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GLOBAL IN TIME STRICHARTZ ESTIMATES FOR THE FRACTIONAL
SCHRÖDINGER EQUATIONS ON ASYMPTOTICALLY EUCLIDEAN

MANIFOLDS

VAN DUONG DINH

Abstract. In this paper, we prove global in time Strichartz estimates for the fractional Schrödinger
operators, namely e−itΛσg with σ ∈ (0,∞)\{1} and Λg :=

√
−∆g where ∆g is the Laplace-Beltrami

operator on asymptotically Euclidean manifolds (Rd, g). Let f0 ∈ C∞0 (R) be a smooth cutoff equal
1 near zero. We firstly show that the high frequency part (1− f0)(P )e−itΛσg satisfies global in time
Strichartz estimates as on Rd of dimension d ≥ 2 inside a compact set under non-trapping condition.
On the other hand, under the moderate trapping assumption (1.12), the high frequency part also
satisfies the global in time Strichartz estimates outside a compact set. We next prove that the low
frequency part f0(P )e−itΛσg satisfies global in time Strichartz estimates as on Rd of dimension d ≥ 3
without using any geometric assumption on g. As a byproduct, we prove global in time Strichartz
estimates for the fractional Schrödinger and wave equations on (Rd, g), d ≥ 3 under non-trapping
condition.

1. Introduction

Let (M, g) be a d-dimensional Riemannian manifold. We consider the time dependent fractional
Schrödinger equation on (M, g), namely

i∂tu− Λσgu = 0, u|t=0 = u0, (1.1)

with σ ∈ (0,∞)\{1},Λg =
√
−∆g where ∆g is the Laplace-Beltrami operator associated to the metric

g. The fractional Schrödinger equation (1.1) arises in many physical contexts. When σ ∈ (0, 2)\{1},
the fractional Schrödinger equation was discovered by N. Laskin (see [27], [28]) as a result of extending
the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. This type
of equation also appears in the water wave models (see [22], [32]). When σ = 2, it corresponds to
the well-known Schrödinger equation. In the case σ = 4, it is the fourth-order Schrödinger equation
introduced by Karpman [24] and Karpman and Shagalov [25] to take into account the role of small
fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr
nonlinearity.

When M = Rd and g = Id, i.e. the flat Euclidean space, the solution to (1.1) enjoys the following
global in time Strichartz estimates (see [16]),

‖u‖Lp(R,Lq(Rd)) . ‖u0‖Ḣγp,q (Rd),

where (p, q) satisfies the fractional admissible condition, i.e.

p ∈ [2,∞], q ∈ [2,∞), (p, q, d) 6= (2,∞, 2), 2
p

+ d

q
≤ d

2 , (1.2)
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with

γp,q = d

2 −
d

q
− σ

p
. (1.3)

Remark that one also has global in time Strichartz estimates for q = ∞, but one has to replace the
Lebesgue norm L∞(Rd) by a corresponding Besov norm due to the Littlewood-Paley theorem. We
refer the reader to [16] for more details.

When M is a compact Riemannian manifold without boundary and g is smooth, we also have (see
[17]) Strichartz estimates but only local in time,

‖u‖Lp([0,1],Lq(M)) . ‖u0‖Hγ(M).

In the case σ ∈ (0, 1), we have the same (local in time) Strichartz estimates as in (Rd, Id), i.e. γ = γp,q.
In the case σ ∈ (1,∞), there is a “loss” of derivatives (σ − 1)/p comparing to the one on (Rd, Id), i.e.
γ = γp,q + (σ − 1)/p.

When M is a non-compact Riemannian manifold, global in time Strichartz estimates for the
Schrödinger equation (i.e. σ = 2) have been studied intensively. In [8], Bouclet-Tzvetkov estab-
lished global in time Strichartz estimates on asymptotically Euclidean manifold, i.e. Rd equipped
with a long range perturbation metric g (see (1.5)) with a low frequency cutoff under non-trapping
condition. The first breakthrough on this topic was done by Tataru in [45] where the author consid-
ered long range and globally small perturbations of the Euclidean metric with C2 and time dependent
coefficients. In this setting, no trapping could occur. Later, Marzuola-Metcalfe-Tataru in [29] im-
proved the results considering more general perturbations in a compact set, including some weak
trapping. Afterward, Hassell-Zhang in [21] extended those results for general geometric framework of
asymptotically conic manifolds and including very short range potentials with non-trapping condition.
Recently, Bouclet-Mizutani in [5] established global in time Strichartz estimates for a more general
class of asymptotically conic manifolds including all usual smooth long range perturbations of the
Euclidean metric.

In order to prove Strichartz estimates on curved backgrounds, one uses the Littlewood-Paley decom-
position to localize the solution in frequency. One then uses microlocal techniques to derive dispersive
estimates and obtain Strichartz estimates for each spectrally localized components. By summing over
all frequency pieces, one gets Strichartz estimates for the solution. For local in time Strichartz es-
timates, this usual scheme works very well. However, for global in time Strichartz estimates, one
has to face a difficulty arising at low frequency. Due to the uncertainty principle, one can only use
microlocal techniques for data supported outside compact sets at low frequency. Therefore, one has
to use another technique for data supported inside compact sets. Note also that on Rd, one can use
the scaling technique to reduce the analysis at low frequency to the study at frequency one, but this
technique does not work on manifolds in general.

The goal of this paper is to study global in time Strichartz estimates for the fractional Schrödinger
equation on asymptotically Euclidean manifolds. In the case of Schrödinger equation, it can be seen
as a completion of those in [8] of spatial dimensions greater than or equal to 3. In order to achieve this
goal, we will use the techniques of [5] combined with the analysis of [8]. Note that since we consider
a larger range of admissible condition comparing to the sharp Schrödinger admissible condition (i.e.
the inequality in (1.2) is replaced by the equality) of [5], we have to be more careful in order to apply
the techniques of [5].

Before giving the main results, let us introduce some notations. Let g(x) = (gjk(x))dj,k=1 be a
metric on Rd, d ≥ 2, and denote G(x) = (gjk(x))dj,k=1 := g−1(x). We consider the Laplace-Beltrami
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operator associated to g, i.e.

∆g =
d∑

j,k=1
|g(x)|−1∂xj

(
gjk(x)|g(x)|∂xk

)
,

where |g(x)| :=
√

det g(x). Throughout the paper, we assume that g satisfies the following assump-
tions.

(1) There exists C > 0 such that for all x, ξ ∈ Rd,

C−1|ξ|2 ≤
d∑

j,k=1
gjk(x)ξjξk ≤ C|ξ|2. (1.4)

(2) There exists ρ > 0 such that for all α ∈ Nd, there exists Cα > 0 such that for all x ∈ Rd,∣∣∂α (gjk(x)− δjk
)∣∣ ≤ Cα 〈x〉−ρ−|α| . (1.5)

The elliptic assumption (1.4) implies that |g(x)| is bounded from below and above by positive con-
stants. Thus for 1 ≤ q ≤ ∞, the spaces Lq(Rd, dgx) where dgx = |g(x)|dx and Lq(Rd) coincide and
have equivalent norms. In the sequel, we will use the same notation Lq(Rd). It is well-known that
−∆g is essentially self-adjoint on C∞0 (Rd) under the assumptions (1.4) and (1.5). We denote the
unique self-adjoint extension on L2(Rd) by P . Note that the principal symbol of P is

p(x, ξ) = ξtG(x)ξ =
d∑

j,k=1
gjk(x)ξjξk. (1.6)

Now let γ ∈ R and q ∈ [1,∞]. The inhomogeneous Sobolev space W γ,q
g (Rd) associated to P is

defined as a closure of the Schwartz space S (Rd) under the norm

‖u‖Wγ,q
g (Rd) := ‖ 〈Λg〉γ u‖Lq(Rd).

It is very useful to recall that for all γ ∈ R and q ∈ (1,∞), there exists C > 1 such that

C−1‖ 〈Λ〉γ u‖Lq(Rd) ≤ ‖u‖Wγ,q
g (Rd) ≤ C‖ 〈Λ〉

γ
u‖Lq(Rd), (1.7)

with 〈Λ〉 =
√

1−∆ where ∆ is the free Laplace operator on Rd. This fact follows from the Lq-
boundedness of zero order pseudo-differential operators (see e.g [41, Theorem 3.1.6]). The estimates
(1.7) allow us to use the Sobolev embedding as on Rd. For the homogeneous Sobolev space associated
to P , one should be careful since the Schwartz space is not a good candidate due to the singularity
at 0 of λ 7→ |λ|γ . Recall that (see [18, Appendix], [47, chapter 5] and [1, Chapter 6]) on Rd, the
homogeneous Sobolev space Ẇ γ,q(Rd) is the closure of L (Rd) under the norm

‖u‖Ẇγ,q(Rd) := ‖ 〈Λ〉γ u‖Lq(Rd),

where
L (Rd) :=

{
u ∈ S (Rd) | Dαû(0) = 0, ∀α ∈ Nd

}
.

Here ·̂ is the spatial Fourier transform. Since there is no Fourier transform on manifolds, we need to
use the spectral theory instead. We denote

Lg(Rd) :=
{
ϕ(P )u | u ∈ S (Rd), ϕ ∈ C∞0 ((0,∞))

}
. (1.8)

We define the homogeneous Sobolev space Ẇ γ,q
g (Rd) associated to P as the closure of Lg(Rd) under

the norm
‖u‖Ẇγ,q

g (Rd) := ‖Λγgu‖Lq(Rd).
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When q = 2, we use Hγ(Rd), Ḣγ(Rd), Hγ
g (Rd) and Ḣγ

g (Rd) instead of W γ,2(Rd), Ẇ γ,2(Rd),W γ,2
g (Rd)

and Ḣγ
g (Rd) respectively. Thanks to the equivalence (1.7), we will only use the usual notation Hγ(Rd)

in the sequel. It is important to note (see [4, Proposition 2.3] or [43, Lemma 2.4]) that for d ≥ 2,

‖u‖2
Ḣ1
g(Rd) = (Λgu,Λgu) = (u, Pu) ' ‖∇u‖2L2(Rd) = ‖u‖2

Ḣ1(Rd). (1.9)

By the Stone theorem, the solution to (1.1) is given by u(t) = e−itΛ
σ
g u0. Let f0 ∈ C∞0 (R) be such

that f0 = 1 on [−1, 1]. We split
u(t) = ulow(t) + uhigh(t),

where

ulow(t) := f0(P )e−itΛ
σ
g u0, uhigh(t) = (1− f0)(P )e−itΛ

σ
g u0. (1.10)

We see that ulow(t) and uhigh(t) correspond to the low and high frequencies respectively. By the
Littlewood-Paley decomposition which is very similar to the one given in [5, Subsection 4.2] (see
Subsection 3.1), we split the high frequency term into two parts: inside and outside a compact set.
Our first result concerns the global in time Strichartz estimates for the high frequency term inside a
compact set.

Theorem 1.1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and assume
that the geodesic flow associated to g is non-trapping. Then for all χ ∈ C∞0 (Rd) and all (p, q) fractional
admissible, there exists C > 0 such that for all u0 ∈ Lg(Rd),

‖χuhigh‖Lp(R,Lq(Rd)) ≤ C‖u0‖Ḣγp,qg (Rd). (1.11)

The proof of Theorem 1.1 is based on local in time Strichartz estimates and global L2 integrability
estimates of the fractional Schrödinger operator. This strategy was first used in [44] for the Schrödinger
equation. We will make use of dispersive estimates given in [17] to get Strichartz estimates with a
high frequency spectral cutoff on a small time interval. Thanks to global L2 integrability estimates,
we can upgrade these local in time Strichartz estimates in to global in time Strichartz estimates. This
strategy depends heavily on the non-trapping condition. We believe that one can improve this result
to allow some weak trapped condition such as hyperbolic trapping in [11]. We hope to come back this
interesting question in a future work.

Our next result is the following global in time Strichartz estimates for the high frequency term
outside a compact set.

Theorem 1.2. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and assume
that there exists M > 0 large enough such that for all χ ∈ C∞0 (Rd),

‖χ(P − λ± i0)−1χ‖L(L2(Rd)) .χ λ
M , λ ≥ 1. (1.12)

Then there exists R > 0 large enough such that for all (p, q) fractional admissible, there exists C > 0
such that for all u0 ∈ Lg(Rd),

‖1{|x|>R}uhigh‖Lp(R,Lq(Rd)) ≤ C‖u0‖Ḣγp,qg (Rd). (1.13)

The assumption (1.12) is known to hold in certain trapping situations (see e.g. [14], [33] or [11])
as well as in the non-trapping case (see [36] or [48]). We remark that under the trapping condition of
[14], [33] or [11], we have

‖χ(P − λ± i0)−1χ‖L(L2(Rd)) .χ λ
−1/2 log λ, λ ≥ 1,

and under non-trapping condition, we have (see e.g. [10], [36]) that

‖χ(P − λ± i0)−1χ‖L(L2(Rd)) .χ λ
−1/2, λ ≥ 1.
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The proof of Theorem 1.2 relies on the so called Isozaki-Kitada parametrix (see [8]) and resolvent
estimates given in [5] using (1.12). Recall that the Isozaki-Kitada parametrix was first introduced on
Rd to study the scattering theory of Schrödinger operators with long range potentials [23]. It was
then modified and successfully used to show the Strichartz estimates for Schrödinger equation outside
a compact set in many papers (see e.g. [7], [8], [9], [30], [31] or [5]).

The low frequency term in (1.10) enjoys the following global in time Strichartz estimates.

Theorem 1.3. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). Then for
all (p, q) fractional admissible, there exists C > 0 such that for all u0 ∈ Lg(Rd),

‖ulow‖Lp(R,Lq(Rd)) ≤ C‖u0‖Ḣγp,qg (Rd). (1.14)

As mentioned earlier, since we consider a larger range of admissible condition than the one studied
in [5], we can not apply directly the low frequency Littlewood-Paley decomposition given in [5]. We
thus need a “refined” version of Littlewood-Paley decomposition. To do so, we will take the advantage
of heat kernel estimates (see Subsection 3.1). As a result, we split the low frequency term into two
parts: one supported outside a compact set and another one localized in a weak sense, i.e. by means
of a spatial decay weight. The term with a spatial decay weight is treated easily by using global Lp
integrability estimates of the fractional Schrödinger operator at low frequency. Note that this type of
global Lp integrability estimate relies on the low frequency resolvent estimates of [6] which is available
for spatial dimensions d ≥ 3. We expect that global in time Strichartz estimates for the fractional
Schrödinger equation at low frequency may hold in dimension d = 2 as well. However, we do not
know how to prove it at the moment. For the term outside a compact set, we make use of microlocal
techniques and a low frequency version of the Isozaki-Kitada parametrix. We refer the reader to
Section 5 for more details.

