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theorem on the discrete hypercube

Laurent Veysseire

May 13, 2017

Abstract

In this paper, we prove a semigroup version of the Ahlswede–Daykin
four functions theorem on the discrete hypercube, and of its general-
ization to 2n functions.

Introduction

The Ahlshwede–Daykin four function theorem is an inequality from
which the more classical FKG inequality[3] can be easily derived. It
tells that if four nonnegative functions α, β, γ, δ on the discrete hyper-
cube satisfy the Ahlshwede–Daykin condition

α(x)β(y) ≤ γ(x ∨ y)δ(x ∧ y)

then we have
∫
α
∫
β ≤

∫
γ
∫
δ, where the integrals are taken with

respect to the counting measure on the discrete hypercube.
In this paper, we prove the stability of the Ahlshwede–Daykin con-

dition under the heat flow. The stability of this condition under disjoint
convolution has been proved in [4].

The Ahlshwede–Daykin four function theorem has been generalized
to 2n functions, independently by Aharoni and Keich in [1] and Rinott
and Saks in [6]. We show that the generalized Ahlshwede–Daykin
condition appearing in this 2n functions theorem is also preserved by
the heat flow.

The original four functions theorem and 2n functions theorem easily
follow from the stability of the generalized Ahlshwede–Daykin condi-
tion under the heat flow, by taking the limit of those inequalities when
the time tends to +∞.
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1 The four functions theorem

We will denote by Hn := {0, 1}[|0,n−1|] the discrete hypercube of di-
mension n. For any two elements x and y of Hn, we define x ∨ y and
x ∧ y in the following way:

∀i ∈ [|0, n− 1|], (x ∨ y)i := max(xi, yi) and (x ∧ y)i := min(xi, yi).

We consider the following set of 4-tuples of functions on Hn:

An :=

{
(α, β, γ, δ) ∈

(
RHn+

)4

|∀x, y ∈ Hn, α(x)β(y) ≤ γ(x ∨ y)δ(x ∧ y)

}
.

The Ahlswede–Daykin four functions theorem [2] is the following
statement.

Theorem 1 Let (α, β, γ, δ) ∈ An. Then we have:∫
α

∫
β ≤

∫
γ

∫
δ,

where
∫
f =

∑
x∈Hn f(x) for any real function f on Hn.

Remark 2 Theorem 1 also holds if we integrate with respect to a mea-
sure whose density ρ with respect to the counting measure has the fol-
lowing form:

ρ(x) =
∏

i∈[|0,n−1|]

(1xi=1pi + 1xi=0qi),

where the pi’s and qi’s are nonnegative numbers. This kind of measure
on Hn is the product of n measures on the two point space.

Indeed, such ρ satisfy

∀x, y ∈ Hn, ρ(x)ρ(y) = ρ(x ∨ y)ρ(x ∧ y).

Thus, (α, β, γ, δ) ∈ An implies (αρ, βρ, γρ, δρ) ∈ An too, so we can
apply Theorem 1 to this latter one 4-tuple of functions.

Now we introduce a Markov semigroup on Hn.
For any element x of Hn, and any i ∈ [|0, n− 1|], we denote by x̃i

the element of Hn defined by

(x̃i)j :=

{
xj if j 6= i
1− xi if i = j.

For any i ∈ [|0, n − 1|], we denote by L(i) the following operator
acting on real-valued functions on Hn:

L(i)f(x) := f(x̃i)− f(x).
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We define the Markov semigroup (P t)t∈R+
by P t = etL, where the

generator L of the semigroup takes the following form:

L =
∑

i∈[|0,n−1|]

λiL(i),

with λi > 0 the jumping rate in the direction i.
Now, we can state our semigroup version of the four functions the-

orem.

Theorem 3 Let (α, β, γ, δ) ∈ An, then we have

∀t ≥ 0, (P tα, P tβ, P tγ, P tδ) ∈ An.

Remark 4 Since the uniform measure on Hn is the unique reversible
measure of (P t), taking the limit when t tends to +∞ gives back The-
orem 1.

Corollary 5 Let f be a log-supermodular function on Hn and g be a
nonincreasing log-modular function on Hn, then f∗g is log-supermodular,
where ∗ is the usual convolution operator on Hn ' (Z/2Z)n.

