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A semigroup approach to the four functions theorem on the discrete hypercube

In this paper, we prove a semigroup version of the Ahlswede-Daykin four functions theorem on the discrete hypercube, and of its generalization to 2n functions.

Introduction

The Ahlshwede-Daykin four function theorem is an inequality from which the more classical FKG inequality [START_REF] Fortuin | Correlation inequalities on some partially ordered sets[END_REF] can be easily derived. It tells that if four nonnegative functions α, β, γ, δ on the discrete hypercube satisfy the Ahlshwede-Daykin condition α(x)β(y) ≤ γ(x ∨ y)δ(x ∧ y) then we have α β ≤ γ δ, where the integrals are taken with respect to the counting measure on the discrete hypercube.

In this paper, we prove the stability of the Ahlshwede-Daykin condition under the heat flow. The stability of this condition under disjoint convolution has been proved in [START_REF] Lovász | Discrete localization and correlation inequalities for set functions[END_REF].

The Ahlshwede-Daykin four function theorem has been generalized to 2n functions, independently by Aharoni and Keich in [START_REF] Aharoni | A generalization of the ahlswede-daykin inequality[END_REF] and Rinott and Saks in [START_REF] Rinott | Correlation inequalities and a conjecture for permanents[END_REF]. We show that the generalized Ahlshwede-Daykin condition appearing in this 2n functions theorem is also preserved by the heat flow.

The original four functions theorem and 2n functions theorem easily follow from the stability of the generalized Ahlshwede-Daykin condition under the heat flow, by taking the limit of those inequalities when the time tends to +∞. [START_REF] Aharoni | A generalization of the ahlswede-daykin inequality[END_REF] 1 The four functions theorem

We will denote by H n := {0, 1} [|0,n-1|] the discrete hypercube of dimension n. For any two elements x and y of H n , we define x ∨ y and x ∧ y in the following way:

∀i ∈ [|0, n -1|], (x ∨ y) i := max(x i , y i ) and (x ∧ y) i := min(x i , y i ).

We consider the following set of 4-tuples of functions on H n :

A n := (α, β, γ, δ) ∈ R Hn + 4
|∀x, y ∈ H n , α(x)β(y) ≤ γ(x ∨ y)δ(x ∧ y) .

The Ahlswede-Daykin four functions theorem [START_REF] Ahlswede | An inequality for the weights of two families of sets, their unions and intersections[END_REF] is the following statement.

Theorem 1 Let (α, β, γ, δ) ∈ A n . Then we have:

α β ≤ γ δ,
where f = x∈Hn f (x) for any real function f on H n .

Remark 2 Theorem 1 also holds if we integrate with respect to a measure whose density ρ with respect to the counting measure has the following form:

ρ(x) = i∈[|0,n-1|] (1 xi=1 p i + 1 xi=0 q i ),
where the p i 's and q i 's are nonnegative numbers. This kind of measure on H n is the product of n measures on the two point space.

Indeed, such ρ satisfy

∀x, y ∈ H n , ρ(x)ρ(y) = ρ(x ∨ y)ρ(x ∧ y).
Thus, (α, β, γ, δ) ∈ A n implies (αρ, βρ, γρ, δρ) ∈ A n too, so we can apply Theorem 1 to this latter one 4-tuple of functions. 

(x i ) j := x j if j = i 1 -x i if i = j.
For any i ∈ [|0, n -1|], we denote by L (i) the following operator acting on real-valued functions on H n :

L (i) f (x) := f (x i ) -f (x).
We define the Markov semigroup (P t ) t∈R+ by P t = e tL , where the generator L of the semigroup takes the following form:

L = i∈[|0,n-1|] λ i L (i) ,
with λ i > 0 the jumping rate in the direction i. Now, we can state our semigroup version of the four functions theorem.

Theorem 3 Let (α, β, γ, δ) ∈ A n , then we have ∀t ≥ 0, (P t α, P t β, P t γ, P t δ) ∈ A n .

Remark 4 Since the uniform measure on H n is the unique reversible measure of (P t ), taking the limit when t tends to +∞ gives back Theorem 1.

Corollary 5 Let f be a log-supermodular function on H n and g be a nonincreasing log-modular function on H n , then f * g is log-supermodular, where * is the usual convolution operator on H n (Z/2Z) n .