Combining Theorem 1.1, Theorem 1.2 and Theorem 1.3, we have the following result.

Theorem 1.4. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5) and assume
that the geodesic flow associated to g is non-trapping. Let u be a weak solution to (1.1). Then for all
(p, q) fractional admissible, there exists C > 0 such that for all u0 ∈ Lg(Rd),

‖u‖Lp(R,Lq(Rd)) ≤ C‖u0‖Ḣγp,qg (Rd). (1.15)

Using the homogeneous Strichartz estimate (1.15) and the Christ-Kiselev Lemma, we get the fol-
lowing inhomogeneous Strichartz estimates.

Proposition 1.5. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5) and
assume that the geodesic flow associated to g is non-trapping. Let σ ∈ (0,∞)\{1} and u be a weak
solution to the Cauchy problem{

i∂tu(t, x)− Λσgu(t, x) = F (t, x), (t, x) ∈ R× Rd,
u(0, x) = u0(x), x ∈ Rd, (1.16)

with data u0 ∈ Lg and F ∈ C(R,Lg). Then for all (p, q) and (a, b) fractional admissible, there exists
C > 0 such that

‖u‖Lp(R,Lq(Rd)) + ‖u‖L∞(R,Ḣγp,qg (Rd)) ≤ C
(
‖u0‖Ḣγp,qg (Rd) + ‖F‖La′ (R,Lb′ (Rd))

)
, (1.17)

provided that (p, a) 6= (2, 2) and
γp,q = γa′,b′ + σ. (1.18)

Remark 1.6. 1. The homogeneous Strichartz estimates (1.15) and the Minkowski inequality
imply

‖u‖Lp(R,Lq(Rd)) ≤ C
(
‖u0‖Ḣγp,qg (Rd) + ‖F‖L1(R,Ḣγp,qg (Rd))

)
. (1.19)
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2. When σ ∈ (0, 2)\{1}, we always have γp,q > 0 for any fractional admissible pair (p, q) except
(p, q) = (∞, 2). Thus, condition (1.18) implies that (p, a) 6= (2, 2), and (1.17) includes the
endpoint case. When σ ≥ 2, the estimates (1.17) do not include the endpoint estimate.

3. In the case σ ∈ (0, 2]\{1}, we can replace the homogeneous Sobolev norms in (1.17) and (1.19)
by the inhomogeneous ones.

Proposition 1.7. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5) and
assume that the geodesic flow associated to g is non-trapping. Let σ ∈ (0,∞)\{1} and v be a weak
solution to the Cauchy problem{

∂2
t v(t, x) + Λ2σ

g v(t, x) = F (t, x), (t, x) ∈ R× Rd,
v(0, x) = v0(x), ∂tv(0, x) = v1(x), x ∈ Rd, (1.20)

with data v0, v1 ∈ Lg and F ∈ C(R,Lg). Then for all (p, q) and (a, b) fractional admissible, there
exists C > 0 such that

‖v‖Lp(R,Lq(Rd)) + ‖[v]‖L∞(R,Ḣγp,qg (Rd)) ≤ C
(
‖[v](0)‖Ḣγp,qg (Rd) + ‖F‖La′ (R,Lb′ (Rd))

)
, (1.21)

where [v](t) := (v(t), ∂tv(t)) and

‖[v]‖L∞(R,Ḣγp,qg (Rd)) := ‖v‖L∞(R,Ḣγp,qg (Rd)) + ‖∂tv‖L∞(R,Ḣγp,q−σg (Rd))

provided that (p, a) 6= (2, 2) and

γp,q = γa′,b′ + 2σ. (1.22)

Remark 1.8. As in Remark 1.6, we have

‖v‖Lp(R,Lq(Rd)) ≤ C
(
‖[v](0)‖Ḣγp,qg (Rd) + ‖F‖

L1(R,Ḣγp,q−σg (Rd))

)
. (1.23)

We finally emphasize that this paper is only devoted to study global in time Strichartz estimates.
We refer the reader to [16] for applications of Strichartz estimates to the local well-posedness of the
nonlinear fractional Schrödinger and wave equations.

The paper is organized as follows. In Section 2, we recall some properties of the semi-classical and
rescaled pseudo-differential operators, and prove some propagation estimates related to our problem.
We then prove a “refined” version of the Littlewood-Paley decomposition at low frequency and give
a reduction of global in time Strichartz estimates in Section 3. In Section 4, we prove global in time
Strichartz estimates inside compact sets at high frequency. Section 5 is devoted to the construction of
the Isozaki-Kitada parametrix for the fractional Schrödinger operator both at high and low frequencies
and to the proofs of Strichartz estimates outside compact sets. Finally, we give in Section 6 the proofs
for the inhomogeneous Strichartz estimates due to the Christ-Kiselev Lemma.
Notation. In this paper the constant may change from line to line and will be denoted by the same
C. The constants with a subscript C1, C2, ... will be used when we need to compare them to one
another. The notation A .D B means that there exists a universal constant C > 0 depending on D
such that A ≤ CB. For Banach spaces X and Y , the notation ‖ · ‖L(X,Y ) denotes the operator norm
from X to Y and ‖ · ‖L(X) := ‖ · ‖L(X,X). The one T = OL(X,Y )(A) means that there exists C > 0
such that ‖T‖L(X,Y ) ≤ CA. In order to simplify the presentation, we shall drop the notation Rd and
only write Lq,S ,Lg,W

γ,q, Ẇ γ,q
g , Hγ , Ḣγ

g .

2. Functional calculus and propagation estimates

In this section, we recall some well-known results on pseudo-differential operators and prove some
propagation estimates related to our problem.
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2.1. Pseudo-differential operators. Let µ,m ∈ R. We consider the symbol class S(µ,m) the space
of smooth functions a on R2d satisfying∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ ≤ Cαβ 〈x〉µ−|α| 〈ξ〉m−|β| .
In practice, we mainly use S(µ,−∞) := ∩m∈RS(µ,m).

For a ∈ S(µ,m) and h ∈ (0, 1], we consider the semi-classical pseudo-differential operator
Oph(a) which is defined by

Oph(a)u(x) = (2πh)−d
∫∫

R2d
eih
−1(x−y)ξa(x, ξ)u(y)dydξ. (2.1)

By the long range assumption (1.5), we see that h2P = Oph(p) + hOph(p1) with p ∈ S(0, 2) given
in (1.6) and p1 ∈ S(−ρ − 1, 1) ⊂ S(−1, 1). We recall that for a ∈ S(µ1,m1) and b ∈ S(µ2,m2), the
composition Oph(a)Oph(b) is given by

Oph(a)Oph(b) =
N−1∑
j=0

hjOph((a#b)j) + hNOph(r#
N (h)), (2.2)

where (a#b)j =
∑
|α|=j

1
α!∂

α
ξ aD

α
x b ∈ S(µ1 + µ2 − j,m1 + m2 − j) and (r#

N (h))h∈(0,1] is a bounded
family in S(µ1 + µ2 −N,m1 +m2 −N). The adjoint with respect to the Lebesgue measure Oph(a)?
is given by

Oph(a)? =
N−1∑
j=0

hjOph(a?j ) + hNOph(r?N (h)), (2.3)

where a?j =
∑
|α|=j

1
α!∂

α
ξ D

α
xa ∈ S(µ1 − j,m1 − j) and (r?N (h))h∈(0,1] is a bounded family in S(µ1 −

N,m1 −N).
We next recall the definition of rescaled pseudo-differential operator which is essentially given in [5].

This type of operator is very useful for the analysis at low frequency. Let a ∈ S(µ,m) and ε ∈ (0, 1].
The rescaled pseudo-differential operator Opε(a) is defined by

Opε(a)u(x) = (2π)−d
∫∫

R2d
ei(x−y)ξa(εx, ε−1ξ)u(y)dydξ.

Setting Dεu(x) := εd/2u(εx). It is easy to see that Dε is a unitary map on L2 and

Opε(a) = DεOp(a)D−1
ε , (2.4)

where D−1
ε u(x) = ε−d/2u(ε−1x) and Op(a) := Op1(a), i.e. h = 1 in (2.1). Thanks to (2.2), (2.3) and

(2.4), the composition Opε(a)Opε(b) and the adjoint with respect to the Lebesgue measure Opε(a)?
with a ∈ S(µ1,m1) and b ∈ S(µ2,m2) are given by

Opε(a)Opε(b) =
N−1∑
j=0

Opε((a#b)j) +Opε(r#
N ), Opε(a)? =

N−1∑
j=0

Opε(a?j ) +Opε(r?N ).

2.2. Functional calculus. In this subsection, we will recall the approximations for φ(h2P ) and
ζ(εx)φ(ε−2P ) in terms of semi-classical and rescaled pseudo-differential operators respectively where
φ ∈ C∞0 (R) and ζ ∈ C∞(Rd) is supported outside B(0, 1) and equal to 1 near infinity. Here B(0, 1) is
the open unit ball in Rd.

We firstly recall the following L(Lq, Lr)-bound of pseudo-differential operators (see e.g. [7, Propo-
sition 2.4]).
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Proposition 2.1. Let m > d and a be a continuous function on R2d smooth with respect to the second
variable satisfying for all β ∈ Nd, there exists Cβ > 0 such that for all x, ξ ∈ Rd,

|∂βξ a(x, ξ)| ≤ Cβ 〈ξ〉−m .

Then for 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

‖Oph(a)‖L(Lq,Lr) ≤ Chd/r−d/q.

The following proposition gives an approximation of φ(h2P ) in terms of semi-classical pseudo-
differential operators (see e.g. [7] or [35]).

Proposition 2.2. Consider Rd equipped with a smooth metric g satisfying (1.4) and (1.5). Then
for a given φ ∈ C∞0 (R), there exist a sequence of symbols qj ∈ S(−j,−∞) satisfying q0 = φ ◦ p and
supp(qj) ⊂ supp(φ ◦ p) such that for all N ≥ 1,

φ(h2P ) =
N−1∑
j=0

hjOph(qj) + hNRN (h),

and for m ≥ 0 and 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

‖RN (h) 〈x〉N ‖L(Lq,Lr) ≤ Chd/r−d/q,

‖RN (h) 〈x〉N ‖L(H−m,Hm) ≤ Ch−2m.

Combining Proposition 2.1 and Proposition 2.2, one has the following result (see e.g. [7, Proposition
2.9]).

Proposition 2.3. Consider Rd equipped with a smooth metric g satisfying (1.4) and (1.5). Let
φ ∈ C∞0 (R). Then for 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

‖φ(h2P )‖L(Lq,Lr) ≤ Chd/r−d/q.

It is also known (see [5]) that the rescaled pseudo-differential operator is very useful to approximate
the low frequency localization of P , i.e. operators of the form φ(ε−2P ). By the uncertainty principle,
one can only expect to get such approximation whenever |x| is large, typically |x| & ε−1.

Remark 2.4. Let µ ≤ 0,m ∈ R and a ∈ S(µ,m). If we set

aε(x, ξ) := εµa(ε−1x, ξ),

then for all α, β ∈ Nd, there exists Cαβ > 0 such that for all |x| ≥ 1, ξ ∈ Rd,

|∂αx ∂
β
ξ aε(x, ξ)| ≤ Cαβ 〈ξ〉

m−|β|
, ∀ε ∈ (0, 1].

We next rewrite ε−2P as Dε(D−1
ε (ε−2P )Dε)D−1

ε . A direct computation gives

D−1
ε (ε−2P )Dε = Op(pε) +Op(pε,1) =: Pε,

where pε(x, ξ) = p(ε−1x, ξ) and pε,1(x, ξ) = ε−1p1(ε−1x, ξ). We thus obtain

ε−2P = Opε(pε) +Opε(pε,1). (2.5)

Using the fact that p ∈ S(0, 2), p1 ∈ S(−1, 1), Remark 2.4 allows us to construct the parametrix for
the resolvent ζ(εx)(ε−2P − z)−k with ζ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1 near
infinity. Indeed, by writing ζ(εx)(ε−2P −z)−k = Dε

[
ζ(x)(Pε − z)−k

]
D−1
ε , we can apply the standard

elliptic parametrix for ζ(x)(Pε − z)−k and we have (see e.g. [7] or [5]) the following result.
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Proposition 2.5. Let ζ, ζ̃, ˜̃ζ ∈ C∞(Rd) be supported outside B(0, 1) and equal to 1 near infinity such
that ζ̃ = 1 near supp(ζ) and ˜̃ζ = 1 near supp(ζ̃). Then for all k,N ≥ 1 integers and z ∈ C\[0,+∞),
we have for ε ∈ (0, 1],

ζ(εx)(ε−2P − z)−k =
N−1∑
j=0

ζ(εx)Opε(bε,j(z))ζ̃(εx) +RN (z, ε),

where (bε,j(z))ε∈(0,1] is a bounded family in S(−j,−2k − j) which is a linear combination of dε,l(pε −
z)−k−l with (dε,l)ε∈(0,1] a bounded family in S(−j, 2l − j) and

RN (z, ε) = ζ(εx)Opε(rN (z, ε))˜̃ζ(εx)(ε−2P − z)−k

where rN (z, ε) ∈ S(−N,−N) has seminorms growing polynomially in 1/dist(z,R+) uniformly in ε ∈
(0, 1] as long as z belongs to a bounded set of C\[0,+∞).

A first application of Proposition 2.5 is the following result.

Proposition 2.6. Using the notations given in Proposition 2.5, let k > d/2 and 2 ≤ q ≤ ∞. Then
there exists C > 0 such that for all ε ∈ (0, 1],

‖ζ(εx)(ε−2P + 1)−k‖L(L2,Lq) ≤ Cεd/2−d/q. (2.6)

Proof. We apply Proposition 2.5 with N > d, we see that

ζ(εx)(ε−2P + 1)−k =
N−1∑
j=0

ζ(εx)Opε(bε,j(−1))ζ̃(εx) + ζ(εx)Opε(rN (−1, ε))˜̃ζ(εx)(ε−2P + 1)−k,

=
N−1∑
j=0

Dε

{
ζ(x)Op(bε,j(−1))ζ̃(x) + ζ(x)Op(rN (−1, ε))˜̃ζ(x)(Pε + 1)−k

}
D−1
ε ,

where (bε,j(−1))ε∈(0,1], (rN (−1, ε))ε∈(0,1] are bounded in S(−j,−2k− j) and S(−N,−N) respectively.
The result then follows from Proposition 2.1 with h = 1 and that

‖Dε‖L(Lq) = εd/2−d/q, ‖D−1
ε ‖L(L2) = 1.