Proof: Log-supermodular functions on Hn are nonnegative functions
f that satisfy f(x)f(y) ≤ f(x ∨ y)f(x ∧ y) for all x, y ∈ Hn, which
is equivalent to (f, f, f, f) ∈ An. Log-modular functions on Hn are
nonnegative functions g that satisfy g(x)g(y) = g(x ∨ y)g(x ∧ y) for
all x, y ∈ Hn. Log-modular functions can be written as a product of
functions: g(x) =

∏n−1
i=0 gi(xi) where the gi’s are nonegative functions

of {0, 1}.
One can rewrite it g(x) = C

∏n−1
i=0 p

xi
i (1 − pi)

1−xi where C is a

nonnegative constant and pi = gi(1)
gi(0)+gi(1) (the pi’s are well defined

except in the trivial case where g = 0). If g is nonincreasing, then
all the pi’s are smaller than 1

2 . If ∀i, pi < 1
2 , we set λi = − 1

2 ln(1 −
2pi), and we have, for P t the Markov semigroup generated by L =∑
i∈[|0,n−1|] λiL(i),

f ∗ g = CP 1f,

so according to Theorem 3, (P 1f, P 1f, P 1f, P 1f) ∈ An, thus P 1f is
log-supermodular and so is f ∗ g.

The case where some of the pi’s are equal to 1
2 can be deduced from

above by a convergence argument.�
The fact that P t is a Markov semigroup implies that for any non-

negative function f , P tf is a nonnegative function too. So to prove
Theorem 3, it only remains to check that

∀x, y ∈ Hn, P tα(x)P tβ(y) ≤ P tγ(x ∨ y)P tδ(x ∧ y).

We first prove the theorem in the case n = 1.
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In order to simplify the notations, and to spare parentheses and
the ink needed for printing them, we will write αx instead of α(x), and
likewise for the other functions. We also define the following quantities,
which are nonnegative if (α, β, γ, δ) ∈ A1:

∆00 := γ0δ0 − α0β0 ∆01 := γ1δ0 − α0β1

∆10 := γ1δ0 − α1β0 ∆11 := γ1δ1 − α1β1.

The quantities ∆00(t), ∆01(t), ∆10(t) and ∆11(t) are defined on a
similar way, by replacing the functions α, β, γ and δ with P tα, P tβ,
P tγ and P tδ.

The following lemma is a key argument.

Lemma 6 If (α, β, γ, δ) ∈ A1, then we have

α0β1 + α1β0 ≤ γ0δ1 + γ1δ0.

Proof of Lemma 6: If γ1δ0 = 0, then we have α0β1 = α1β0 = 0
because ∆01 and ∆10 are nonnegative (α and β are nonnegative too),
so we have to prove γ0δ1 ≥ 0, which is true.

If γ1δ0 > 0, then we can write γ0 ≥ α0β0

δ0
because ∆00 ≥ 0, and

δ1 ≥ α1β1

γ1
because ∆11 ≥ 0. So we get:

γ0δ1+γ1δ0−α0β1−α1β0 ≥
α0α1β0β1

γ1δ0
+γ1δ0−α0β1−α1β0 =

∆01∆10

γ1δ0
≥ 0.�

Now we prove Theorem 3 by two different ways.
First proof of Theorem 3: In the case n = 1, we have

P t = etL = eλ0tL(0) = I +
1

2
(1− e−2λ0t)L(0).

So for a fixed t ≥ 0, we set p = 1−e−2λ0t

2 ∈ [0, 1
2 ), and we have

P tf(0) = (1− p)f0 + pf1, and P tf(1) = pf0 + (1− p)f1.

Then we have

∆00(t) = ((1− p)γ0 + pγ1)((1− p)δ0 + pδ1)− ((1− p)α0 + pα1)((1− p)β0 + pβ1)

= (1− p)2∆00 + p2∆11 + p(1− p)(γ0δ1 + γ1δ0 − α0β1 − α1β0) ≥ 0,

where we used Lemma 6 to get the nonnegativity of the last term. We
have ∆11(t) ≥ 0 with the same proof, by swapping p and 1 − p. We
also have

∆01(t) = (pγ0 + (1− p)γ1)((1− p)δ0 + pδ1)− ((1− p)α0 + pα1)(pβ0 + (1− p)β1)

= p(1− p)(∆00 + ∆11) + p2(γ0δ1 + γ1δ0 − α0β1 − α1β0) + (1− 2p)∆01 ≥ 0,
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where we used Lemma 6 to lower bound the second term. The proof
of the nonnegativity of ∆10(t) is similar. So we are done for the case
n = 1.