Proof: Log-supermodular functions on H n are nonnegative functions

f that satisfy f (x)f (y) ≤ f (x ∨ y)f (x ∧ y) for all x, y ∈ H n , which is equivalent to (f, f, f, f ) ∈ A n .
Log-modular functions on H n are nonnegative functions g that satisfy g(x)g(y) = g(x ∨ y)g(x ∧ y) for all x, y ∈ H n . Log-modular functions can be written as a product of functions: g(x) = n-1 i=0 g i (x i ) where the g i 's are nonegative functions of {0, 1}.

One can rewrite it g

(x) = C n-1 i=0 p xi i (1 -p i ) 1-xi
where C is a nonnegative constant and p i = gi [START_REF] Aharoni | A generalization of the ahlswede-daykin inequality[END_REF] gi(0)+gi(1) (the p i 's are well defined except in the trivial case where g = 0). If g is nonincreasing, then all the p i 's are smaller than 1 2 . If ∀i, p i < 1 2 , we set λ i = -1 2 ln(1 -2p i ), and we have, for P t the Markov semigroup generated by

L = i∈[|0,n-1|] λ i L (i) ,
f * g = CP 1 f, so according to Theorem 3, (P 1 f, P 1 f, P 1 f, P 1 f ) ∈ A n , thus P 1 f is log-supermodular and so is f * g.

The case where some of the p i 's are equal to 1 2 can be deduced from above by a convergence argument.

The fact that P t is a Markov semigroup implies that for any nonnegative function f , P t f is a nonnegative function too. So to prove Theorem 3, it only remains to check that ∀x, y ∈ H n , P t α(x)P t β(y) ≤ P t γ(x ∨ y)P t δ(x ∧ y).

We first prove the theorem in the case n = 1.

In order to simplify the notations, and to spare parentheses and the ink needed for printing them, we will write α x instead of α(x), and likewise for the other functions. We also define the following quantities, which are nonnegative if (α, β, γ, δ) ∈ A 1 :

∆ 00 := γ 0 δ 0 -α 0 β 0 ∆ 01 := γ 1 δ 0 -α 0 β 1 ∆ 10 := γ 1 δ 0 -α 1 β 0 ∆ 11 := γ 1 δ 1 -α 1 β 1 .
The quantities ∆ 00 (t), ∆ 01 (t), ∆ 10 (t) and ∆ 11 (t) are defined on a similar way, by replacing the functions α, β, γ and δ with P t α, P t β, P t γ and P t δ.

The following lemma is a key argument.

Lemma 6 If (α, β, γ, δ) ∈ A 1 , then we have

α 0 β 1 + α 1 β 0 ≤ γ 0 δ 1 + γ 1 δ 0 .
Proof of Lemma 6: If γ 1 δ 0 = 0, then we have α 0 β 1 = α 1 β 0 = 0 because ∆ 01 and ∆ 10 are nonnegative (α and β are nonnegative too), so we have to prove γ 0 δ 1 ≥ 0, which is true.

If γ 1 δ 0 > 0, then we can write γ 0 ≥ α0β0 δ0 because ∆ 00 ≥ 0, and δ 1 ≥ α1β1 γ1 because ∆ 11 ≥ 0. So we get:

γ 0 δ 1 +γ 1 δ 0 -α 0 β 1 -α 1 β 0 ≥ α 0 α 1 β 0 β 1 γ 1 δ 0 +γ 1 δ 0 -α 0 β 1 -α 1 β 0 = ∆ 01 ∆ 10 γ 1 δ 0 ≥ 0.
Now we prove Theorem 3 by two different ways. First proof of Theorem 3: In the case n = 1, we have

P t = e tL = e λ0tL (0) = I + 1 2 (1 -e -2λ0t )L (0) .
So for a fixed t ≥ 0, we set p = 1-e -2λ 0 t 2 ∈ [0, 1 2 ), and we have

P t f (0) = (1 -p)f 0 + pf 1 , and P t f (1) = pf 0 + (1 -p)f 1 .
Then we have

∆ 00 (t) = ((1 -p)γ 0 + pγ 1 )((1 -p)δ 0 + pδ 1 ) -((1 -p)α 0 + pα 1 )((1 -p)β 0 + pβ 1 ) = (1 -p) 2 ∆ 00 + p 2 ∆ 11 + p(1 -p)(γ 0 δ 1 + γ 1 δ 0 -α 0 β 1 -α 1 β 0 ) ≥ 0,
where we used Lemma 6 to get the nonnegativity of the last term. We have ∆ 11 (t) ≥ 0 with the same proof, by swapping p and 1 -p. We also have