We also use that ‖(Pε + 1)−k‖L(L2) ≤ 1 for the remainder term. �

Another application of Proposition 2.5 is the following approximation of ζ(εx)φ(ε−2P ) in terms of
rescaled pseudo-differential operators.

Proposition 2.7. Consider Rd equipped with a smooth metric g satisfying (1.4) and (1.5). Let
φ ∈ C∞0 (R) and ζ, ζ̃, ˜̃ζ be as in Proposition 2.5. Then there exists a sequence of bounded families of
symbols (qε,j)ε∈(0,1] ∈ S(−j,−∞) with qε,0 = φ ◦ pε and supp(qε,j) ⊂ supp(φ ◦ pε) such that for all
N ≥ 1,

ζ(εx)φ(ε−2P ) =
N−1∑
j=0

ζ(εx)Opε(qε,j)ζ̃(εx) +RN (ε). (2.7)

Moreover, for any m ≥ 0, there exists C > 0 such that for all ε ∈ (0, 1],

‖(ε−2P + 1)mRN (ε) 〈εx〉N ‖L(L2) ≤ C. (2.8)

Proof. By using Proposition 2.5 with k = 1 and the Helffer-Sjöstrand formula (see [15]) namely

φ(ε−2P ) = − 1
π

∫
C
∂φ̃(z)(ε−2P − z)−1dL(z),
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where φ̃ is an almost analytic extension of φ, the Cauchy formula gives (2.7) with

RN (ε) = 1
π

∫
C
∂φ̃(z)ζ(εx)Opε(rN (z, ε))˜̃ζ(εx)(ε−2P − z)−1dL(z). (2.9)

Here (rN (z, ε))ε∈(0,1] is bounded in S(−N,−N) and has semi-norms growing polynomially in |Im z|−1

which is harmless since ∂φ̃(z) = O(|Im z|∞). The left hand side of (2.8) is bounded by
1
π

∫
C
|∂φ̃(z)|‖(ε−2P + 1)mζ(εx)Opε(rN (z, ε))˜̃ζ(εx)(ε−2P − z)−1 〈εx〉N ‖L(L2)dL(z).

By choosing ζ1 ∈ C∞(Rd) supported outside B(0, 1) such that ζ1 = 1 near supp(˜̃ζ), we can write

(ε−2P − z)−1 = (ε−2P − z)−1(1− ζ1)(εx) + (ε−2P − z)−1ζ1(εx).

We note that (1 − ζ1)(εx) 〈εx〉N is of size OL(L2)(1) due to the compact support in εx, and (ε−2P +
1)(ε−2P − z)−1 is of size OL(L2)(|Im z|−1) by functional calculus. Moreover, using (2.5) and the same
process as in the proof of Proposition 2.6, there exists τ(m) ∈ N such that

‖(ε−2P + 1)mζ(εx)Opε(rN (z, ε))˜̃ζ(εx)(ε−2P + 1)−1‖L(L2) ≤ C|Im z|−τ(m).

This shows that

‖(ε−2P + 1)mRN (ε)(1− ζ1)(εx) 〈εx〉N ‖L(L2) ≤ C. (2.10)

For the term (ε−2P + 1)mRN (ε)ζ1(εx) 〈εx〉N , using Proposition 2.5 (by taking the adjoint), we see
that

(ε−2P − z)−1ζ1(εx) =
N ′−1∑
j=0

ζ̃1(εx)Opε(b̃ε,j(z))ζ1(εx) + R̃N ′(z, ε),

where (b̃ε,j(z))ε∈(0,1] is a bounded family in S(−j,−2− j) and

R̃N ′(z, ε) = (ε−2P − z)−1 ˜̃ζ1(εx)Opε(r̃N ′(z, ε))ζ1(εx),

where r̃N ′(z, ε) ∈ S(−N ′,−N ′) has seminorms growing polynomially in |Im z|−1 uniformly in ε ∈ (0, 1].
By the same argument as above, we obtain

‖(ε−2P + 1)mRN (ε)ζ1(εx) 〈εx〉N ‖L(L2) ≤ C. (2.11)

Combining (2.10) and (2.11), we prove (2.8). �

As a consequence of Proposition 2.7, we have the following result.

Corollary 2.8. Let φ ∈ C∞0 (R). Then for 2 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all
ε ∈ (0, 1],

‖ζ(εx)φ(ε−2P )‖L(Lq,Lr) ≤ Cεd/q−d/r. (2.12)

Proof. By (2.7) and (2.8) (see also (2.9)), we can write for any N ≥ 1 and any m ≥ 0,

ζ(εx)φ(ε−2P ) =
N−1∑
j=0

ζ(εx)Opε(qε,j)ζ̃(εx) +RN (ε),

where
RN (ε) = ζ̃(εx)(ε−2P + 1)−mBε 〈εx〉−N

with Bε = OL(L2)(1) uniformly in ε ∈ (0, 1]. The main terms can be estimated by using Proposition
2.1 (see also the proof of Proposition 2.6). It remains to treat the remainder term. We firstly note that
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〈εx〉−N = OL(Lq,L2)(εd/q−d/2) provided N > d(q−2)
2q . Using this bound together with Bε = OL(L2)(1)

and (2.6), we see that

‖RN (ε)‖L(Lq,Lr) . ‖ζ̃(εx)(ε−2P + 1)−m‖L(L2,Lr)‖Bε‖L(L2)‖ 〈εx〉
−N ‖L(Lq,L2)

. εd/2−d/rεd/q−d/2 . εd/q−d/r.

This proves (2.12). �

Another consequence of Proposition 2.7 is the following estimate.

Corollary 2.9. Let φ ∈ C∞0 (R). For m ≥ 0, there exists C > 0 such that for all ε ∈ (0, 1],

‖ 〈εx〉−m φ(ε−2P ) 〈εx〉m ‖L(L2) ≤ C. (2.13)

Proof. By choosing ζ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1 near infinity, we can write
〈εx〉−m φ(ε−2P ) 〈εx〉m as

〈εx〉−m φ(ε−2P )ζ(εx) 〈εx〉m + 〈εx〉−m φ(ε−2P )(1− ζ)(εx) 〈εx〉m .
The L(L2)-boundedness of the first term follows from the parametrix of φ(ε−2P )ζ(εx) which is ob-
tained by taking the adjoint of (2.7). The second term follows from the fact that (1− ζ)(εx) 〈εx〉m is
bounded in L(L2) since 1− ζ vanishes outside a compact set. �

2.3. Propagation estimates. In this subsection, we recall some results on resolvent estimates and
prove some propagation estimates both at high and low frequencies. Let us start with the following
result.

Proposition 2.10. 1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5)
and suppose that the assumption (1.12) holds. Then for k ≥ 0, there exist C > 0 and non-
decreasing Nk ∈ N such that for all h ∈ (0, 1] and all λ belongs to a relatively compact interval
of (0,+∞),

‖ 〈x〉−1−k (h2P − λ∓ i0)−1−k 〈x〉−1−k ‖L(L2) ≤ Ch−Nk . (2.14)

2. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). Then for k ≥ 0,
there exists C > 0 such that for all ε ∈ (0, 1] and all λ belongs to a relatively compact interval
of (0,+∞),

‖ 〈εx〉−1−k (ε−2P − λ∓ i0)−1−k 〈εx〉−1−k ‖L(L2) ≤ C. (2.15)

The high frequency resolvent estimates (2.14) are given in [5, Proposition 7.5] and the low frequency
resolvent estimates (2.15) are given in [6, Theorem 1.2]. Note that under the non-trapping condition,
the estimates (2.14) hold with Nk = k+1 (see e.g. [37, Theorem 2.8]). We next use the resolvent esti-
mates given in Proposition 2.10 to have the following resolvent estimates for the fractional Schrödinger
operator.

Proposition 2.11. Let σ ∈ (0,∞).
1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and suppose that

the assumption (1.12) holds. Then for k ≥ 0, there exist C > 0 and non-decreasing Nk ∈ N
such that for all h ∈ (0, 1] and all µ ∈ I b (0,+∞),

‖ 〈x〉−1−k ((hΛg)σ − µ∓ i0)−1−k 〈x〉−1−k ‖L(L2) ≤ Ch−Nk . (2.16)

2. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). Then for k ≥ 0,
there exists C > 0 such that for all ε ∈ (0, 1] and all µ ∈ I b (0,+∞),

‖ 〈εx〉−1−k ((ε−1Λg)σ − µ∓ i0)−1−k 〈εx〉−1−k ‖L(L2) ≤ C. (2.17)



12 V. D. DINH

Proof. We only give the proof for (2.16), the one for (2.17) is similar using (2.13). We firstly note
that the estimates (2.16) are equivalent to

‖ 〈x〉−1−k ((hΛg)σ − µ∓ i0)−1−kφ(h2P ) 〈x〉−1−k ‖L(L2) ≤ Ch−Nk ,

where φ ∈ C∞0 ((0,+∞)) satisfying φ = 1 near I. Note that here Λg =
√
P . Next, we write µ = λσ/2

with λ lied in a relatively compact interval of (0,+∞). By functional calculus, we write
(hΛg)σ − µ∓ i0 = (h2P − λ∓ i0)Q(h2P, µ),

where Q(·, µ) is smooth and non vanishing on the support of φ. This implies for all k ≥ 0,
((hΛg)σ − µ∓ i0)−1−kφ(h2P ) = (h2P − λ∓ i0)−1−kQ̃(h2P, µ),

where Q̃(h2P, µ) = φ(h2P )Q−1−k(h2P, µ). This allows us to approximate Q̃(h2P, µ) by pseudo-
differential operators by means of Proposition 2.2. Thus, we have that 〈x〉1+k

Q̃(h2P, µ) 〈x〉−1−k is
of size OL(L2)(1) uniformly in µ ∈ I b (0,+∞) and h ∈ (0, 1]. Therefore, (2.16) follows from (2.14).
The proof is complete. �

We now give an application of resolvent estimates given in Proposition 2.11 when k = 0 and obtain
the following global L2 integrability estimates for the fractional Schrödinger operators both at high
and low frequencies.

Proposition 2.12. Let σ ∈ (0,∞) and f ∈ C∞0 ((0,+∞)).
1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and suppose that the

assumption (1.12) holds. Then there exists C > 0 such that for all u0 ∈ L2 and all h ∈ (0, 1],

‖ 〈x〉−1
f(h2P )e−ith

−1(hΛg)σu0‖L2(R,L2) ≤ Ch(1−N0)/2‖u0‖L2 . (2.18)

2. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). Then there exists
C > 0 such that for all u0 ∈ L2 and all ε ∈ (0, 1],

‖ 〈εx〉−1
f(ε−2P )e−itε(ε

−1Λg)σu0‖L2(R,L2) ≤ Cε−1/2‖u0‖L2 . (2.19)

Remark 2.13. 1. By interpolating between L2(R) and L∞(R), we get the following Lp integra-
bility estimates

‖ 〈x〉−1
f(h2P )e−ith

−1(hΛg)σu0‖Lp(R,L2) ≤ Ch(1−N0)/p‖u0‖L2 . (2.20)

‖ 〈εx〉−1
f(ε−2P )e−itε(ε

−1Λg)σu0‖Lp(R,L2) ≤ Cε−1/p‖u0‖L2 . (2.21)
2. Thanks to the fact that P is non-negative, these estimates are still true for f ∈ C∞0 (R\{0}).

Moreover, we can replace ‖u0‖L2 in the right hand side of (2.18) and (2.20) (resp. (2.19) and
(2.21)) by ‖f(h2P )u0‖L2 (resp. ‖f(ε−2P )u0‖L2). Indeed, we choose f̃ ∈ C∞0 (R\0) such that
f̃ = 1 near supp(f) and write f(h2P ) = f̃(h2P )f(h2P ). We apply (2.18) and (2.20) with f̃
instead of f . Similarly for the low frequency case.

Proof of Proposition 2.12. We again only consider the high frequency case, the low frequency one
is completely similar. By the limiting absorption principle (see [34, Theorem XIII.25]), we see that
‖ 〈x〉−1

f(h2P )e−it(hΛg)σu0‖2L2(R,L2) is bounded by

2π sup
µ∈R
ε>0

‖ 〈x〉−1
f(h2P )((hΛg)σ − µ− iε)−1f(h2P ) 〈x〉−1 ‖L(L2)‖u0‖2L2 .

By functional calculus and the holomorphy of the resolvent, it suffices to bound ‖ 〈x〉−1
f(h2P )((hΛg)σ−

µ − i0)−1f(h2P ) 〈x〉−1 ‖L(L2), uniformly with respect to µ ∈ R. As a function of hΛg, the operator
f(h2P )((hΛg)σ−µ− i0)−1f(h2P ) reads f(λ2)(λσ−µ− i0)−1f(λ2). Assume that supp(f) ⊂

[
1/c2, c2

]
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for some c > 1, so λ ∈ [1/c, c].
In the case µ ≥ 2cσ or λ ≤ 1/2cσ, we have that µ − λσ ≥ cσ or λσ − µ ≥ 1/2cσ. The functional

calculus gives
‖f(h2P )((hΛg)σ − µ− i0)−1f(h2P )‖L(L2) ≤ 2cσ‖f‖2L∞(R).

Thus we can assume that µ ∈ [1/2cσ, 2cσ]. Using (2.16) with k = 0, we have

‖ 〈x〉−1 ((hΛg)σ − µ∓ i0)−1 〈x〉−1 ‖L(L2) ≤ Ch−N0 .

On the other hand, 〈x〉−1
f(h2P ) 〈x〉 is bounded in L(L2) by pseudo-differential calculus. This implies

‖ 〈x〉−1
f(h2P )e−it(hΛg)σu0‖L2(R,L2) ≤ Ch−N0/2‖u0‖L2 .

By scaling in time, this gives the result. �
Another application of the resolvent estimates given in Proposition 2.11 is the following local energy

decays for the fractional Schrödinger operators both at high and low frequencies.