Now we assume n ≥ 2. We can remark that the L(i) commute with

each other, so we have P t =
∏
i∈[|0,n−1|] eλitL(i) where the order of

the terms in the product does not matter, because they commute with
each other. So to prove Theorem 3, it suffices to prove that for each
i ∈ [|0, n− 1|], the operator eλitL(i) stabilizes An.

Let i ∈ [|0, n − 1|]. For any x ∈ Hn, we set x̄0 the element of Hn
whose coordinates are the same than the ones of x except the ith which
is replaced with 0, and we define x̄1 = ˜̄x0i likewise. Let x and y be
two fixed points of Hn. We define the four functions α′, β′, γ′ and δ′

on H1 on the following way:

α′u := α(x̄u) β′u := β(ȳu)
γ′u := γ(x ∨ yu) δ′u := δ(x ∧ yu)

The fact that (α′, β′, γ′, δ′) ∈ A1 trivially follows from (α, β, γ, δ) ∈ An.
We also have

etλiL(i)α(x) = etλiL(0)α′(xi) etλiL(i)β(y) = etλiL(0)β′(yi)
etλiL(i)γ(x ∨ y) = etλiL(0)γ′(xi ∨ yi) etλiL(i)δ(x ∧ y) = etλiL(0)δ′(xi ∧ yi)

.

So, applying Theorem 3 in the one dimensional case to (α′, β′, γ′, δ′)
gives us

etλiL(i)α(x)etλiL(i)β(y) ≤ etλiL(i)γ(x ∨ y)etλiL(i)δ(x ∧ y).

This inequality being true for every x, y ∈ Hn, we have

(etλiL(i)α, etλiL(i)β, etλiL(i)γ, etλiL(i)δ) ∈ An.

Thus etλiL(i) stabilizes An and so does P t.�
We also give a second proof of Theorem 3, which should be more

likely generalizable to semigroups with more compicated generators
than the first one.
Second proof of Theorem 3: Let A∗n be the subset of An in which
we have the strict inequalities

α(x)β(y) < γ(x ∨ y)δ(x ∧ y).

To prove that P t stabilizes An, it suffices to prove that it stabilizes A∗n,
because P t is continuous and An is the closure of A∗n. Let (α, β, γ, δ) ∈
A∗n. Assume that at some time t, we have (P tα, P tβ, P tγ, P tδ) /∈
A∗n. Because of the continuity in t of P t, there exists a first time
T > 0 for which (PTα, PTβ, PT γ, PT δ) /∈ A∗n. So we have ∀t <
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T, (P tα, P tβ, P tγ, P tδ) ∈ A∗n and there exists some x and y in Hn
such that ∆xy(T ) = 0, with the notation

∆xy(t) := P tγ(x ∨ y)P tδ(x ∧ y)− P tα(x)P tβ(y).

We have for every t ≥ 0

d∆xy(t)

dt
= LP tγ(x∨y)P tδ(x∧y)+P tγ(x∨y)LP tδ(x∧y)−LP tα(x)P tβ(y)−P tα(x)LP tβ(y).

In the case n = 1, we have

d∆00(t)

dt

∣∣∣∣
t=0

= λ0 [(γ1 − γ0)δ0 + γ0(δ1 − δ0)− (α1 − α0)β0 − α0(β1 − β0)]

= λ0 [−2∆00 + γ1δ0 + γ0δ1 − α1β0 − α0β1] ≥ −2λ0∆00,

where we used Lemma 6 for the last inequality. Doing the same com-

putation, we get d∆11(t)
dt

∣∣∣
t=0
≥ −2λ0∆11. We have

d∆01(t)

dt

∣∣∣∣
t=0

= λ0 [(γ0 − γ1)δ0 + γ1(δ1 − δ0)− (α1 − α0)β1 − α0(β0 − β1)]

= λ0 [−2∆01 + ∆00 + ∆11] ≥ −2λ0∆01.

And likewise, d∆10(t)
dt

∣∣∣
t=0
≥ −2λ0∆10.

Now in the case when n ≥ 2, using the same (α′, β′, γ′, δ′) as in the
first proof, and the differential inequations obtained in the case n = 1,
we get for every x, y ∈ Hn and every i ∈ [|0, n− 1|],

L(i)γ(x∨y)δ(x∧y)+γ(x∨y)L(i)δ(x∧y)−L(i)α(x)β(y)−α(x)L(i)β(y) ≥ −2∆xy.