∆ 01 (t) = (pγ 0 + (1 -p)γ 1 )((1 -p)δ 0 + pδ 1 ) -((1 -p)α 0 + pα 1 )(pβ 0 + (1 -p)β 1 ) = p(1 -p)(∆ 00 + ∆ 11 ) + p 2 (γ 0 δ 1 + γ 1 δ 0 -α 0 β 1 -α 1 β 0 ) + (1 -2p)∆ 01 ≥ 0,
where we used Lemma 6 to lower bound the second term. The proof of the nonnegativity of ∆ 10 (t) is similar. So we are done for the case n = 1. Now we assume n ≥ 2. We can remark that the L (i) commute with each other, so we have ) where the order of the terms in the product does not matter, because they commute with each other. So to prove Theorem 3, it suffices to prove that for each

P t = i∈[|0,n-1|] e λitL (i
i ∈ [|0, n -1|], the operator e λitL (i) stabilizes A n . Let i ∈ [|0, n -1|].
For any x ∈ H n , we set x0 the element of H n whose coordinates are the same than the ones of x except the i th which is replaced with 0, and we define x1 = x0i likewise. Let x and y be two fixed points of H n . We define the four functions α , β , γ and δ on H 1 on the following way:

α u := α(x u ) β u := β(ȳ u ) γ u := γ(x ∨ y u ) δ u := δ(x ∧ y u )
The fact that (α , β , γ , δ ) ∈ A 1 trivially follows from (α, β, γ, δ) ∈ A n . We also have

e tλiL (i) α(x) = e tλiL (0) α (x i ) e tλiL (i) β(y) = e tλiL (0) β (y i ) e tλiL (i) γ(x ∨ y) = e tλiL (0) γ (x i ∨ y i ) e tλiL (i) δ(x ∧ y) = e tλiL (0) δ (x i ∧ y i )
.

So, applying Theorem 3 in the one dimensional case to (α , β , γ , δ ) gives us e tλiL (i) α(x)e tλiL (i) β(y) ≤ e tλiL (i) γ(x ∨ y)e tλiL (i) δ(x ∧ y).

This inequality being true for every x, y ∈ H n , we have (e tλiL (i) α, e tλiL (i) β, e tλiL (i) γ, e tλiL (i) δ) ∈ A n .

Thus e tλiL (i) stabilizes A n and so does P t . We also give a second proof of Theorem 3, which should be more likely generalizable to semigroups with more compicated generators than the first one. Second proof of Theorem 3: Let A * n be the subset of A n in which we have the strict inequalities

α(x)β(y) < γ(x ∨ y)δ(x ∧ y).
To prove that P t stabilizes A n , it suffices to prove that it stabilizes A * n , because P t is continuous and

A n is the closure of A * n . Let (α, β, γ, δ) ∈ A *
n . Assume that at some time t, we have (P t α, P t β, P t γ, P t δ) / ∈ A * n . Because of the continuity in t of P t , there exists a first time T > 0 for which (P T α, P T β, P T γ, P T δ) / ∈ A * n . So we have ∀t < T, (P t α, P t β, P t γ, P t δ) ∈ A * n and there exists some x and y in H n such that ∆ xy (T ) = 0, with the notation ∆ xy (t) := P t γ(x ∨ y)P t δ(x ∧ y) -P t α(x)P t β(y).

We have for every t ≥ 0 d∆ xy (t) dt = LP t γ(x∨y)P t δ(x∧y)+P t γ(x∨y)LP t δ(x∧y)-LP t α(x)P t β(y)-P t α(x)LP t β(y).