Proposition 2.14. Let σ ∈ (0,∞) and f ∈ C∞0 (R\{0}).
1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and suppose that

the assumption (1.12) holds. Then for k ≥ 0, there exists C > 0 such that for all t ∈ R and
all h ∈ (0, 1],

‖ 〈x〉−1−k
e−ith

−1(hΛg)σf(h2P ) 〈x〉−1−k ‖L(L2) ≤ Ch−Nk
〈
th−1〉−k . (2.22)

2. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). Then for k ≥ 0,
there exists C > 0 such that for all t ∈ R and all ε ∈ (0, 1],

‖ 〈εx〉−1−k
e−itε(ε

−1Λg)σf(ε−2P ) 〈εx〉−1−k ‖L(L2) ≤ C 〈εt〉
−k
. (2.23)

Proof. As above, we only give the proof for the high frequency case. Using the Stone formula, the
operator e−it(hΛg)σf(h2P ) reads

1
2iπ

∫
R
e−itµf(µ2/σ)(((hΛg)σ − µ− i0)−1 − ((hΛg)σ − µ+ i0)−1)dµ.

We use the same trick as in [8]. By multiplying to above equality with (it)k and using integration
by parts in the weighted spaces 〈x〉−1−k

L2, we see that (it)ke−it(hΛg)σf(h2P ) is a linear combination
with l + n = k of terms of the form∫

R
e−itµ∂lµ(f(µ2/σ))(((hΛg)σ − µ− i0)−1−n − ((hΛg)σ − µ+ i0)−1−n)dµ.

The compact support of f implies that µ is bounded from above and below. The resolvent estimates
(2.16) then imply

‖ 〈x〉−1−k
e−it(hΛg)σf(h2P ) 〈x〉−1−k ‖L(L2) ≤ Ch−Nk 〈t〉

−k
.

Here we use that Nm is non-decreasing with respect to m. By scaling in time, we have (2.22). The
proof is complete. �

3. Reduction of the problem

3.1. The Littlewood-Paley theorems. In this subsection, we recall some Littlewood-Paley type
estimates which are essentially given in [5]. Let us introduce f(λ) = f0(λ) − f0(2λ), where f0 given
as in (1.10). We have f ∈ C∞0 (R\{0}) and

∞∑
k=1

f(2−kλ) = (1− f0)(λ),
∞∑
k=0

f(2kλ) = 1R\{0}(λ)f0(λ), λ ∈ R.
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The Spectral Theorem implies that

(1− f0)(P ) =
∞∑
k=1

f(2−kP ), f0(P ) =
∞∑
k=0

f(2kP ). (3.1)

In the second sum, we use the fact that 0 is not an eigenvalue of P (see e.g. [46]).

Theorem 3.1. 1. Let N ≥ 1 and χ ∈ C∞0 (Rd). Then for q ∈ [2,∞), there exists C > 0 such
that

‖(1− χ)(1− f0)(P )v‖Lq ≤ C
( ∑
h2=2−k

‖(1− χ)f(h2P )v‖2Lq + hN‖ 〈x〉−N f(h2P )v‖2L2

)1/2
, (3.2)

for all v ∈ S (Rd), where k ∈ N\{0}. The same estimates hold for χ in place of 1− χ.
2. Let χ ∈ C∞0 (Rd) be such that χ(x) = 1 for |x| ≤ 1. Then for q ∈ (2,∞), there exists C > 0

such that for all v ∈ L2,

‖f0(P )v‖Lq ≤ C
( ∑
ε−2=2k

‖(1− χ)(εx)f(ε−2P )v‖2Lq + ‖εd/2−d/q 〈εx〉−1
f(ε−2P )v‖2L2

)1/2
. (3.3)

Here we use in the sum that k ∈ N.

Note that the Littlewood-Paley theorem at low frequency is slightly different from the one in [5,
Theorem 4.1]. In [5], Bouclet-Mizutani considered the sharp Schrödinger admissible condition. This
allows to interpolate between the trivial Strichartz estimate for (∞, 2) and the endpoint Strichartz
estimate for the endpoint pair (2, 2?). The proof of the low frequency Littlewood-Paley theorem given
in [5] makes use of the homogeneous Sobolev embedding

‖v‖L2? ≤ C‖Λgv‖L2 , 2? = 2d
d− 2 . (3.4)

Since we consider a larger range of admissible condition (1.2), we can not apply this interpolation
technique. To overcome this difficulty, we will take the advantage of heat kernel estimates. Our
estimate (3.3) is robust and can be applied for another types of dispersive equations such as the wave
or Klein-Gordon equations.

Let K(t, x, y) be the kernel of the heat operator e−tP , t > 0, i.e.

e−tPu(x) =
∫
Rd
K(t, x, y)u(y)dy.

We recall some properties (see e.g. [12], [19]) of the heat kernel on arbitrary Riemannian manifold.

Lemma 3.2. Let (M, g) be an arbitrary Riemannian manifold. Then the heat kernel K satisfies the
following properties:

(i) K is a strictly positive C∞ function on (0,∞)×M ×M .
(ii) K is symmetric in the space components.
(iii) (Maximum principle) ∫

M

K(t, x, y)dg(y) ≤ 1.

(iv) (Semi-group property)∫
M

K(s, x, y)K(t, y, z)dg(y) = K(s+ t, x, z).
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In order to obtain the heat kernel estimate, we will make use of the Nash inequality (see e.g. [39,
Theorem 3.2.1]), namely

‖u‖L2 ≤ C‖u‖
2
d+2
L1 ‖∇u‖

d
d+2
L2 . (3.5)

Note that the Nash inequality on Rd is valid for any d ≥ 1. Thanks to (1.9), we have for d ≥ 2,

‖u‖L2 ≤ C‖u‖
2
d+2
L1 ‖Λgu‖

d
d+2
L2 . (3.6)

Using (3.6), we have the following upper bound for the heat kernel.

Theorem 3.3. There exists C > 0 such that for all x, y ∈ Rd and all t > 0 such that
K(t, x, x) ≤ Ct−d/2, (3.7)

K(t, x, y) ≤ Ct−d/2 exp
(
− |x− y|

2

Ct

)
. (3.8)

In particular,
‖e−tP ‖L(L1,L∞) ≤ Ct−d/2, t > 0. (3.9)

Proof. The proof is similar to the one given in [19, Theorem 6.1] where the author shows how to get
(3.7) from the homogeneous Sobolev embedding (3.4). For the reader’s convenience, we give a sketch
of the proof. Fix x ∈ Rd and denote v(t, y) = K(t, y, x) and

J(t) := ‖v(t)‖2L2 .

Using the fact that ∂tv(t, y) = −Pv(t, y), we have
J ′(t) = 2 〈v(t), ∂tv(t)〉 = −2 〈v(t), Pv(t)〉 = −2‖Λgv(t)‖2L2 .

This implies that J(t) is non-increasing. On the other hand, the maximum principle (see also [19])
shows that

‖v(t)‖L1 =
∫
Rd
K(t, x, y)dy ≤ 1.

This together with (3.6) yield

‖v(t)‖2L2 ≤ C‖v(t)‖
2
d+2
L1 ‖Λgv(t)‖

d
d+2
L2 ≤ C‖Λgv(t)‖

d
d+2
L2 .

We thus get
J ′(t) ≤ −C‖v(t)‖

d+2
d

L2 = −CJ(t)
d+2
d .

Integrating between 0 and t with the fact that the non-increasing property of J(t), we obtain

J(t) ≤ Ct−d/2.
The estimate (3.7) then follows by the symmetric property of K(t, x, y), i.e. J(t) = K(2t, x, x). Using
(3.7), the off-diagonal argument (see also [19]) implies the following upper bound for the heat kernel

K(t, x, y) ≤ Ct−d/2 exp
(
− d2(x, y)

Ct

)
, ∀x, y ∈ Rd, t > 0,

where d(x, y) is the geodesic distance from x to y. Thanks to the elliptic condition (1.4) of the metric
g, it is easy to see that

d(x, y) ∼ |x− y|.
This shows (3.8) and the proof is complete. �

We now give some applications of the upper bound (3.8). A first application is the following
homogeneous Sobolev embedding.
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Lemma 3.4. Let q ∈ (2,∞) and α = d
2 −

d
q . Then the operator Λ−αg maps L2 to Lq. In particular,

there exists C > 0 such that

‖u‖Lq ≤ C‖Λαg u‖L2 . (3.10)

Proof. We firstly recall the following version of Hardy-Littlewood-Sobolev theorem.

Theorem 3.5 ([20, 40]). Let 1 < p < q <∞, γ = d+ d
q−

d
p and Kγ(x) := |x|−γ . Then the convolution

operator Tγ := f ∗Kγ maps Lp to Lq. In particular, there exists C > 0 such that

‖Tγu‖Lq ≤ C‖u‖Lp .

Now let Γ(z) :=
∫∞

0 tz−1e−tdt,Re (z) > 0 be the Gamma function. The spectral theory with the fact
Λg =

√
P gives

Λ−αg = P−α/2 = 1
Γ(α/2)

∫ ∞
0

e−tP tα/2−1dt.

Let [Λ−αg ](x, y) be the kernel of Λ−αg . By (3.8),

|[Λ−αg ](x, y)| ≤ C

Γ(α/2)

∫ ∞
0

t−d/2e−
|x−y|2
Ct tα/2−1dt.

A change of variable shows

|[Λ−αg ](x, y)| ≤ C

Γ(α/2) |x− y|
−(d−α)

∫ ∞
0

td/2−α/2−1e−tdt = CΓ(d/2− α/2)
Γ(α/2) |x− y|−(d−α).

The result follows by applying Theorem 3.5 with γ = d− α and p = 2. �

Another application of the heat kernel upper bound (3.8) is the following Lq − Lr-bound of the
heat operator.

Lemma 3.6. Let 1 ≤ q ≤ r ≤ ∞. The heat operator e−tP , t > 0 maps Lq to Lr. In particular, there
exists C > 0 such that for all t > 0,

‖e−tP ‖L(Lq,Lr) ≤ Ct−
d
2 ( 1

q−
1
r ).

Proof. By the symmetric and maximal principle properties of the heat kernel, the Schur’s Lemma
yields

‖e−tP ‖L(Lq) ≤ C, t > 0. (3.11)

Interpolating between (3.9) and (3.11), we have the result. �

Corollary 3.7. Let f ∈ C∞0 (R\{0}) and q ∈ [2,∞]. Then there exists C > 0 such that for all
ε ∈ (0, 1],

‖f(ε−2P )‖L(L2,Lq) ≤ Cεd/2−d/q.

Proof. By writing
f(ε−2P ) = e−ε

−2P (eε
−2P f(ε−2P )),

and using Proposition 3.6 with t = ε−2, we get

‖f(ε−2P )‖L(L2,Lq) ≤ ‖e−ε
−2P ‖L(L2,Lq)‖eε

−2P f(ε−2P )‖L(L2) ≤ Cεd/2−d/q.

Here, using the compactly supported property of f and spectral theorem, we have eε−2P f(ε−2P ) is of
size OL(L2)(1). This gives the result. �
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We now are able to prove Theorem 3.1. We only give the proof for the low frequency case. The
high frequency one is essentially given in [5, Theorem 4.6].
Proof of Theorem 3.1. By the second term of (3.1), we have

‖f0(P )v‖Lq = sup
‖w‖

Lq
′=1
|(w, f0(P )v)| = sup

‖w‖
Lq
′=1

∣∣∣ lim
M→∞

M∑
k=0

(w, f(ε−2P )v)
∣∣∣, (3.12)

where ε−2 = 2k and (·, ·) is the inner product on L2. By choosing f̃ ∈ C∞0 (R\{0}) satisfying f̃ = 1
near supp(f), we use Proposition 2.7 to write (1− χ)(εx)f̃(ε−2P ) = Q(ε) +R(ε), where

Q(ε) = (1− χ)(εx)Opε(f̃ ◦ pε)ζ(εx), R(ε) = ζ(εx)(ε−2P + 1)−mB(ε) 〈εx〉−1
,

with ζ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1 near supp(1 − χ) and B(ε) = OL(L2)(1)
uniformly in ε ∈ (0, 1]. We next write

f(ε−2P ) = Q(ε)(1− χ)(εx)f(ε−2P ) +A(ε)εα 〈εx〉−1
f(ε−2P ),

with α = d/2− d/q and

A(ε) = ε−α
(

(1− χ)(εx)f̃(ε−2P )χ(εx) +R(ε)(1− χ)(εx) + χ(εx)f̃(ε−2P )
)
〈εx〉 .

We now bound∣∣∣ M∑
k=0

(w, f(ε−2P )v)
∣∣∣ . ∣∣∣ M∑

k=0

(
w,Q(ε)(1− χ)(εx)f(ε−2P )v

) ∣∣∣+
∣∣∣ M∑
k=0

(w,A(ε)εα 〈εx〉−1
f(ε−2P )v)

∣∣∣
.
∣∣∣ M∑
k=0

(
Q?(ε)w, (1− χ)(εx)f(ε−2P )v

) ∣∣∣+ ‖w‖Lq′
∥∥∥ M∑
k=0

A(ε)εα 〈εx〉−1
f(ε−2P )v

∥∥∥
Lq

=: (I) + (II). (3.13)
We use the Cauchy-Schwarz inequality in k and the Hölder inequality in space to have

(I) . ‖S̃Mw‖Lq′‖SMv‖Lq ,
where

S̃Mw :=
( M∑
k=0
|Q?(ε)w|2

)1/2
, SMv :=

( M∑
k=0
|(1− χ)(εx)f(ε−2P )v|2

)1/2
.

We now make use of the following estimate (see [5, Proposition 4.3]).

Proposition 3.8. For r ∈ (1, 2], there exists C > 0 such that for all M ≥ 0 and all w ∈ S (Rd),

‖S̃Mw‖Lr ≤ C‖w‖Lr .

We thus get

(I) . ‖SMv‖Lq‖w‖Lq′ .
( M∑
k=0
‖(1− χ)(εx)f(ε−2P )v‖2Lq

)1/2
‖w‖Lq′ . (3.14)

For the second term in (3.13), we use the homogeneous Sobolev embedding (3.10) to have∥∥∥ M∑
k=0

A(ε)εα 〈εx〉−1
f(ε−2P )v

∥∥∥
Lq
.
∥∥∥ M∑
k=0

ΛαgA(ε)εα 〈εx〉−1
f(ε−2P )v

∥∥∥
L2
.