Thus we have

d∆xy
dt

∣∣∣
t=0

=
∑
i∈[|0,n−1|] λi[L(i)γ(x∨y)δ(x∧y)+γ(x∨y)L(i)δ(x∧y)−L(i)α(x)β(y)−α(x)L(i)β(y)]

≥−2
∑
i∈[|0,n−1|] λi∆xy.

So, setting λ :=
∑
i∈[|0,n−1|] λi, and replacing (α, β, γ, δ) with (P tα, P tβ, P tγ, P tγ),

we get for any 0 ≤ t ≤ T

d∆xy(t)

dt
≥ −2λ∆xy(t).

Integrating this inequality between 0 and T yields

∆xy(T ) ≥ ∆xy(0)e−2λT > 0.

But there must exist x and y such that ∆xy(T ) = 0, so our assumption
that P t does not stabilize A∗n was wrong.�
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2 generalization to 2n functions

Theorem 1 has been generalized to 2n functions, independently by
Aharoni and Keich [1], and Rinott and Saks [6]. The proof we present
here is widely inspired from the one of [1].

Definition 7 Let 0 < n ∈ N, and x = (x1, . . . , xn) ∈ (Hm)n. Then
we set, for 1 ≤ i ≤ n:

ϕi(x) :=
∨

S⊂[|1,n|]

|S|=i

∧
j∈S

xj

 .

A other way to say that is to set ϕi(x)j , the jth coordinate of ϕi(x),
to be 1 if at least i xk among the n have their jth coordinate equal to
1, and to set ϕi(x)j = 0 otherwise.

We also define the following set of 2n-tuples of functions:

Bnm :=

{
(f1, . . . , fn, g1, . . . , gn) ∈ (RHm+ )2n|∀x ∈ (Hm)n,

n∏
i=1

fi(xi) ≤
n∏
i=1

gi(ϕi(x))

}
.

Then the 2n functions theorem is the following one:

Theorem 8 Let (f1, . . . , fn, g1, . . . , gn) ∈ Bnm. Then we have:∏∫
fi ≤

∏∫
gi.

We will show the following semigroup version of this theorem:

Theorem 9 Let (f1, . . . , fn, g1, . . . , gn) ∈ Bnm, and P t = etL be the
Markov semigroup on the state space Hm, generated by L =

∑
j∈[|0,m−1|] λjL(j).

Then we have, for all t ≥ 0

(P tf1, . . . , P
tfn, P

tg1, . . . , P
tgn) ∈ Bnm

Proof : Like for Theorem 3, we first prove Theorem 9 in the one
dimensional case (m = 1).
Step 1: We first reduce the problem to simple cases.

We may assume that for each i ∈ [|1, n|], fi(0), fi(1), gi(0) and
gi(1) are positive. Indeed, for ε > 0, we may set fεi (x) = max(ε′, fi(x))

and gεi (x) = max(ε, gi(x)), where ε′ = inf1≤k≤n
(

εn

Mn−k

) 1
k with M =

supi,xfi(x).
Let us check that (fε1 , . . . , f

ε
n, g

ε
1, . . . , g

ε
n) ∈ Bnm. Let x ∈ {0, 1}n. If

for every 1 ≤ i ≤ n, we have fi(xi) ≥ ε′, then
∏
fεi (xi) =

∏
fi(xi) ≤
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∏
gi(ϕi(x)) ≤

∏
gεi (ϕi(x)). Otherwise, there exist k indexes i satisfy-

ing fi(xi) < ε′, where 1 ≤ k ≤ n, and we have
∏
fεi (xi) ≤ ε′kMn−k ≤

εn ≤
∏
gεi (ϕi(x)).

Furthermore, we have ε′ ≤ ε (just take k = n), so fεi tends to fi
and gεi tends to gi when ε tends to 0. Thus if Theorem 9 is true for fεi
and gεi , it also holds for fi and gi by making ε tend to 0.

We can also assume that
∏n
i=1 fi(0) =

∏n
i=1 gi(0) = 1. Indeed, if∏n

i=1 fi(0) <
∏n
i=1 gi(0), we can set

g̃1(x) =

{
g1(1) if x = 1∏n
i=1 fi(0)∏n
i=2 gi(0) if x = 0

Then we have (f1, . . . , fn, g̃1, g2, . . . , gn) ∈ Bn1 , and g1 ≥ g̃1, so P tg1 ≥
P tg̃1. So if (P tf1, . . . , P

tfn, P
tg̃1, P

tg2, . . . , P
tgn) belongs to Bn1 , the

same is true for (P tf1, . . . , P
tfn, P

tg1, . . . , P
tgn). And we can as-

sume that
∏n
i=1 fi(0) = 1 by dividing the functions fi and gi by

(
∏n
i=1 fi(0))

1
n .

