forgoston, and I. B. Schwartz, “Robotic
tracking of coherent structures in flows,” Robotics, IEEE Transactions
on, vol. 30, no. 3, pp. 593–603, 2014.

[7] J.-P. Condomines, M. Bronz, G. Hattenberger, and J.-F. Erdelyi,
“Experimental wind field estimation and aircraft identification,” in
International Micro Air Vehicles Conference and Flight Competition
(IMAV), Aachen (Germany), Sept. 2015.

[8] L. Rodriguez, J. Cobano, and A. Ollero, “Wind characterization
and mapping using fixed-wing small unmanned aerial systems,” in
International Conference on Unmanned Aircraft Systems, Arlington,
VA (USA), June 2016.

[9] C. Reymann, A. Renzaglia, F. Lamraoui, M. Bronz, and S. Lacroix,
“Adaptive sampling of cumulus clouds with a fleet of UAVs,” Au-
tonomous robots, Jan. 2017.

[10] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3. Kobe,
Japan, 2009.

[11] J. P. Lafore, J. Stein, N. Asencio, P. Bougeault, V. Ducrocq, J. Duron,
C. Fischer, P. Héreil, P. Mascart, V. Masson, J. P. Pinty, J. L.
Redelsperger, E. Richard, and J. Vilà-Guerau de Arellano, “The Meso-
NH Atmospheric Simulation System. Part I: adiabatic formulation and
control simulations,” Annales Geophysicae, vol. 16, no. 1, pp. 90–109,
1998.

[12] G. Hattenberger, M. Bronz, and M. Gorraz, “Using the Paparazzi UAV
System for Scientific Research,” in International Micro Air Vehicle
Conference and Competition, 2014.

[13] A. R. Perry, “The flightgear flight simulator,” in Proceedings of the
USENIX Annual Technical Conference, 2004.

[14] H. G. de Marina, Y. A. Kapitanyuk, M. Bronz, G. Hattenberger, and
M. Cao, “Guidance algorithm for smooth trajectory tracking of a fixed
wing UAV flying in wind flows,” in IEEE International Conference
on Robotics and Automation, Singapore, 2017.

[15] S. Chatty, “The ivy software bus,” ENAC, Tech. Rep., 2003.

	Introduction
	Probing clouds with UAVs
	Problem statement
	Related work
	Overall approach and architecture

	Simulation overview
	Simulating the environment
	Simulating the UAVs

	Simulation implementation
	Interface nodes with simulation backends
	Time management
	MesoNH
	Paparazzi
	FlightGear

	Functional nodes
	Path planning and mapping integration
	Improving mapping through machine learning
	The guidance node

	Deploying multiple UAVs
	Illustration

	Conclusion
	References