We next write
ΛαgA(ε) = (ε−2P )α/2(ε−2P + 1)−αD(ε), (3.15)
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with D(ε) = OL(L2)(1) uniformly in ε ∈ (0, 1]. It is easy to have (3.15) from the first two terms in
A(ε) by using Proposition 2.7. The less obvious contribution in (3.14) is the uniform L2 boundedness
of (ε−2P + 1)αχ(εx)f̃(ε−2P ) 〈εx〉. By the functional calculus, it is enough to show for N large enough
the uniform L2 boundedness of (ε−2P + 1)Nχ(εx)f̃(ε−2P ) 〈εx〉. To see it, we write

(ε−2P + 1)Nχ(εx)f̃(ε−2P ) 〈εx〉 = χ(εx)(ε−2P + 1)N f̃(ε−2P ) 〈εx〉+ [(ε−2P + 1)N , χ(εx)]f̃(ε−2P ) 〈εx〉 ,

where [·, ·] is the commutator. The L2 boundedness of χ(εx)(ε−2P + 1)N f̃(ε−2P ) 〈εx〉 follows as in
(2.13). On the other hand, note that the commutator [(ε−2P + 1)N , χ(εx)] can be written as a sum
of rescaled pseudo-differential operators vanishing outside the support of ζ(εx) for some ζ ∈ C∞(Rd)
supported outside B(0, 1) and equal to 1 near infinity. This allows to use Proposition 2.7, and the
L2 boundedness of [(ε−2P + 1)N , χ(εx)]f̃(ε−2P ) 〈εx〉 follows. We next need to recall the following
well-known discrete Schur estimate.

Lemma 3.9. Let θ > 0 and (Tl)l be a sequence of linear operators on a Hilbert space H. If
‖T ?l Tk‖L(H) . 2−θ|k−l|, then there exits C > 0 such that for all sequence (vk)k of H,

‖
∑

Tkvk‖H ≤ C
(∑

‖vk‖2H
)1/2

.

Now let Tk = (ε−2
k P )α/2(ε−2

k P + 1)−αD(εk) with ε−2
k = 2k. We see that

T ?l Tk = 2
α(l+k)

2 D?(εl)(2lP + 1)−αPα(2kP + 1)−αD(εk).

Note that l + k = −|k − l|+ 2k for k ≥ l and l + k = −|k − l|+ 2l for l ≥ k. Thus for k ≥ l,

‖T ?l Tk‖L(L2) = 2−
α|k−l|

2 ‖D?(εl)(2lP + 1)−α(2kP )α(2kP + 1)−αD(εk)‖L(L2) . 2−
α|k−l|

2 .

Similarly for l ≥ k. Therefore, we can apply Lemma 3.9 for Tk = (ε−2
k P )α/2(ε−2

k P + 1)−αD(εk) with
ε−2
k = 2k,H = L2 and θ = α/2 to get

sup
M

∥∥∥ M∑
k=0

ΛαgA(ε)εα 〈εx〉−1
f(ε−2P )v

∥∥∥ . (∑
k≥0
‖εα 〈εx〉−1

f(ε−2P )v‖2L2

)1/2
. (3.16)

Collecting (3.12), (3.13), (3.14) and (3.16), we prove (3.3). The proof of Theorem 3.1 is now complete.
�

3.2. Reduction of the high frequency problem. Let us now consider the high frequency case.
For a given χ ∈ C∞0 (Rd), we write uhigh = χuhigh +(1−χ)uhigh. Using (3.2) and Minkowski inequality
with p, q ≥ 2, we have

‖(1− χ)uhigh‖Lp(R,Lq) ≤ C
( ∑
h2=2−k

‖(1− χ)f(h2P )e−itΛ
σ
g u0‖2Lp(R,Lp)

+ hN‖ 〈x〉−N f(h2P )e−itΛ
σ
g u0‖2Lp(R,L2)

)1/2
. (3.17)

The same estimate holds for ‖χuhigh‖Lp(R,Lq) with χ in place of 1 − χ. We can apply the Item 2 of
Remark 2.13 with scaling in time for the second term in the right hand side of above quantity to get

hN/2‖ 〈x〉−N f(h2P )e−itΛ
σ
g u0‖Lp(R,L2) ≤ ChN/2+(σ−N0)/p‖f(h2P )u0‖L2 . (3.18)

By taking N large enough, this term is bounded by h−γp,q‖f(h2P )u0‖L2 . Thus we have the following
reduction.
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Proposition 3.10. 1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5)
and suppose that the geodesic flow associated to g is non-trapping. If for all χ ∈ C∞0 (Rd) and
all (p, q) fractional admissible, there exists C > 0 such that for all u0 ∈ Lg and all h ∈ (0, 1],

‖χe−itΛ
σ
g f(h2P )u0‖Lp(R,Lq) ≤ Ch−γp,q‖f(h2P )u0‖L2 , (3.19)

then
‖χuhigh‖Lp(R,Lq) ≤ C‖u0‖Ḣγp,qg

, (3.20)

i.e. Theorem 1.1 holds true.
2. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and suppose that

(1.12) is satisfied. If there exists R > 0 large enough such that for all (p, q) fractional admis-
sible and all χ ∈ C∞0 (Rd) satisfying χ = 1 for |x| < R, there exists C > 0 such that for all
u0 ∈ Lg and all h ∈ (0, 1],

‖(1− χ)e−itΛ
σ
g f(h2P )u0‖Lp(R,Lq) ≤ Ch−γp,q‖f(h2P )u0‖L2 , (3.21)

then
‖(1− χ)uhigh‖Lp(R,Lq) ≤ C‖u0‖Ḣγp,qg

, (3.22)

i.e. Theorem 1.2 holds true.
Moreover, combining (3.20) and (3.22), we have

‖uhigh‖Lp(R,Lq) ≤ C‖u0‖Ḣγp,qg
.

Proof. We only consider the case 1 − χ, for χ it is similar. By using (3.18) and (3.21), we see that
(3.17) implies

‖(1− χ)uhigh‖Lp(R,Lq) ≤ C
( ∑
h2=2−k

h−2γp,q‖f(h2P )u0‖2L2

)1/2
≤ C‖u0‖Ḣγp,qg

.

Here we use the almost orthogonality and the support property of f to obtain the last inequality. This
proves (3.22). �

3.3. Reduction of the low frequency problem. Let us consider the low frequency case. We only
treat the case q ∈ (2,∞) since the Strichartz estimate for (p, q) = (∞, 2) is trivial. We apply the
Littlewood-Paley estimates (3.3) and Minkowski inequality with p ≥ 2 to have

‖ulow‖Lp(R,Lq) ≤ C
( ∑
ε−2=2k

‖(1− χ)(εx)f(ε−2P )e−itΛ
σ
g u0‖2Lp(R,Lq)

+ ‖εd/2−d/q 〈εx〉−1
f(ε−2P )e−itΛ

σ
g u0‖2Lp(R,L2)

)1/2
.

We use global Lp integrability estimates (2.21) with rescaling in time to bound the second term in
the right hand side as

‖εd/2−d/q 〈εx〉−1
f(ε−2P )e−itΛ

σ
g u0‖Lp(R,L2) ≤ Cεγp,q‖f(ε−2P )u0‖L2 . (3.23)

Here we recall that γp,q = d/2− d/q − σ/p. This leads to the following reduction.
Proposition 3.11. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). If for
all χ ∈ C∞0 (Rd) satisfying χ(x) = 1 for |x| ≤ 1 and all (p, q) fractional admissible, there exists C > 0
such that for all u0 ∈ Lg and all ε ∈ (0, 1],

‖(1− χ)(εx)f(ε−2P )e−itΛ
σ
g u0‖Lp(R,Lq) ≤ Cεγp,q‖f(ε−2P )u0‖L2 , (3.24)

then
‖ulow‖Lp(R,Lq) ≤ C‖u0‖Ḣγp,qg

.
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Proof. Indeed, if the estimates (3.24) hold true, then the Littlewood-Paley estimates (3.3) and (3.23)
give

‖ulow‖Lp(R,Lq) ≤ C
( ∑
ε−2=2k

ε2γp,q‖f(ε−2P )u0‖2L2

)1/2
.

Note that
εγp,q‖f(ε−2P )u0‖L2 ≤ εγp,q‖f̃(ε−2P )Λ−γp,qg ‖L(L2)‖f(ε−2P )Λγp,qg u0‖L2 ,

where f̃ ∈ C∞0 (R\{0}) satisfies f̃ = 1 near supp(f). By functional calculus, the first factor in the
right hand side is bounded by

εγp,q sup
λ∈R

∣∣∣∣ f̃(ε−2λ2)
λγp,q

∣∣∣∣ ≤ εγp,q ‖f̃‖L∞(R)

(ε/c)γp,q ≤ c
γp,q‖f̃‖L∞(R).

Here ε−2λ2 ∈ supp(f̃) hence |λ| ∈ [ε/c, εc] for some constant c > 1. Thus we have

‖ulow‖Lp(R,Lq) ≤ C
( ∑
ε−2=2k

‖f(ε−2P )Λγp,qg u0‖2L2

)1/2
≤ C‖u0‖Ḣγp,qg

,

the last inequality follows from the almost orthogonality. This completes the proof. �

4. Strichartz estimates inside compact sets

In this section, we will give the proof of (3.19). Our main tools are the local in time Strichartz
estimates which are proved by the WKB method (see [17]) and the L2 integrability estimate at high
frequency given in Proposition 2.12.

4.1. The WKB approximations. Let us start with the following result which is given in [17,
Theorem 2.7].

Theorem 4.1. Let σ ∈ (0,∞)\{1} and q be a smooth function on R2d compactly support in ξ away
from zero and satisfying for all α, β ∈ Nd, there exists Cαβ > 0 such that for all x, ξ ∈ Rd,

|∂αx ∂
β
ξ q(x, ξ)| ≤ Cαβ .

Then there exist t0 > 0 small enough, a function S ∈ C∞([−t0, t0] × R2d) and a sequence of smooth
functions aj(t, x, ξ) compactly supported in ξ away from zero uniformly in t ∈ [−t0, t0] such that for
all N ≥ 1,

e−ith
−1(hΛg)σOph(q)u0 = JN (t)u0 +RN (t)u0,

where

JN (t)u0(x) = (2πh)−d
∫∫

R2d
eih
−1(S(t,x,ξ)−yξ)

N−1∑
j=0

hjaj(t, x, ξ)u0(y)dydξ,

JN (0) = Oph(q) and the remainder RN (t) satisfies for all t ∈ [−t0, t0] and all h ∈ (0, 1],

‖RN (t)‖L(L2) ≤ ChN−1.

Moreover, there exists a constant C > 0 such that for all t ∈ [−t0, t0] and all h ∈ (0, 1],

‖JN (t)‖L(L1,L∞) ≤ Ch−d(1 + |t|h−1)−d/2.
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In [17], we consider the smooth bounded metric, i.e. for all α ∈ Nd, there exists Cα > 0 such that
for all x ∈ Rd,

|∂αgjk(x)| ≤ Cα, j, k ∈ {1, ...d}. (4.1)

It is obvious to see that the assumption (1.5) implies (4.1). This theorem and the parametrix given
in Proposition 2.2 give the following dispersive estimates for the fractional Schrödinger equations (see
also [17, Remark 2.8]).

Proposition 4.2. Let σ ∈ (0,∞)\{1} and ϕ ∈ C∞0 (R\{0}). Then there exists t0 > 0 small enough
and C > 0 such that for all u0 ∈ L1(Rd) and all h ∈ (0, 1],

‖e−ith
−1(hΛg)σϕ(h2P )u0‖L∞ ≤ Ch−d(1 + |t|h−1)−d/2‖u0‖L1 , (4.2)

for all t ∈ [−t0, t0].

Next, we recall the following version of TT ?-criterion of Keel and Tao (see [50], [26] or [49]).

Proposition 4.3. Let I ⊆ R be an interval and (T (t))t∈I a family of linear operators satisfying for
some constant C > 0 and δ, τ, h > 0,

‖T (t)‖L(L2) ≤ C, (4.3)
‖T (t)T (s)?‖L(L1,L∞) ≤ Ch−δ(1 + |t− s|h−1)−τ , (4.4)

for all t, s ∈ I. Then for all (p, q) satisfying

p ∈ [2,∞], q ∈ [1,∞], (p, q, τ) 6= (2,∞, 1), 1
p
≤ τ

(
1
2 −

1
q

)
,

we have
‖Tv‖Lp(I,Lq ≤ Ch−κ‖v‖L2 ,

where κ = δ(1/2− 1/q)− 1/p.

Proposition 4.3 together with energy estimate and dispersive estimate (4.2) give the following result.

Corollary 4.4. Let σ ∈ (0,∞)\{1}, ϕ ∈ C∞0 (R\{0}) and t0 be as in Theorem 4.1. Denote I =
[−t0, t0]. Then for all (p, q) fractional admissible, there exists C > 0 such that

‖ϕ(h2P )e−ith
−1(hΛg)σv‖Lp(I,Lq) ≤ Ch−κp,q‖v‖L2 , (4.5)

where κp,q = d/2− d/q − 1/p. Moreover,∥∥∥∫ t

0
ϕ2(h2P )e−i(t−s)h

−1(hΛg)σG(s)ds
∥∥∥
Lp(I,Lq)

≤ Ch−κp,q‖G‖L1(I,L2). (4.6)

Proof. The homogeneous estimates (4.5) follow directly from Proposition 4.2 and Proposition 4.3 with
T (t) = ϕ(h2P )e−ith−1(hΛg)σ . It remains to prove the inhomogeneous estimates (4.6). Let us set

Uh(t) := hκp,qϕ(h2P )e−ith
−1(hΛg)σ .

Using the homogeneous Strichartz estimates (4.5), we see that Uh(t) is a bounded operator from L2

to Lp(I, Lq). Similarly, we have Uh(s) = ϕ(h2P )e−ish−1(hΛg)σ is a bounded operator from L2 to
L∞(I, L2). Here we use the fact that (∞, 2) is fractional admissible with κ∞,2 = 0. Thus the adjoint
Uh(s)?, namely

Uh(s)? : G ∈ L1(I, L2) 7→
∫
I

ϕ(h2P )eish
−1(hΛg)σG(s)ds ∈ L2
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is also a bounded operator. This implies Uh(t)Uh(s)? is a bounded operator from L1(I, L2) to
Lp(I, Lq). In particular, we have∥∥∥∫

I

hκp,qϕ2(h2P )e−i(t−s)h
−1(hΛg)σG(s)ds

∥∥∥
Lp(I,Lq)

≤ C‖G‖L1(I,L2).

The Christ-Kiselev Lemma (see Lemma 6.1) implies that for all (p, q) fractional admissible,∥∥∥∫ t

0
ϕ2(h2P )e−i(t−s)h

−1(hΛg)σG(s)ds
∥∥∥
Lp(I,Lq)

≤ Ch−κp,q‖G‖L1(I,L2).

This completes the proof. �

4.2. From local Strichartz estimates to global Strichartz estimates. We now show how to
upgrade the local in time Strichartz estimates given in Corollary 4.4 to the global in time ones (3.19).
We emphasize that the non-trapping assumption is supposed here.