We set αi = ln
(
fi(1)
fi(0)

)
and βi = ln

(
gi(1)
gi(0)

)
. We can assume that

α1 ≥ α2 ≥ . . . ≥ αn by changing the order of the fi’s, because
ϕi(σ.x) = ϕ(x), where σ ∈ Sn, x ∈ {0, 1}n and σ.x ∈ {0, 1}n is
defined by (σ.x)i = xσ(i).
Step 2:We prove Theorem 9 in our simple case thanks to a lemma.

For a subset S ⊂ [|1, n|], and for 0 ≤ k1 ≤ k2 ≤ n, we set:

ΛS,k1,k2
:= {C ⊂ [|1, n|]|]C = k2, ](C ∩ S) ≥ k1}.

The lemma at the core of the proof is the following one:

Lemma 10 Let S ⊂ [|1, n|], and 0 ≤ k1 ≤ k2 ≤ n. If (αi)i∈[|1,n|] and
(βi)i∈[|1,n|] are two sequences such that αi is nonincreasing and for all

1 ≤ i ≤ n,
∑i
j=1 αj ≤

∑i
j=1 βj, then the following inequality holds:∑

C∈ΛS,k1,k2

exp(
∑
i∈C

αi) ≤
∑

C∈Λ[|1,]S|],k1,k2

exp(
∑
i∈C

βi).

In [1], the same inequality was shown, but only for the sets Λk =
{C ⊂ S, ]C = k}.

Let us see how Lemma 10 implies Theorem 9.
In our simple case, we have

∏n
i=1 fi(xi) = exp(

∑
i|xi=1 αi) and∏n

i=1 gi(xi) = exp(
∑
i|xi=1 βi). For t > 0, we have for any f : {0, 1} 7→

R, P tf(x) = (1 − p)f(x) + pf(1 − x) with p = p(t) = 1−e−2λ0t

2 < 1
2 .
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Let x ∈ {0, 1}n, we set S = {i|xi = 1} ⊂ [|1, n|]. Then we have:

n∏
i=1

P tfi(xi) =
∑

C⊂[|1,n|]

n∏
i=1

fi(1C(i))p](C4S)(1− p)n−](C4S)

=
∑

C⊂[|1,n|]

exp(
∑
i∈C

αi)p
](C4S)(1− p)n−](C4S)

=
∑

0≤k1≤k2≤n

∑
C⊂[|1,n|]
]C=k2

](C∩S)=k1

exp(
∑
i∈C

αi)p
]S+k2−2k1(1− p)n−]S−k2+2k1

=
∑

0≤k2≤n

 ∑
C∈ΛS,0,k2

exp(
∑
i∈C

αi)p
]S+k2(1− p)n−]S−k2

+
∑

1≤k1≤k2

∑
C∈ΛS,k1,k2

exp(
∑
i∈C

αi)p
]S+k2−2k1(1− p)n−]S−k2+2k1(1− (

p

1− p
)2)

 ,

where C 4 S = (C ∪ S) \ (C ∩ S) is the symmetric difference of the
sets C and S, and where we used an Abel transform to get the last
equality. We can rewrite this equation

n∏
i=1

P tfi(xi) =
∑

0≤k1≤k2≤n

PS,k1,k2
R]S,k1,k2

,

with
PS,k1,k2

:=
∑

C∈ΛS,k1,k2

exp(
∑
i∈C

αi)

and

R]S,k1,k2
:=

{
p]S+k2(1− p)n−]S−k2 if k1 = 0
(1− ( p

1−p )2)p]S+k2−2k1(1− p)n−]S−k2+2k1 if k1 ≥ 1.

For 1 ≤ i ≤ n, we have ϕi(x) = 1 if and only if i ≤ ]S. Thus, doing
as above, we get:

n∏
i=1

P tgi(ϕi(x)) =
∑

0≤k1≤k2≤n

Q]S,k1,k2
R]S,k1,k2

with
Q]S,k1,k2

:=
∑

C∈Λ[|1,]S|],k1,k2

exp(
∑
i∈C

βi).