In the case n = 1, we have

d∆ 00 (t) dt t=0 = λ 0 [(γ 1 -γ 0 )δ 0 + γ 0 (δ 1 -δ 0 ) -(α 1 -α 0 )β 0 -α 0 (β 1 -β 0 )] = λ 0 [-2∆ 00 + γ 1 δ 0 + γ 0 δ 1 -α 1 β 0 -α 0 β 1 ] ≥ -2λ 0 ∆ 00 ,
where we used Lemma 6 for the last inequality. Doing the same computation, we get d∆11(t) dt t=0

≥ -2λ 0 ∆ 11 . We have

d∆ 01 (t) dt t=0 = λ 0 [(γ 0 -γ 1 )δ 0 + γ 1 (δ 1 -δ 0 ) -(α 1 -α 0 )β 1 -α 0 (β 0 -β 1 )] = λ 0 [-2∆ 01 + ∆ 00 + ∆ 11 ] ≥ -2λ 0 ∆ 01 .
And likewise, d∆10(t) dt t=0

≥ -2λ 0 ∆ 10 . Now in the case when n ≥ 2, using the same (α , β , γ , δ ) as in the first proof, and the differential inequations obtained in the case n = 1, we get for every x, y ∈ H n and every i ∈ [|0, n -1|],

L (i) γ(x∨y)δ(x∧y)+γ(x∨y)L (i) δ(x∧y)-L (i) α(x)β(y)-α(x)L (i) β(y) ≥ -2∆ xy .

Thus we have

d∆xy dt t=0 = i∈[|0,n-1|] λi[L (i) γ(x∨y)δ(x∧y)+γ(x∨y)L (i) δ(x∧y)-L (i) α(x)β(y)-α(x)L (i) β(y)] ≥-2 i∈[|0,n-1|] λi∆xy.
So, setting λ := i∈[|0,n-1|] λ i , and replacing (α, β, γ, δ) with (P t α, P t β, P t γ, P t γ), we get for any 0

≤ t ≤ T d∆ xy (t) dt ≥ -2λ∆ xy (t).
Integrating this inequality between 0 and T yields

∆ xy (T ) ≥ ∆ xy (0)e -2λT > 0.
But there must exist x and y such that ∆ xy (T ) = 0, so our assumption that P t does not stabilize A * n was wrong.

generalization to 2n functions

Theorem 1 has been generalized to 2n functions, independently by Aharoni and Keich [START_REF] Aharoni | A generalization of the ahlswede-daykin inequality[END_REF], and Rinott and Saks [START_REF] Rinott | Correlation inequalities and a conjecture for permanents[END_REF]. The proof we present here is widely inspired from the one of [START_REF] Aharoni | A generalization of the ahlswede-daykin inequality[END_REF].

Definition 7 Let 0 < n ∈ N, and x = (x 1 , . . . , x n ) ∈ (H m ) n . Then we set, for 1 ≤ i ≤ n:

ϕ i (x) := S⊂[|1,n|] |S|=i   j∈S x j   .
A other way to say that is to set ϕ i (x) j , the j th coordinate of ϕ i (x), to be 1 if at least i x k among the n have their j th coordinate equal to 1, and to set ϕ i (x) j = 0 otherwise. We also define the following set of 2n-tuples of functions:

B n m := (f 1 , . . . , f n , g 1 , . . . , g n ) ∈ (R Hm + ) 2 n|∀x ∈ (H m ) n , n i=1 f i (x i ) ≤ n i=1 g i (ϕ i (x)) .
Then the 2n functions theorem is the following one:

Theorem 8 Let (f 1 , . . . , f n , g 1 , . . . , g n ) ∈ B n m .
Then we have:

f i ≤ g i .
We will show the following semigroup version of this theorem:

Theorem 9 Let (f 1 , . . . , f n , g 1 , . . . , g n ) ∈ B n m , and P t = e tL be the Markov semigroup on the state space H m , generated by L = j∈[|0,m-1|] λ j L (j) . Then we have, for all t ≥ 0 (P t f 1 , . . . , P t f n , P t g 1 , . . . , P t g n ) ∈ B n m Proof : Like for Theorem 3, we first prove Theorem 9 in the one dimensional case (m = 1).

Step 1: We first reduce the problem to simple cases.