Let us set v(t) = 〈x〉−1
f(h2P )e−ith−1(hΛg)σu0. By choosing f1 ∈ C∞0 (R\{0}) with f1 = 1 near

supp(f), we see that the study of ‖v‖Lp(R,Lq) is reduced to the one of ‖f1(h2P )v‖Lp(R,Lq). Indeed, we
can write

v(t) = f1(h2P )v(t) + (1− f1)(h2P )v(t),
where the term (1− f1)(h2P )v(t) can be written as

((1− f1)(h2P ) 〈x〉−1
f̃1(h2P ) 〈x〉) 〈x〉−1

f(h2P )e−ith
−1(hΛg)σu0,

with f̃1 ∈ C∞0 (R\{0}) such that f1 = 1 near supp(f̃1) and f̃1 = 1 near supp(f). By pseudo-differential
calculus, we have

(1− f1)(h2P ) 〈x〉−1
f̃1(h2P ) 〈x〉 = OL(L2,Lq)(h∞),

for all q ≥ 2. This implies that there exists C > 0 such that for all N ≥ 1,

‖v − f1(h2P )v‖Lp(R,Lq) ≤ ChN‖ 〈x〉
−1
f(h2P )e−ith

−1(hΛg)σu0‖Lp(R,L2)

≤ ChN‖f(h2P )u0‖L2 ≤ Ch−κp,q‖f(h2P )u0‖L2 (4.7)

provided that N is taken large enough. Here we use (2.20) with N0 = 1 due to the non-trapping
condition.

We next write
v(t) = 〈x〉−1

f(h2P )e−ith
−1ψ(h2P )u0,

where ψ(λ) = f̃(λ)
√
λ
σ with f̃ ∈ C∞0 (R\{0}) and f̃ = 1 near supp(f). Now, let t0 > 0 be as in

Corollary 4.4. We next choose θ ∈ C∞0 (R, [0, 1]) satisfying θ = 1 near 0 and supp(θ) ⊂ (−1, 1) such
that

∑
k∈Z θ(t−k) = 1, for all t ∈ R. We then write v(t) =

∑
k∈Z vk(t), where vk(t) = θ((t−tk)/t0)v(t)

with tk = t0k. By the Duhamel formula, we have

vk(t) = e−ith
−1ψ(h2P )vk(0) + ih−1

∫ t

0
e−i(t−s)h

−1ψ(h2P )(hDs + ψ(h2P ))vk(s)ds.

For k 6= 0, we compute the action of hDs + ψ(h2P ) on vk(s) and get

(hDs + ψ(h2P ))vk(s) = h(it0)−1θ′((s− tk)/t0)v(s)

+ θ((s− tk)/t0)
[
ψ(h2P ), 〈x〉−1

]
f(h2P )e−ish

−1ψ(h2P )u0 =: v1
k(s) + v2

k(s).

Due to the support property of θ, we have vk(0) = 0. Now, we have for k 6= 0,

f1(h2P )vk(t) = ih−1
∫ t

0
e−i(t−s)h

−1ψ(h2P )f1(h2P )(v1
k(s) + v2

k(s))ds.
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We remark that both t, s belong to Ik = (tk − t0, tk + t0). Up to a translation in time t 7→ t − tk
and the same for s, we can apply the inhomogeneous Strichartz estimates given in Corollary 4.4 with
ϕ2 = f1 and obtain

‖f1(h2P )vk‖Lp(R,Lq) = ‖f1(h2P )vk‖Lp(Ik,Lq)

≤ Ch−κp,q−1 (‖v1
k‖L1(Ik,L2) + ‖v2

k‖L1(Ik,L2)
)
.

Here κp,q is given in Corollary 4.4. We have

‖v1
k‖L1(Ik,L2) = ‖h(it0)−1θ′((s− tk)/t0) 〈x〉−1

f(h2P )e−ish
−1(hΛg)σu0‖L1(Ik,L2)

≤ ‖h(it0)−1θ′((s− tk)/t0)‖L2(Ik)‖ 〈x〉
−1
f(h2P )e−ish

−1(hΛg)σu0‖L2(Ik,L2)

≤ Ch‖ 〈x〉−1
f(h2P )e−ish

−1(hΛg)σu0‖L2(Ik,L2),

where we use Cauchy Schwarz inequality to go from the first to the second line. Similarly

‖v2
k‖L1(Ik,L2) ≤ ‖[ψ(h2P ), 〈x〉−1]f(h2P )e−ith

−1(hΛg)σu0‖L2(Ik,L2)

≤ Ch‖ 〈x〉−1
f(h2P )e−ith

−1(hΛg)σu0‖L2(Ik,L2),

where we use the fact that [ψ(h2P ), 〈x〉−1]f̃1(h2P ) 〈x〉 is of size OL(L2)(h) by pseudo-differential cal-
culus. This implies that for k 6= 0,

‖f1(h2P )vk‖Lp(Ik,Lq) ≤ Ch
−κp,q‖ 〈x〉−1

f(h2P )e−ith
−1(hΛg)σu0‖L2(Ik,L2).

For k = 0, we have

‖f1(h2P )v0‖Lp(R,Lq) ≤ C‖f(h2P )e−ith
−1(hΛg)σu0‖Lp(I,Lq) ≤ Ch−κp,q‖f(h2P )u0‖L2 .

Here the first inequality follows from the facts that θ(t/t0) and f1(h2P ) 〈x〉−1 are bounded in L(Lp(R))
and L(Lq) respectively. The second inequality follows from homogeneous Strichartz estimates (4.5).
By almost orthogonality in time and the fact that p ≥ 2, we have

‖f1(h2P )v‖Lp(R,Lq) ≤ C
(∑
k∈Z
‖f1(h2P )vk‖2Lp(R,Lq)

)1/2

≤ Ch−κp,q
( ∑
k∈Z\0

‖ 〈x〉−1
f(h2P )e−ith

−1(hΛg)σu0‖2L2(Ik,L2) + ‖f(h2P )u0‖2L2

)1/2

≤ Ch−κp,q
(
‖ 〈x〉−1

f(h2P )e−ith
−1(hΛg)σu0‖L2(R,L2) + ‖f(h2P )u0‖L2

)
≤ Ch−κp,q‖f(h2P )u0‖L2 ,

the last inequality comes from Proposition 2.12 with N0 = 1. By using (4.7), we obtain

‖ 〈x〉−1
f(h2P )e−ith

−1(hΛg)σu0‖Lp(R,Lq) ≤ Ch−κp,q‖f(h2P )u0‖L2 .

This implies that for all χ ∈ C∞0 (Rd),∥∥∥χf(h2P )e−ith
−1(hΛg)σu0

∥∥∥
Lp(R,Lq)

≤ Ch−κp,q‖f(h2P )u0‖L2 .

Therefore, by scaling in time, we get∥∥∥χf(h2P )e−itΛ
σ
g u0

∥∥∥
Lp(R,Lq)

≤ Ch−γp,q‖f(h2P )u0‖L2 .

The proof of (3.19) is now complete. �
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5. Strichartz estimates outside compact sets

5.1. The Isozaki-Kitada parametrix.
Notations and the Hamilton-Jacobi equations. For any J b (0,+∞) an open interval, any
R > 0, any τ ∈ (−1, 1), we define the outgoing region Γ+(R, J, τ) and the incoming region Γ−(R, J, τ)
by

Γ±(R, J, τ) :=
{

(x, ξ) ∈ R2d, |x| > R, |ξ|2 ∈ J,± x · ξ
|x‖ξ|

> τ
}
.

Let σ ∈ (0,∞)1. We will use the so called Isozaki-Kitada parametrix to give an approximation at
high frequency of the form

e−ith
−1ψ(h2P )Oph(χ±) = J±h (a±(h))e−ith

−1(hΛ)σJ±h (b±(h))? +R±N (h), (5.1)

with Λ =
√
−∆ where ∆ is the free Laplacian operator on Rd and ψ(·) = f̃(·)

√
·σ ∈ C∞0 (R\{0}) for

some f̃ ∈ C∞0 (R\{0}) satisfying f̃ = 1 near supp(f). The functions χ± are supported in Γ±(R4, J4, τ4)
(see Proposition 5.6 for the choice of J4 and τ4) and

J±h (a±(h)) =
N−1∑
j=1

hjJ±h (a±j ),

where
J±h (a±)u(x) = (2πh)−d

∫∫
R2d

eih
−1(S±R (x,ξ)−y·ξ)a±(x, ξ)u(y)dydξ, u ∈ S (Rd).

The amplitude functions a±j are supported in Γ±(R, J1, τ1) (see Proposition 5.1) and the phase func-
tions S±R := S±1,R will be described later. The same notation for J±h (b±(h)) is used with b±k in place
of a±j .

The Isozaki-Kitada parametrix at low frequency is of the form

e−itεψ(ε−2P )Opε(χ±ε )ζ(εx) = J±ε (a±ε )e−itεΛ
σ

J±ε (b±ε )? +R±N (t, ε), (5.2)

where ψ is as above and ζ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1 near infinity. The
functions χ±ε are supported in Γ±(R4, J4, τ4) and

J±ε (a±ε ) =
N∑
j=1
J±ε (a±ε,j),

where

J±ε (a) := DεJ
±
ε (a), J±ε (b)? := J±ε (b)?D−1

ε , (5.3)

with Dε as in (2.4),

J±ε (a)u(x) := (2π)−d
∫∫

R2d
ei(S

±
ε,R

(x,ξ)−y·ξ)a(x, ξ)u(y)dydξ,

and
J±ε (b)?u(x) = (2π)−d

∫∫
R2d

ei(x·ξ−S
±
ε,R

(y,ξ))b(y, ξ)u(y)dydξ.

The amplitude functions a±ε,j are supported in Γ±(R, J1, τ1) and the phase functions S±ε,R will be
described in the next proposition. The same notation for J±ε (b±ε ) will be used with b±ε in place of a±ε .

1The construction of the Isozaki-Kitada parametrix we present here works well for the (half) wave equation, i.e.
σ = 1.
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Proposition 5.1. Fix J1 b (0,+∞) and τ1 ∈ (−1, 1). Then there exists two families of smooth
functions (S±ε,R)R�1 satisfying the following Hamilton-Jacobi equation

pε(x,∇xS±ε,R(x, ξ)) = |ξ|2, (5.4)

for all (x, ξ) ∈ Γ±(R, J1, τ1), where pε is given in (2.5). Moreover, for all α, β ∈ Nd, there exists
Cαβ > 0 such that ∣∣∣∂αx ∂βξ (S±ε,R(x, ξ)− x · ξ

)∣∣∣ ≤ Cαβ min
{
R1−ρ−|α|, 〈x〉1−ρ−|α|

}
, (5.5)

for all x, ξ ∈ Rd, all ε ∈ (0, 1] and R� 1.

Remark 5.2. From (5.5), we see that for R > 0 large enough, the phase functions satisfy for all
x, ξ ∈ Rd and all ε ∈ (0, 1], ∥∥∥∇x · ∇ξS±ε,R(x, ξ)− IdRd

∥∥∥ ≤ 1
2 , (5.6)

and for all |α| ≥ 1 and all |β| ≥ 1,

|∂αx ∂
β
ξ S
±
ε,R(x, ξ)| ≤ Cαβ . (5.7)

The estimates (5.6) and (5.7) are useful in the construction of Isozaki-Kitada parametrix as well as
the L2-boundedness of Fourier integral operators.

Proof of Proposition 5.1. We firstly note that the case ε = 1 is given in [7, Proposition 3.1]. Let
J1 b J0 b (0,+∞) and −1 < τ0 < τ1 < 1. By using Lemma 2.4, in the region Γ±(R/2, J0, τ0) which
implies that |x| > 1, we see that the function pε(x, ξ) satisfies for all α, β ∈ Nd, there exists Cαβ > 0
such that for all (x, ξ) ∈ Γ±(R/2, J0, τ0) and all ε ∈ (0, 1],

|∂αx ∂
β
ξ pε(x, ξ)| ≤ Cαβ 〈ξ〉

2−|β|
.

Thanks to this uniform bound, by using the argument given in [37, Proposition 4.1], we can solve (for
R > 0 large enough) the Hamilton-Jacobi equation (5.4) in Γ±(R/2, J0, τ0) uniformly with respect to
ε ∈ (0, 1]. We denote such solutions by S̃±ε . Next, by choosing a special cutoff (see [7], see also (5.9))
χ±R ∈ S(0,−∞) such that χ±R(x, ξ) = 1 for (x, ξ) ∈ Γ±(R, J1, τ1) and supp(χ±R) ⊂ Γ±(R/2, J0, τ0),
then the functions

S±ε,R(x, ξ) = χ±R(x, ξ)S̃±ε (x, ξ) + (1− χ±R)(x, ξ) 〈x, ξ〉
satisfy the properties of Proposition 5.1, where 〈x, ξ〉 = x · ξ. �
Construction of the parametrix. Let us firstly consider the high frequency case (5.1). The con-
struction in the low frequeny case (5.2) is similar up to some modifications (see after Theorem 5.8).
We only treat the outgoing case (+), the incoming one is similar. We start with the following Duhamel
formula

e−ith
−1ψ(h2P )J+

h (a+(h)) = J+
h (a+(h))e−ith

−1(hΛ)σ

− ih−1
∫ t

0
e−i(t−s)h

−1ψ(h2P )
(
ψ(h2P )J+

h (a+(h))− J+
h (a+(h))(hΛ)σ

)
e−ish

−1(hΛ)σds. (5.8)

We want the term ψ(h2P )J+
h (a+(h)) − J+

h (a+(h))(hΛ)σ to have a small contribution. To do so, we
firstly introduce a special cutoff. For any J2 b J1 b (0,+∞) and −1 < τ1 < τ2 < 1, we define

χ+
1→2(x, ξ) = κ

(
|x|
R2

)
ρ1→2(|ξ|2)θ1→2

(
+ x · ξ
|x‖ξ|

)
, (5.9)
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where κ ∈ C∞(R) is non-decreasing such that

κ(t) =
{

1 when t ≥ 1/2
0 when t ≤ 1/4 ,

and ρ1→2 ∈ C∞(R) is non-decreasing such that ρ1→2 = 1 near J2, supported in J1 and θ1→2 ∈ C∞0 (R)
such that

θ1→2(t) =
{

1 when t > τ2 − ε
0 when t < τ1 + ε

,

with ε ∈ (0, τ2 − τ1). We see that χ+
1→2 ∈ S(0,−∞) and for R� 1,

supp(χ+
1→2) ⊂ Γ+(R, J1, τ1), χ+

1→2 = 1 near Γ+(R2, J2, τ2).