From Lemma 10, we get PS,k1,k2
≤ Q]S,k1,k2

, and since 0 < p < 1
2 ,

we have R]S,k1,k2
≥ 0. Thus we get the desired inequality:

n∏
i=1

P tfi(xi) ≤
n∏
i=1

P tgi(ϕi(x)).
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Step 3: We prove Theorem 9 in the general m-dimensional case. We
can repeat the argument of the first proof of Theorem 3. Again, we
only have to show that e−λitL(i) stabilizes Bnm. Let i ∈ [|0,m − 1|]
and x = (x1, . . . , xn) ∈ (Hm)n. Let (f1, . . . , fn, g1, . . . , gn) ∈ Bnm. We
set, for each 1 ≤ j ≤ n, and for u ∈ {0, 1}, f̄j(u) := fj(xju) and

ḡj(u) := gj(ϕj(x)u), where for any y ∈ Hm, ȳu denotes the element
of Hm whose coordinates are the same that the ones of y, except the
i-th, which is set to be u.

We have (f̄1, . . . , f̄n, ḡ1, . . . , ḡn) ∈ B1
m, and for all 1 ≤ j ≤ n,

eλitL(i)fj(xj) = eλitL(0) f̄j(xji)

eλitL(i)gj(ϕj(x)) = eλitL(0) ḡj(ϕj(x)i).

Then, applying Theorem 9 in dimension 1 to (f̄1, . . . , f̄n, ḡ1, . . . , ḡn)
shows that

n∏
j=1

eλitL(i)fj(xj) ≤
n∏
j=1

eλitL(i)gj(ϕj(x)).

Thus eλitL(i) stabilizes Bnm, and so does P t =
∏m−1
i=0 etλiL(i) .�

Remark 11 One can also do as in the second proof of Theorem 3
to prove Theorem 9. We can show, using Lemma 10 with (k1, k2) =
(]S − 1, ]S) or (]S, ]S + 1), that

d

dt
∆x(t) ≥ −2

m−1∑
i=0

λi∆x(t),

with x ∈ Hmn and

∆x(t) :=

n∏
i=1

P tgi(ϕi(x))−
n∏
i=1

P tfi(xi).

It remains to prove Lemma 10. As in [1], we use a majorization
argument. We first recall some basic facts about majorization, which
can be found in [5].

Let N ∈ N and x ∈ RN . Then for 1 ≤ i ≤ N , we denote by x[i] the

ith greatest coordinate of x. That is, x[i] = xσ(i) for some permutation
σ ∈ SN satisfying xσ(1) ≥ xσ(2) ≥ . . . ≥ xσ(N).

Definition 12 Let x, y ∈ RN . We say that y majorizes x, and we
write it x ≺ y, if for each 1 ≤ i ≤ N − 1, we have

i∑
j=1

x[j] ≤
i∑

j=1

y[j],

10



and
N∑
j=1

x[j] =

N∑
j=1

y[j].

We say that y weakly majorizes x, and we write it x ≺
w
y, if for

each 1 ≤ i ≤ N , we have

i∑
j=1

x[j] ≤
i∑

j=1

y[j].

The following propostion gives another definition for majorization.

proposition 13 Let x, y ∈ RN . Then x ≺ y if and only if for any
convex function f : R→ R, we have

N∑
i=1

f(xi) ≤
N∑
i=1

f(yi).

We only need the following Lemma, which is a direct consequence of
this proposition.

Lemma 14 Let x, y ∈ RN . If x ≺
w
y, then we have

N∑
i=1

exi ≤
N∑
i=1

eyi .

Proof of Lemma 14: Let M ∈ R, we set x′ = (x1, . . . , xN ,−M) ∈
RN+1 and y′ = (y1, . . . , yN ,−M −

∑N
i=1(yi − xi)) ∈ RN+1. If x ≺

w
y,

then for M large enough, we have x′ ≺ y′. Applying Proposition 13
to x′ and y′, with f = exp and making M tend to +∞ gives us the
desired inequality.�

Now we can prove Lemma 10.
Proof of Lemma 10: We first show that∑

C∈ΛS,k1,k2

exp(
∑
i∈C

αi) ≤
∑

C∈Λ[|1,]S|],k1,k2

exp(
∑
i∈C

αi),

so it is sufficient to prove Lemma 10 in the case where S = [|1, ]S|].
Let S ⊂ [|1, n|]. For n1, n2, n3, n4 ∈ [|1, n|], we set Pn1,n2,n3,n4

the
set of every C ⊂ [|1, n|] satisfying

](C ∩ S ∩ [|1, ]S|]) = n1

](C ∩ S ∩ [|]S + 1, n|]) = n2

](C ∩ SC ∩ [|1, ]S|]) = n3

](C ∩ SC ∩ [|]S + 1, n|]) = n4,

11



where SC = [|1, n|] \ S.
Then we have

ΛS,k1,k2
=

⊔
n1+n2≥k1

n1+n2+n3+n4=k2

Pn1,n2,n3,n4

and
Λ[|1,]S|],k1,k2

=
⊔

n1+n3≥k1
n1+n2+n3+n4=k2

Pn1,n2,n3,n4
.

Thus, we have∑
C∈Λ[|1,]S|],k1,k2

exp(
∑
i∈C

αi)−
∑

C∈ΛS,k1,k2

exp(
∑
i∈C

αi) =

∑
n1+n2<k1
n1+n3≥k1

n1+n2+n3+n4=k2

 ∑
C∈Pn1,n2,n3,n4

exp(
∑
i∈C

αi)−
∑

C∈Pn1,n3,n2,n4

exp(
∑
i∈C

αi)

 .

(1)

Let n1, n2, n3, n4 ∈ N such that n1 + n2 < k1, n1 + n3 ≥ k1 and
n1 +n2 +n3 +n4. One trivially has n3 > n2. We construct a bipartite
graph whose vertices are the elements of Pn1,n2,n3,n4 t Pn1,n3,n2,n4 , by
putting an edge between C ∈ Pn1,n2,n3,n4

and C ′ ∈ Pn1,n3,n2,n4
(and

we write it C ∼ C ′) if and only if the following conditions are satisfied:
C ∩ S ∩ [|1, ]S|] = C ′ ∩ S ∩ [|1, ]S|]

C ∩ S ∩ [|]S + 1, n|]⊂ C ′ ∩ S ∩ [|]S + 1, n|]
C ∩ SC ∩ [|1, ]S|]⊃ C ′ ∩ SC ∩ [|1, ]S|]

C ∩ SC ∩ [|]S + 1, n|] = C ∩ SC ∩ [|]S + 1, n|].

More simply said, we have C ∼ C ′ if and only if C ′ can be obtained
from C by removing n3 − n2 elements of C ∩ SC ∩ [|1, ]S|] and adding
n3−n2 elements of CC ∩S ∩ [|]S+ 1, n|], or symetrically if and only if
C can be obtained from C ′ by removing n3 − n2 elements of C ′ ∩ S ∩
[|]S + 1, n|] and adding n3 − n2 elements of C ′C ∩ SC ∩ [|1, ]S|].

Since αi is nonincreasing, the sum of n3 − n2 αi’s with i ≤ ]S is
always greater than or equals to the sum of n3 − n2 αi’s with i > ]S.
Thus, if C ∈ Pn1,n2,n3,n4 and C ′ ∈ Pn1,n3,n2,n4 are such that C ∼ C ′,
then we have

∑
i∈C αi ≥

∑
i∈C′ αi. Furthermore, any vertex of the

graph has exactly N =
(

n3

n3−n2

)(
]S−](S∩[|1,]S|])−n2

n3−n2

)
neighbors. Then,
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we have:

0 ≤ 1

N

∑
C∈Pn1,n2,n3,n4

C′∈Pn1,n3,n2,n4

C∼C′

(
exp(

∑
i∈C

αi)− exp(
∑
i∈C′

αi)

)

=
∑

C∈Pn1,n2,n3,n4

exp(
∑
i∈C

αi)−
∑

C′∈Pn1,n3,n2,n4

exp(
∑
i∈C′

αi).

Putting this inequality in (1) provides the desired inequality:∑
C∈Λ[|1,]S|],k1,k2

exp(
∑
i∈C

αi)−
∑

C∈ΛS,k1,k2

exp(
∑
i∈C

αi) ≥ 0.