We may assume that for each i ∈ [|1, n|], f i (0), f i (1), g i (0) and g i (1) are positive. Indeed, for ε > 0, we may set

f ε i (x) = max(ε , f i (x)) and g ε i (x) = max(ε, g i (x)), where ε = inf 1≤k≤n ε n M n-k 1 k with M = sup i,x f i (x). Let us check that (f ε 1 , . . . , f ε n , g ε 1 , . . . , g ε n ) ∈ B n m . Let x ∈ {0, 1} n . If for every 1 ≤ i ≤ n, we have f i (x i ) ≥ ε , then f ε i (x i ) = f i (x i ) ≤ g i (ϕ i (x)) ≤ g ε i (ϕ i (x)).
Otherwise, there exist k indexes i satisfying f i (x i ) < ε , where 1 ≤ k ≤ n, and we have

f ε i (x i ) ≤ ε k M n-k ≤ ε n ≤ g ε i (ϕ i (x))
. Furthermore, we have ε ≤ ε (just take k = n), so f ε i tends to f i and g ε i tends to g i when ε tends to 0. Thus if Theorem 9 is true for f ε i and g ε i , it also holds for f i and g i by making ε tend to 0. We can also assume that

n i=1 f i (0) = n i=1 g i (0) = 1. Indeed, if n i=1 f i (0) < n i=1 g i (0), we can set g1 (x) = g 1 (1) if x = 1 n i=1 fi(0) n i=2 gi(0) if x = 0
Then we have (f 1 , . . . , f n , g1 , g 2 , . . . , g n ) ∈ B n 1 , and g 1 ≥ g1 , so P t g 1 ≥ P t g1 . So if (P t f 1 , . . . , P t f n , P t g1 , P t g 2 , . . . , P t g n ) belongs to B n 1 , the same is true for (P t f 1 , . . . , P t f n , P t g 1 , . . . , P t g n ). And we can assume that n i=1 f i (0) = 1 by dividing the functions f i and g i by (

n i=1 f i (0)) 1 n .
We set α i = ln fi (1) fi(0) and β i = ln gi (1) gi(0) . We can assume that α 1 ≥ α 2 ≥ . . . ≥ α n by changing the order of the f i 's, because ϕ i (σ.x) = ϕ(x), where σ ∈ S n , x ∈ {0, 1} n and σ.x ∈ {0, 1} n is defined by (σ.x) i = x σ(i) .

Step 2:We prove Theorem 9 in our simple case thanks to a lemma.

For a subset S ⊂ [|1, n|], and for 0 ≤ k 1 ≤ k 2 ≤ n, we set:

Λ S,k1,k2 := {C ⊂ [|1, n|]| C = k 2 , (C ∩ S) ≥ k 1 }.
The lemma at the core of the proof is the following one:

Lemma 10 Let S ⊂ [|1, n|], and 0 ≤ k 1 ≤ k 2 ≤ n. If (α i ) i∈[|1,n|] and (β i ) i∈[|1,n|]
are two sequences such that α i is nonincreasing and for all 1 ≤ i ≤ n, i j=1 α j ≤ i j=1 β j , then the following inequality holds:

C∈Λ S,k 1 ,k 2 exp( i∈C α i ) ≤ C∈Λ [|1, S|],k 1 ,k 2 exp( i∈C β i ).
In [START_REF] Aharoni | A generalization of the ahlswede-daykin inequality[END_REF], the same inequality was shown, but only for the sets Λ k = {C ⊂ S, C = k}.

Let us see how Lemma 10 implies Theorem 9.

In our simple case, we have

n i=1 f i (x i ) = exp( i|xi=1 α i ) and n i=1 g i (x i ) = exp( i|xi=1 β i ). For t > 0, we have for any f : {0, 1} → R, P t f (x) = (1 -p)f (x) + pf (1 -x) with p = p(t) = 1-e -2λ 0 t 2 < 1 2 . Let x ∈ {0, 1} n , we set S = {i|x i = 1} ⊂ [|1, n|].
Then we have:

n i=1 P t f i (x i ) = C⊂[|1,n|] n i=1 f i (1 C (i))p (C S) (1 -p) n-(C S) = C⊂[|1,n|] exp( i∈C α i )p (C S) (1 -p) n-(C S) = 0≤k1≤k2≤n C⊂[|1,n|] C=k2 (C∩S)=k1 exp( i∈C α i )p S+k2-2k1 (1 -p) n-S-k2+2k1 = 0≤k2≤n   C∈Λ S,0,k 2 exp( i∈C α i )p S+k2 (1 -p) n-S-k2 + 1≤k1≤k2 C∈Λ S,k 1 ,k 2 exp( i∈C α i )p S+k2-2k1 (1 -p) n-S-k2+2k1 (1 -( p 1 -p ) 2 )   ,
where C S = (C ∪ S) \ (C ∩ S) is the symmetric difference of the sets C and S, and where we used an Abel transform to get the last equality. We can rewrite this equation