Proposition 5.3. Let S+
R := S+

1,R be the solution of (5.4) given as in Proposition 5.1. Let J2 be an
arbitrary open interval such that J2 b J1 b (0,+∞) and τ2 be an arbitrary real number such that
−1 < τ1 < τ2 < 1. Then for R > 0 large enough, we can find a sequence of symbols a+

j ∈ S(−j,−∞)
supported in Γ+(R, J1, τ1) such that for all N ≥ 1,

ψ(h2P )J+
h (a+(h))− J+

h (a+(h))(hΛ)σ = hNRN (h)J+
h (a+(h)) + hNJ+

h (r+
N (h)) + J+

h (ǎ+(h)), (5.10)
sup

Γ+(R,J1,τ1)
|a+

0 (x, ξ)| & 1, (5.11)

where a+(h) =
∑N−1
j=0 hja+

j and (r+
N (h))h∈(0,1] is bounded in S(−N,−∞), RN (h) is as in Proposition

2.2, (ǎ+(h))h∈(0,1] is bounded in S(0,−∞) and is a finite sum depending on N of the form

ǎ+(h) =
∑
|α|≥1

ǎ+
α (h)∂αxχ+

1→2, (5.12)

with (ǎ+
α (h))h∈(0,1] bounded in S(0,−∞) and χ+

1→2 given in (5.9).

Proof. We firstly use the parametrix of ψ(h2P ) given in Proposition 2.2 and get

ψ(h2P ) = Oph(q(h)) + hNRN (h), (5.13)

where q(h) =
∑N−1
k=0 hkqk and qk ∈ S(−k,−∞), k = 0, ..., N − 1. Note that q0(x, ξ) = ψ(p(x, ξ)) =

f̃(p(x, ξ))
√
p(x, ξ)σ and supp(qk) ⊂ supp(ψ ◦ p). Up to remainder term, we consider the action of

Oph(q(h)) on J+
h (a+(h)). To do this, we need the following action of a pseudo-differential operator

on a Fourier integral operator (see e.g. [35, Theorem IV-19], [2, Appendix] or [38]).

Proposition 5.4. Let a ∈ S(µ1,−∞) and b ∈ S(µ2,−∞) and S satisfy (5.6) and (5.7). Then

Oph(a) ◦ Jh(S, b) =
N−1∑
j=0

hjJh(S, (a / b)j) + hNJh(S, rN (h)),

where (a / b)j is an universal linear combination of

∂βη a(x,∇xS(x, ξ))∂β−αx b(x, ξ)∂α1
x S(x, ξ) · · · ∂αkx S(x, ξ),

with α ≤ β, α1 + · · ·αk = α and |αl| ≥ 2 for all l = 1, ..., k and |β| = j. The maps (a, b) 7→
(a / b)j and (a, b) 7→ rN (h) are continuous from S(µ1,−∞)× S(µ2,−∞) to S(µ1 + µ2 − j,−∞) and
S(µ1 + µ2 −N,−∞) respectively. In particular, we have

(a / b)0(x, ξ) = a(x,∇xS(x, ξ))b(x, ξ),

i(a / b)1(x, ξ) = ∇ηa(x,∇xS(x, ξ)) · ∇xb(x, ξ) + 1
2tr
(
∇2
η,ηa(x,∇xS(x, ξ)) · ∇2

x,xS(x, ξ)
)
b(x, ξ).
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Using this result, we have

Oph(q(h))J+
h (a+(h)) =

N−1∑
k+j+l=0

hk+j+lJ+
h ((qk / a+

j )l) + hNJ+
h (r+

N (h)).

On the other hand, we have
J+
h (a+(h))(hΛ)σ = J+

h (a+(h)|ξ|σ).
Thus we get

ψ(h2P )J+
h (a+(h))− J+

h (a+(h))(hΛ)σ =
N−1∑
r=0

hrJ+
h

 ∑
k+j+l=r

(qk / a+
j )l − a+

r |ξ|σ


+hNJ+
h (r+

N (h)) + hNRN (h)J+
h (a+(h)).

In order to make the left hand side of (5.10) small, we need to find a+
j ∈ S(−j,−∞) supported in

Γ+(R, J1, τ1) such that ∑
k+j+l=r

(qk / a+
j )l − a+

r |ξ|σ = 0, r = 0, ..., N − 1.

In particular, (
q0(x,∇xS+

R (x, ξ))− |ξ|σ
)
a+

0 (x, ξ) = 0.
By noting that if p(x, ξ) ∈ supp(f) (see after (5.1)), then q0(x, ξ) =

√
p(x, ξ)σ. Thus in the region

where the Hamilton-Jacobi equation (5.4) with ε = 1 is satisfied, we need to show the following
transport equations

(q0 / a
+
0 )1 + (q1 / a

+
0 )0 = 0 (5.14)

(q0 / a
+
r )1 + (q1 / a

+
r )0 = −

∑
k+j+l=r+1
j≤r−1

(qk / a+
j )l, r = 1, ..., N − 1. (5.15)

Here (q0 / a
+)1 + (q1 / a

+)0 can be written as

i
[
(q0 / a

+)1(x, ξ) + (q1 / a
+)0(x, ξ)

]
=

d∑
j=1

V +
j (x, ξ)∂xja+(x, ξ) + p+

0 (x, ξ)a+(x, ξ),

where
V +
j (x, ξ) = (∂ξjq0)(x,∇xS+

R (x, ξ)),

p+
0 (x, ξ) = iq1(x,∇xS+

R (x, ξ)) + 1
2tr
[
∇2
ξq0(x,∇xS+

R (x, ξ)) · ∇2
xS

+
R (x, ξ)

]
.

We now consider the flow X+(t, x, ξ) associated to V + = (V +
j )dj=1 as{

Ẋ+(t) = V +(X+(t), ξ),
X+(0) = x.

(5.16)

We have the following result (see [3, Proposition 3.2] or [2, Appendix]).

Proposition 5.5. Let σ ∈ (0,∞), J1 b (0,+∞) and −1 < τ1 < 1. There exists R > 0 large enough
and e1 > 0 small enough such that for all (x, ξ) ∈ Γ+(R, J1, τ1), the solution X+(t, x, ξ) to (5.16) is
defined for all t ≥ 0 and satisfies

|X+(t, x, ξ)| ≥ e1(t+ |x|), (5.17)
(X+(t, x, ξ), ξ) ∈ Γ+(R, J1, τ1). (5.18)
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Moreover, for all α, β ∈ Nd, there exists Cαβ > 0 such that for all t ≥ 0 and all h ∈ (0, 1],

|∂αx ∂
β
ξ (X+(t, x, ξ)− x− σtξ|ξ|σ−2)| ≤ Cαβ 〈t〉 〈x〉−ρ−|α| , (5.19)

for all (x, ξ) ∈ Γ+(R, J1, τ1).

Now, we can define for (x, ξ) ∈ Γ+(R, J1, τ1) the functions

A+
0 (x, ξ) = exp

(∫ +∞

0
p+

0 (X+(t, x, ξ), ξ)dt
)
,

A+
r (x, ξ) =

∫ +∞

0
p+
r (X+(t, x, ξ), ξ) exp

(∫ t

0
p+

0 (X+(s, x, ξ), ξ)ds
)
dt,

for r = 1, ..., N − 1, where
p+
r (x, ξ) = i

∑
k+j+l=r+1
j≤r−1

(qk / A+
j )l(x, ξ).

Using (5.17) and the fact that p+
r ∈ S(−1−ρ−r,−∞) for r = 0, ..., N −1, we see that p+

r (X+(t, x, ξ))
are integrable with respect to t. Hence A+

r (x, ξ) are well-defined. Moreover, we have (see e.g. [3,
Proposition 3.1]) that for all (x, ξ) ∈ Γ+(R, J1, τ1),

|∂αx ∂
β
ξ (A+

0 (x, ξ)− 1)| ≤ Cαβ 〈x〉−|α| , (5.20)

|∂αx ∂
β
ξ A

+
r (x, ξ)| ≤ Cαβ 〈x〉−r−|α| .

We also have that A+
0 , A

+
r for r = 1, ..., N−1 solve (5.14) and (5.15) respectively in Γ+(R, J1, τ1). Now,

by setting a+
r = χ+

1→2A
+
r (see (5.9)), we see that a+

r are globally defined on R2d and a+
r ∈ S(−r,−∞).

It is easy to see (5.11) from (5.20). We next insert a+(h) =
∑N−1
j=1 hja+

j into the left hand side of
(5.10) and get

ψ(h2P )J+
h (a+(h))− J+

h (a+(h))(hΛ)σ =
N−1∑
r=0

hrJ+
h

 ∑
k+j+l=r

(qk / χ+
1→2A

+
j )l − χ+

1→2A
+
r |ξ|σ


+hNJ+

h (r+
N (h)) + hNRN (h)J+

h (a+(h)).

Using the expression of (a / b)l given in Proposition 5.4, we see that

(qk / χ+
1→2A

+
j )l = χ+

1→2(qk / A+
j )l + terms in which derivatives fall into χ+

1→2.

This gives (5.10) with ǎ+(h) as in (5.12). The proof is complete. �

We now are able to construct the symbols b+k , for k = 0, ..., N − 1.

Proposition 5.6. Let J3, J4 and τ3, τ4 be such that J4 b J3 b J2 and −1 < τ2 < τ3 < τ4 < 1. Then
for R > 0 large enough and all χ+ supported in Γ+(R4, J4, τ4), there exists a sequence of symbols
b+k ∈ S(−k,−∞), for k = 0, ..., N − 1, supported in Γ+(R3, J3, τ3) such that

J+
h (a+(h))J+

h (b+(h))? = Oph(χ+) + hNOph(r̃+
N (h)), (5.21)

where a+(h) =
∑N−1
j=0 hja+

j is given in Proposition 5.3 and b+(h) =
∑N−1
k=0 hkb+k and (r̃+

N (h))h∈(0,1]
is bounded in S(−N,−∞).

Before giving the proof, we need the following result (see [2, Appendix] or [3, Lemma 3.3]).
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Lemma 5.7. Let S+
R := S+

1,R be as in Proposition 5.1. For x, y, ξ ∈ Rd, we define

η+(R, x, y, ξ) :=
∫ 1

0
∇xS+

R (y + λ(x− y), ξ)dλ. (5.22)

Then for R > 0 large enough, we have the following properties.
i. For all x, y ∈ Rd, the map ξ 7→ η+(R, x, y, ξ) is a diffeomorphism from Rd onto itself. Let
η 7→ ξ+(R, x, y, η) be its inverse.

ii. There exists C > 1 such that for all x, y, η ∈ Rd,
C−1 〈η〉 ≤

〈
ξ+(R, x, y, η)

〉
≤ C 〈η〉 .

iii. For all α, α′, β ∈ Nd, there exists Cαα′β > 0 such that for all x, y, η ∈ Rd and all k ≤ |α|, k′ ≤
|α′|,

|∂αx ∂α
′

y ∂
β
η

(
ξ+(R, x, y, η)− η

)
| ≤ Cαα′β 〈x〉−k 〈y〉−ρ−k

′
〈x− y〉ρ+k+k′

.

Proof of Proposition 5.6. We firstly consider the general term J+
h (a+)J+

h (b+)? and write its kernel as

K+
h (x, y) = (2πh)−d

∫
Rd
eih
−1(S+

R
(x,ξ)−S+

R
(y,ξ))a+(x, ξ)b+(y, ξ)dξ.

By Taylor’s formula, we have
S+
R (x, ξ)− S+

R (y, ξ) =
〈
x− y, η+(R, x, y, ξ)

〉
,

where η+ given in (5.22). By change of variable ξ 7→ ξ+(R, x, y, η), the kernel becomes

K+
h (x, y) = (2πh)−d

∫
Rd
eih
−1(x−y)ηa+(x, ξ+(R, x, y, η))b+(y, ξ+(R, x, y, η))|det ∂ηξ+(R, x, y, η)|dη.

Now, using Lemma (5.7), the symbolic calculus gives

J+
h (a+)J+

h (b+)? =
N−1∑
l=0

hlOph((a+ . b+)l) + hNOph(r̃+
N (h)),

where (a+ . b+)l ∈ S(−l,−∞) is of the form

(a+ . b+)l(x, η) =
∑
|α|=l

∂αyD
α
η c

+(x, y, η)
∣∣
y=x

α! ,

for l = 0, ..., N − 1 with
c+(x, y, η) = a+(x, ξ+(R, x, y, η))b+(y, ξ+(R, x, y, η))|det ∂ηξ+(R, x, y, η)|,

and (r̃+
N (h))h∈(0,1] is bounded in S(−N,−∞). We have now

J+
h (a+(h))J+

h (b+(h))? =
∑
j,k

hj+kJ+
h (a+

j )J+
h (b+k )?

=
N−1∑

j+k+l=0
hj+k+lOph((a+

j / b
+
k )l) + hNOph(r̃+

N (h)).

Compare with (5.21), the result follows if we solve the following equations:
(a+

0 / b+0 )0 = χ+,

(a+
0 / b+r )0 = −

∑
j+k+l=r
k≤r−1

(a+
j / b

+
k )l, r = 1, ..., N − 1.
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We can define b+0 , ..., b
+
N−1 iteratively by

b+0 (x, ξ) = χ+(x, η+(R, x, x, ξ))
(
a+

0 (x, ξ)
∣∣det ∂ηξ+(R, x, x, η+(R, x, x, ξ))

∣∣ )−1
,

b+r (x, ξ) = −
∑

j+k+l=r
k≤r−1

(a+
j / b

+
k )l(x, η+(R, x, x, ξ))

(
a+

0 (x, ξ)
∣∣det ∂ηξ(R, x, x, η+(R, x, x, ξ))

∣∣ )−1
,

for r = 1, ..., N − 1. Note that by (5.11) and Lemma 5.7, the term in (· · · )−1 cannot vanish on the
support of χ+(·, η+(R, ·, ·, ·)). Thus the above functions are well-defined. Moreover, by choosing R > 0
large enough with the fact

η+(R, x, x, ξ) = ∇xS+
R (x, ξ) = ξ +O(min{R−ρ, 〈x〉−ρ}),

we see that the support of χ+(x, η+(R, x, x, ξ)) is contained in Γ+(R3, J3, τ3). This completes the
proof of Proposition 5.6. �

By (5.8), Proposition 5.3 and Proposition 5.6, we are able to state the Isozaki-Kitada parametrix
for the fractional Schrödinger equation at high frequency.