Remark 15 Using the marriage Lemma, or the fact that the extremal
points of the set of bistochastic matrices are permutation matrices ( 1

N
times the adjascence matrix of our graph is trivially a bistochastic ma-
trix), one can show that there exists a bijection f between Pn1,n2,n3,n4

and Pn1,n3,n2,n4 such that C ∼ f(C). Thus there also exists a bijection
g from Λ[|1,]S|],k1,k2

to ΛS,k1,k2
such that

∑
i∈C αi ≥

∑
i∈g(C) αi, and

this implies that XΛS,k1,k2
≺
w
XΛ[|1,]S|],k1,k2

, where the notation XΛ is

explained just below.

For Λ ⊂ P([|1, n|]), we set XΛ and YΛ the vectors of RΛ whose
coordinates are (XΛ)C =

∑
i∈C αi and (YΛ)C =

∑
i∈C βi, for C ∈ Λ.

Let us prove that XΛ[|1,]S|],k1,k2
≺
w
YΛ[|1,]S|],k1,k2

. We enumerate

the elements (Ci)i=1...]Λ[|1,]S|],k1,k2
of Λ[|1,]S|],k1,k2

in such a way that

(
∑
j∈Ci αj ,

∑
j∈Ci 2−j) is a decreasing sequence (indexed by i), for the

lexicographic order, which means that for 1 ≤ i1 < i2 ≤ ]Λ[|1,]S|],k1,k2
,

we have
∑
j∈Ci1

αj ≥
∑
j∈Ci2

αj , and in case of equality, we have

furthermore
∑
j∈Ci1

2−j >
∑
j∈Ci2

2−j (well note that C ⊂ [|1, n|] 7→∑
j∈C 2−j is injective).
Let 1 ≤ k ≤ ]Λ[|1,]S|],k1,k2

. For 1 ≤ j ≤ n, we set ak(j) = ]{i ∈
[|1, k|], j ∈ Ci}, and we set ak(n+ 1) = 0.

We show that ak(j) is nonincreasing in j. Let 1 ≤ j1 < j2 ≤ n, then
ak(j1) − ak(j2) = ]{i ∈ [|1, k|], j1 ∈ Ci, j2 /∈ Ci} − ]{i ∈ [|1, k|], j2 ∈
Ci, j1 /∈ Ci}. Let i ∈ [|1, k|] be such that j2 ∈ Ci and j1 /∈ Ci. We
set C ′i = (Ci ∪ {j1}) \ {j2}. We have ]C ′i = ]Ci = k2 and ](C ′i) ∩
[|1, ]S|] ≥ ](Ci) ∩ [|1, ]S|] ≥ k1, so C ′i ∈ Λ[|1,]S|],k1,k2

. We also have∑
j∈C′i

αj −
∑
j∈Ci αj = αj1 − αj2 ≥ 0 and

∑
j∈C′i

2−j −
∑
j∈Ci 2−j =

2−j1 − 2−j2 > 0, so there exists i′ < i such that C ′i = Ci′ . Thus
i 7→ i′ is an injective function from {i ∈ [|1, k|], j2 ∈ Ci, j1 /∈ Ci} to
{i ∈ [|1, k|], j1 ∈ Ci, j2 /∈ Ci}. Then ]{i ∈ [|1, k|], j1 ∈ Ci, j2 /∈ Ci} ≥
]{i ∈ [|1, k|], j2 ∈ Ci, j1 /∈ Ci}, and ak(j1)− ak(j2) ≥ 0.
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So we have

k∑
i=1

(XΛ[|1,]S|],k1,k2
)[i] =

k∑
i=1

∑
j∈Ci

αj =

n∑
j=1

ak(j)αj

=

n∑
j=1

(
(ak(j)− ak(j + 1))

j∑
l=1

αj

)
(Abel transformation)

≤
n∑
j=1

(
(ak(j)− ak(j + 1))

j∑
l=1

βj

)
=

n∑
j=1

ak(j)βj =

k∑
i=1

∑
j∈Ci

βj

=

k∑
i=1

(YΛ[|1,]S|],k1,k2
)Ci ≤

k∑
i=1

(YΛ[|1,]S|],k1,k2
)[i]

where the last inequality occurs because the sum of any k coordinates
of the vector YΛ[|1,]S|],k1,k2

is always smaller than the sum of the k
greatest ones.

Thus we have XΛ[|1,]S|],k1,k2
≺
w
YΛ[|1,]S|],k1,k2

as announced. Then we

apply Lemma 14 and get∑
C∈Λ[|1,]S|],k1,k2

exp(
∑
i∈C

αi) ≤
∑

C∈Λ[|1,]S|],k1,k2

exp(
∑
i∈C

βi).

So Lemma 10 is proved.�
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