n i=1 P t f i (x i ) = 0≤k1≤k2≤n P S,k1,k2 R S,k1,k2 , with P S,k1,k2 := C∈Λ S,k 1 ,k 2 exp( i∈C α i ) and R S,k1,k2 := p S+k2 (1 -p) n-S-k2 if k 1 = 0 (1 -( p 1-p ) 2 )p S+k2-2k1 (1 -p) n-S-k2+2k1 if k 1 ≥ 1. For 1 ≤ i ≤ n, we have ϕ i (x) = 1 if
and only if i ≤ S. Thus, doing as above, we get:

n i=1 P t g i (ϕ i (x)) = 0≤k1≤k2≤n Q S,k1,k2 R S,k1,k2 with Q S,k1,k2 := C∈Λ [|1, S|],k 1 ,k 2 exp( i∈C β i ).
From Lemma 10, we get P S,k1,k2 ≤ Q S,k1,k2 , and since 0 < p < 1 2 , we have R S,k1,k2 ≥ 0. Thus we get the desired inequality:

n i=1 P t f i (x i ) ≤ n i=1 P t g i (ϕ i (x)).
Step 3: We prove Theorem 9 in the general m-dimensional case. We can repeat the argument of the first proof of Theorem 3. Again, we only have to show that e -λitL (i) stabilizes

B n m . Let i ∈ [|0, m -1|] and x = (x 1 , . . . , x n ) ∈ (H m ) n . Let (f 1 , . . . , f n , g 1 , . . . , g n ) ∈ B n m .
We set, for each 1 ≤ j ≤ n, and for u ∈ {0, 1}, fj (u) := f j (x j u ) and ḡj (u) := g j (ϕ j (x) u ), where for any y ∈ H m , ȳu denotes the element of H m whose coordinates are the same that the ones of y, except the i-th, which is set to be u.

We have ( f1 , . . . , fn , ḡ1 , . . . , ḡn ) ∈ B 1 m , and for all 1 ≤ j ≤ n, e λitL (i) f j (x j ) = e λitL (0) fj (x j i ) e λitL (i) g j (ϕ j (x)) = e λitL (0) ḡj (ϕ j (x) i ).

Then, applying Theorem 9 in dimension 1 to ( f1 , . . . , fn , ḡ1 , . . . , ḡn ) shows that

n j=1 e λitL (i) f j (x j ) ≤ n j=1 e λitL (i) g j (ϕ j (x)).
Thus e λitL (i) stabilizes B n m , and so does

P t = m-1 i=0 e tλiL (i) .
Remark 11 One can also do as in the second proof of Theorem 3 to prove Theorem 9. We can show, using Lemma 10 with (k 1 , k 2 ) = ( S -1, S) or ( S, S + 1), that

d dt ∆ x (t) ≥ -2 m-1 i=0 λ i ∆ x (t), with x ∈ H m n and ∆ x (t) := n i=1 P t g i (ϕ i (x)) - n i=1 P t f i (x i ).
It remains to prove Lemma 10. As in [START_REF] Aharoni | A generalization of the ahlswede-daykin inequality[END_REF], we use a majorization argument. We first recall some basic facts about majorization, which can be found in [START_REF] Marshall | Inequalities: Theory of Majorization and Its Applications[END_REF].

Let N ∈ N and x ∈ R N . Then for 1 ≤ i ≤ N , we denote by

x [i] the i th greatest coordinate of x. That is, x [i] = x σ(i) for some permutation σ ∈ S N satisfying x σ(1) ≥ x σ(2) ≥ . . . ≥ x σ(N ) .
Definition 12 Let x, y ∈ R N . We say that y majorizes x, and we write it x ≺ y, if for each

1 ≤ i ≤ N -1, we have i j=1 x [j] ≤ i j=1 y [j] ,
and

N j=1 x [j] = N j=1 y [j] .
We say that y weakly majorizes x, and we write it x ≺ w y, if for

each 1 ≤ i ≤ N , we have i j=1 x [j] ≤ i j=1 y [j] .
The following propostion gives another definition for majorization.

proposition 13 Let x, y ∈ R N . Then x ≺ y if and only if for any convex function f : R → R, we have

N i=1 f (x i ) ≤ N i=1 f (y i ).
We only need the following Lemma, which is a direct consequence of this proposition. Thus, we have

C∈Λ S,k 1 ,k 2 exp( i∈C α i ) ≤ C∈Λ [|1, S|],k 1 ,k 2 exp( i∈C α i ),
       (C ∩ S ∩ [|1, S|]) = n 1 (C ∩ S ∩ [| S + 1, n|]) = n 2 (C ∩ S C ∩ [|1, S|]) = n 3 (C ∩ S C ∩ [| S + 1, n|]) = n
C∈Λ [|1, S|],k 1 ,k 2 exp( i∈C α i ) - C∈Λ S,k 1 ,k 2 exp( i∈C α i ) = n1+n2<k1 n1+n3≥k1 n1+n2+n3+n4=k2   C∈Pn 1 ,n 2 ,n 3 ,n 4 exp( i∈C α i ) - C∈Pn 1 ,n 3 ,n 2 ,n 4 exp( i∈C α i )   . (1) Let n 1 , n 2 , n 3 , n 4 ∈ N such that n 1 + n 2 < k 1 , n 1 + n 3 ≥ k 1 and n 1 + n 2 + n 3 + n 4 .
One trivially has n 3 > n 2 . We construct a bipartite graph whose vertices are the elements of P n1,n2,n3,n4 P n1,n3,n2,n4 , by putting an edge between C ∈ P n1,n2,n3,n4 and C ∈ P n1,n3,n2,n4 (and we write it C ∼ C ) if and only if the following conditions are satisfied: Since α i is nonincreasing, the sum of n 3 -n 2 α i 's with i ≤ S is always greater than or equals to the sum of n 3 -n 2 α i 's with i > S. Thus, if C ∈ P n1,n2,n3,n4 and C ∈ P n1,n3,n2,n4 are such that C ∼ C , then we have i∈C α i ≥ i∈C α i . Furthermore, any vertex of the graph has exactly

       C ∩ S ∩ [|1, S|] = C ∩ S ∩ [|1, S|] C ∩ S ∩ [| S + 1, n|] ⊂ C ∩ S ∩ [| S + 1, n|] C ∩ S C ∩ [|1, S|] ⊃ C ∩ S C ∩ [|1, S|] C ∩ S C ∩ [| S + 1, n|] = C ∩ S C ∩ [| S + 1, n|].
N = n3 n3-n2 S-(S∩[|1, S|])-n2 n3-n2
neighbors. Then, we have:

0 ≤ 1 N C∈Pn 1 ,n 2 ,n 3 ,n 4 C ∈Pn 1 ,n 3 ,n 2 ,n 4 C∼C exp( i∈C α i ) -exp( i∈C α i ) = C∈Pn 1 ,n 2 ,n 3 ,n 4 exp( i∈C α i ) - C ∈Pn 1 ,n 3 ,n 2 ,n 4 exp( i∈C α i ).
Putting this inequality in (1) provides the desired inequality:

C∈Λ [|1, S|],k 1 ,k 2 exp( i∈C α i ) - C∈Λ S,k 1 ,k 2 exp( i∈C α i ) ≥ 0.
Remark 15 Using the marriage Lemma, or the fact that the extremal points of the set of bistochastic matrices are permutation matrices ( 1

N

times the adjascence matrix of our graph is trivially a bistochastic matrix), one can show that there exists a bijection f between P n1,n2,n3,n4 and P n1,n3,n2,n4 such that C ∼ f (C). Thus there also exists a bijection g from Λ [|1, S|],k1,k2 to Λ S,k1,k2 such that i∈C α i ≥ i∈g(C) α i , and this implies that

X Λ S,k 1 ,k 2 ≺ w X Λ [|1, S|],k 1 ,k 2
, where the notation X Λ is explained just below. . For 1 ≤ j ≤ n, we set a k (j) = {i ∈ [|1, k|], j ∈ C i }, and we set a k (n + 1) = 0.

For Λ ⊂ P([|1, n|]), we set X Λ and Y Λ the vectors of R Λ whose coordinates are (X Λ ) C = i∈C α i and (Y Λ ) C = i∈C β i , for C ∈ Λ. Let us prove that X Λ [|1, S|],k 1 ,k 2 ≺ w Y Λ [|1, S|],k 1 
We show that a k (j) is nonincreasing in j. Let 1 ≤ j 1 < j 2 ≤ n, then a k (j 1 ) -

a k (j 2 ) = {i ∈ [|1, k|], j 1 ∈ C i , j 2 / ∈ C i } -{i ∈ [|1, k|], j 2 ∈ C i , j 1 / ∈ C i }. Let i ∈ [|1,
k|] be such that j 2 ∈ C i and j 1 / ∈ C i . We set C i = (C i ∪ {j 1 }) \ {j 2 }. We have

C i = C i = k 2 and (C i ) ∩ [|1, S|] ≥ (C i ) ∩ [|1, S|] ≥ k 1 , so C i ∈ Λ [|1,
S|],k1,k2 . We also have j∈C i α j -j∈Ci α j = α j1 -α j2 ≥ 0 and j∈C i 2 -j -j∈Ci 2 -j = 2 -j1 -2 -j2 > 0, so there exists i < i such that

C i = C i . Thus i → i is an injective function from {i ∈ [|1, k|], j 2 ∈ C i , j 1 / ∈ C i } to {i ∈ [|1, k|], j 1 ∈ C i , j 2 / ∈ C i }. Then {i ∈ [|1, k|], j 1 ∈ C i , j 2 / ∈ C i } ≥ {i ∈ [|1, k|], j 2 ∈ C i , j 1 /
∈ C i }, and a k (j 1 ) -a k (j 2 ) ≥ 0. So Lemma 10 is proved.

Lemma 14

 14 Let x, y ∈ R N . If x ≺ w Proof of Lemma 14: Let M ∈ R, we set x = (x 1 , . . . , x N , -M ) ∈ R N +1 and y = (y 1 , . . . , y N , -M -N i=1 (y i -x i )) ∈ R N +1 . If x ≺ w y, then for M large enough, we have x ≺ y . Applying Proposition 13 to x and y , with f = exp and making M tend to +∞ gives us the desired inequality. Now we can prove Lemma 10. Proof of Lemma 10: We first show that

  so it is sufficient to prove Lemma 10 in the case where S = [|1, S|]. Let S ⊂ [|1, n|]. For n 1 , n 2 , n 3 , n 4 ∈ [|1, n|], we set P n1,n2,n3,n4 the set of every C ⊂ [|1, n|] satisfying

4 ,

 4 where S C = [|1, n|] \ S. Then we have Λ S,k1,k2 = n1+n2≥k1 n1+n2+n3+n4=k2 P n1,n2,n3,n4 and Λ [|1, S|],k1,k2 = n1+n3≥k1 n1+n2+n3+n4=k2 P n1,n2,n3,n4 .

  More simply said, we have C ∼ C if and only if C can be obtained from C by removing n 3 -n 2 elements of C ∩ S C ∩ [|1, S|] and adding n 3 -n 2 elements of C C ∩ S ∩ [| S + 1, n|], or symetrically if and only if C can be obtained from C by removing n 3 -n 2 elements of C ∩ S ∩ [| S + 1, n|] and adding n 3 -n 2 elements of C C ∩ S C ∩ [|1, S|].

  [|1, S|],k 1 ,k 2 ) [i] [|1, S|],k 1 ,k 2 ) Ci ≤ k i=1 (Y Λ [|1, S|],k 1 ,k 2 ) [i]where the last inequality occurs because the sum of any k coordinates of the vector Y Λ [|1, S|],k 1 ,k 2 is always smaller than the sum of the k greatest ones.Thus we haveX Λ [|1, S|],k 1 ,k 2 ≺ w Y Λ [|1, S|],k 1 ,k 2 as announced. Then we apply Lemma 14 and get C∈Λ [|1, S|],k 1 ,k 2

  S|],k1,k2 in such a way that ( j∈Ci α j , j∈Ci 2 -j ) is a decreasing sequence (indexed by i), for the lexicographic order, which means that for 1 ≤ i 1 < i 2 ≤ Λ [|1, S|],k1,k2 , we have j , and in case of equality, we have furthermore j∈Ci 1 2 -j > j∈Ci 2 2 -j (well note that C ⊂ [|1, n|] →

	j∈Ci 1	α j ≥	j∈Ci 2

,k 2 . We enumerate the elements

(C i ) i=1... Λ [|1, S|],k 1 ,k 2 of Λ [|1, α j∈C 2 -j is injective). Let 1 ≤ k ≤ Λ [|1, S|],k1,k2
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