Theorem 5.8. Let σ ∈ (0,∞). Fix J4 b (0,+∞) open interval and −1 < τ4 < 1. Choose arbitrary
open intervals J1, J2, J3 such that J4 b J3 b J2 b J1 b (0,+∞) and arbitrary τ1, τ2, τ3 such that
−1 < τ1 < τ2 < τ3 < τ4 < 1. Then for R > 0 large enough, we can find sequences of symbols

a±j ∈ S(−j,−∞), supp(a±j ) ⊂ Γ±(R, J1, τ1),

such that for all
χ± ∈ S(0,−∞), supp(χ±) ⊂ Γ±(R4, J4, τ4),

there exist sequences of symbols

b±k ∈ S(−k,−∞), supp(b±k ) ⊂ Γ±(R3, J3, τ3),

such that for all N ≥ 1, for all h ∈ (0, 1] and all ±t ≥ 0,

e−ith
−1ψ(h2P )Oph(χ±) = J±h (a±(h))e−ith

−1(hΛ)σJ±h (b±(h))? +R±N (t, h),

where the phase functions S±R := S±1,R are as in Proposition 5.1 and the remainder terms

R±N (t, h) = R±1 (N, t, h) +R±2 (N, t, h) +R±3 (N, t, h) +R±4 (N, t, h),

with

R±1 (N, t, h) = −hN−1e−ith
−1ψ(h2P )Oph(r̃±N (h)),

R±2 (N, t, h) = −ihN−1
∫ t

0
e−i(t−s)h

−1ψ(h2P )RN (h)J±h (a±(h))e−ish
−1(hΛ)σJ±h (b±(h))?ds,

R±3 (N, t, h) = −ihN−1
∫ t

0
e−i(t−s)h

−1ψ(h2P )J±h (r±N (h))e−ish
−1(hΛ)σJ±h (b±(h))?ds,

R±4 (N, t, h) = −ih−1
∫ t

0
e−i(t−s)h

−1ψ(h2P )J±h (ǎ±(h))e−ish
−1(hΛ)σJ±h (b±(h))?ds.

Here (r̃±N (h))h∈(0,1], (r±N (h))h∈(0,1] are bounded in S(−N,−∞), RN (h) is as in (5.13), (ǎ±(h))h∈(0,1]
are bounded in S(0,−∞) and are finite sums depending on N of the form

ǎ±(h) =
∑
|α|≥1

ǎ±α (h)∂αxχ±1→2, (5.23)

where (ǎ±α (h))h∈(0,1] are bounded in S(0,−∞) and χ±1→2 are given in (5.9).
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We now give the main steps for the construction of the Isozaki-Kitada parametrix at low frequency.
For simplicity, we omit the ± sign. Let us start with the following Duhamel formula

e−itεψ(ε−2P )Jε(aε) = Jε(aε)e−itεΛ
σ

− iε
∫ t

0
e−i(t−s)εψ(ε−2P )

(
ψ(ε−2P )Jε(aε)− Jε(aε)Λσ

)
e−isεΛ

σ

ds.

Thanks to the support of aε, we can write
ψ(ε−2P )Jε(aε) = ψ(ε−2P )ζ1(εx)Jε(aε),

where ζ1 ∈ C∞(Rd) is supported outside B(0, 1) and satisfies ζ1(x) = 1 for |x| > R. Using the
parametrix of ψ(ε−2P )ζ1(εx) given in Proposition 2.7 (by taking the adjoint), we have

ψ(ε−2P )ζ1(εx) =
N−1∑
k=0

ζ̃1(εx)Opε(qε,k)ζ1(εx) +RN (ε),

where qε,0(x, ξ) = ψ(pε(x, ξ)) = f̃(pε(x, ξ))
√
pε(x, ξ)

σ, supp(qε,k) ⊂ supp(ψ ◦ pε) and (RN (ε))ε∈(0,1]
satisfies (2.8). Here ζ̃1 ∈ C∞(Rd) is supported outside B(0, 1) and ζ̃1 = 1 near supp(ζ1). We want
to find aε =

∑N−1
j=0 aε,j so that the term ψ(ε−2P )Jε(aε)− Jε(aε)Λσ has a small contribution. By the

choice of cutoff functions and the action of pseudo-differential operators on Fourier integral operators
given in Proposition 5.4 with h = 1, we have

ψ(ε−2P )Jε(aε)− Jε(aε)Λσ =
N−1∑
r=0

 ∑
k+j+l=r

Jε((qε,k / aε,j)l)− Jε(aε,r|ξ|σ)


+RN (ε)Jε(aε) + Jε(rN (ε)), (5.24)

where (rN (ε))ε∈(0,1] is bounded in S(−N,−∞). This implies that we need to find (aε,j)ε∈(0,1] bounded
in S(−j,−∞) supported in Γ(R, J1, τ1) such that∑

k+j+l=r
(qε,k / aε,j)l − aε,r|ξ|σ = 0, r = 0, ..., N − 1.

By noting that if pε(x, ξ) ∈ supp(f), then qε,0(x, ξ) =
√
pε(x, ξ)

σ. This leads to the following
Hamilton-Jacobi and transport equations,

pε(x,∇xSε,R(x, ξ)) = |ξ|2, (5.25)
(qε,0 / aε,0)1 + (qε,1 / aε,0)0 = 0 (5.26)

(qε,0 / aε,r)1 + (qε,1 / aε,r)0 = −
∑

k+j+l=r+1
j≤r−1

(qε,k / aε,j)l, r = 1, ..., N − 1. (5.27)

We can solve (5.25) on Γ±(R, J1, τ1) using Proposition 5.1. We then solve (5.26), (5.27) on Γ±(R, J1, τ1)
and extend solutions globally on R2d. We obtain

ψ(ε−2P )Jε(aε)− Jε(aε)Λσ = RN (ε)Jε(aε) + Jε(rN (ε)) + Jε(ǎ(ε)),
where (ǎ(ε))ε∈(0,1] is bounded in S(0,−∞) and is a finite sum depending on N of the form

ǎ(ε) =
∑
|α|≥1

ǎα(ε)∂αxχ1→2,

with (ǎα(ε))ε∈(0,1] bounded in S(0,−∞) and χ1→2 as in (5.9).
Next, we can find bounded families of symbols bε,k ∈ S(−k,−∞) for k = 0, ..., N − 1 supported in

Γ(R3, J3, τ3) such that
Jε(aε)Jε(bε)? = Opε(χε)ζ(εx) +Opε(r̃N (ε))ζ(εx),
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where bε =
∑N−1
k=0 bε,k and (r̃N (ε))ε∈(0,1] is bounded in S(−N,−∞). This is possible by writing for

R large enough Jε(bε) = ζ(εx)Jε(bε) and taking the adjoint. We have the following Isozaki-Kitata
parametrix for the fractional Schrödinger equation at low frequency.

Theorem 5.9. Let σ ∈ (0,∞), ζ ∈ C∞(Rd) be supported outside B(0, 1) and equal to 1 near infinity.
Fix J4 b (0,+∞) open interval and −1 < τ4 < 1. Choose arbitrary open intervals J1, J2, J3 such that
J4 b J3 b J2 b J1 b (0,+∞) and arbitrary τ1, τ2, τ3 such that −1 < τ1 < τ2 < τ3 < τ4 < 1. Then for
R > 0 large enough, we can find bounded families of symbols

(a±ε,j)ε∈(0,1] ∈ S(−j,−∞), supp(a±ε,j) ⊂ Γ±(R, J1, τ1),
such that for all

(χ±ε )ε∈(0,1] ∈ S(0,−∞), supp(χ±ε ) ⊂ Γ±(R4, J4, τ4),
there exists families of symbols

(b±ε,k)ε∈(0,1] ∈ S(−k,−∞), supp(b±ε,k) ⊂ Γ±(R3, J3, τ3),

such that for all N ≥ 1, for all ε ∈ (0, 1] and all ±t ≥ 0,

e−itεψ(ε−2P )Opε(χ±ε )ζ(εx) = J±ε (a±ε )e−itεΛ
σ

J±ε (b±ε )? +R±N (t, ε),

where the phase functions S±ε,R are given in Proposition 5.1 and the remainder terms

R±N (t, ε) = R±1 (N, t, ε) +R±2 (N, t, ε) +R±3 (N, t, ε) +R±4 (N, t, ε),
with

R±1 (N, t, ε) = −e−itεψ(ε−2P )Opε(r̃±N (ε))ζ(εx),

R±2 (N, t, ε) = −iε
∫ t

0
e−i(t−s)εψ(ε−2P )RN (ε)J±ε (a±ε )e−isεΛ

σ

J±ε (b±ε )?ds,

R±3 (N, t, ε) = −iε
∫ t

0
e−i(t−s)εψ(ε−2P )J±ε (r±N (ε))e−isεΛ

σ

J±ε (b±ε )?ds,

R±4 (N, t, ε) = −iε
∫ t

0
e−i(t−s)εψ(ε−2P )J±ε (ǎ±(ε))e−isεΛ

σ

J±ε (b±ε )?ds.

Here (r̃±N (ε))ε∈(0,1], (r±N (ε))ε∈(0,1] are bounded in S(−N,−∞), (RN (ε))ε∈(0,1] is given in Proposition
2.7, (ǎ±(ε))ε∈(0,1] are bounded in S(0,−∞) and are finite sums depending on N of the form

ǎ±(ε) =
∑
|α|≥1

ǎ±α (ε)∂αxχ±1→2,

where (ǎ±α (ε))ε∈(0,1] are bounded in S(0,−∞) and χ±1→2 are as in (5.9).

We have the following dispersive estimates for the main terms of the Isozaki-Kitada parametrix
both at high and low frequencies.

Proposition 5.10. Let σ ∈ (0,∞)\{1}, S±ε,R be as in Proposition 5.1 and (a±ε )ε∈(0,1], (b±ε )ε∈(0,1] be
bounded in S(0,−∞) compactly supported in ξ away from zero.

1. Then for R > 0 large enough, there exists C > 0 such that for all t ∈ R and all h ∈ (0, 1],

‖J±h (a±)e−ith
−1(hΛ)σJ±h (b±)?‖L(L1,L∞) ≤ Ch−d(1 + |t|h−1)−d/2, (5.28)

where a± := a±ε=1, b
± := b±ε=1.

2. Then for R > 0 large enough, there exists C > 0 such that for all t ∈ R and all ε ∈ (0, 1],

‖J±ε (a±ε )e−itεΛ
σ

J±ε (b±ε )?‖L(L1,L∞) ≤ Cεd(1 + ε|t|)−d/2. (5.29)
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Proof. 1. For simplicity, we drop the superscript ±. The kernel of Jh(a)e−ith−1(hΛ)σJh(b)? reads

Kh(t, x, y) = (2πh)−d
∫
Rd
eih
−1(SR(x,ξ)−SR(y,ξ)−t|ξ|σ)a(x, ξ)b(y, ξ)dξ.

The estimates (5.28) are in turn equivalent to

|Kh(t, x, y)| ≤ Ch−d(1 + |t|h−1)−d/2, (5.30)

for all t ∈ R, h ∈ (0, 1] and x, y ∈ Rd. We only consider t ≥ 0, the case t ≤ 0 is similar. Let us denote
the compact support of the amplitude by K. Since a, b are bounded uniformly in x, y ∈ Rd, we have

|Kh(t, x, y)| ≤ Ch−d,

for all t ∈ R and all x, y ∈ Rd. If 0 ≤ t ≤ h or 1 + th−1 ≤ 2, then

|Kh(t, x, y)| ≤ Ch−d ≤ Ch−d(1 + th−1)−d/2.

So, we can assume that t ≥ h or (1 + th−1) ≤ 2th−1 and denote the phase function

Φ(R, t, x, y, ξ) = (SR(x, ξ)− SR(y, ξ))/t− |ξ|σ,

and parameter λ = th−1 ≥ 1. We can rewrite

Φ(R, t, x, y, ξ) = 〈(x− y)/t, η(R, x, y, ξ)〉 − |ξ|σ,

where

η(R, x, y, ξ) =
∫ 1

0
∇xSR(y + λ(x− y), ξ)dλ.

Using the properties of the phase functions SR given in (5.5), we have that

η(R, x, y, ξ) = ξ +Q(R, x, y, ξ),

where Q(R, x, y, ξ) is a vector in Rd satisfying for R > 0 large enough,

|∂βξQ(R, x, y, ξ)| ≤ CβR−ρ, (5.31)

for all x, y ∈ Rd and ξ ∈ K. We have

∇ξΦ(R, t, x, y, ξ) = x− y
t
· (IdRd +∇ξQ(R, x, y, ξ))− σξ|ξ|σ−2.

If |(x− y)/t| ≥ C for some constant C > 0 large enough then for R > 0 large enough, there exists
C1 > 0,

|∇ξΦ(R, t, x, y, ξ)| ≥ 1
2

∣∣∣x− y
t

∣∣∣ ≥ C1.

Thus the phase is non-stationary. By using integration by parts with respect to ξ together with the
fact

|∂βξ Φ(R, t, x, y, ξ)| ≤ Cβ
∣∣∣x− y

t

∣∣∣, |β| ≥ 2,

we have that for all N ≥ 1,

|Kh(t, x, y)| ≤ Ch−d(th−1)−N ≤ Ch−d(1 + th−1)−d/2,

provided N is taken bigger than d/2. The same result still holds for |(x − y)/t| ≤ c for some c > 0
small enough.

Therefore, we can assume that c ≤ |x− y/t| ≤ C. In this case, we write

∇2
ξΦ(R, t, x, y, ξ) = x− y

t
· ∇2

ξQ(R, x, y, ξ)− σ|η|σ−2
(

IdRd + (σ − 2)η · η
t

|η|2
)
.
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Using the fact that σ ∈ (0,∞)\{1} and∣∣∣detσ|η|σ−2
(

IdRd + (σ − 2)η · η
t

|η|2
)∣∣∣ = σd|σ − 1‖η|(σ−2)d ≥ C

and (5.31), we see that for R > 0 large enough, the map ξ 7→ ∇ξΦ(R, t, x, y, ξ) is a local diffeomor-
phism from a neighborhood of K to its range. Moreover, for all β ∈ Nd satisfying |β| ≥ 1, we have
|∂βξ Φ(R, t, x, y, ξ)| ≤ Cβ . The stationary phase theorem then implies that for R > 0 large enough, all
t ≥ h and all x, y ∈ Rd satisfying c ≤ |(x− y)/t| ≤ C,

|Kh(t, x, y)| ≤ Ch−dλ−d/2 ≤ Ch−d(1 + th−1)−d/2.

This gives (5.30).
2. We are now in position to show (5.29). As above, we drop the superscript ± for simplicity. We see
that up to a conjugation by Dε, the kernel of Jε(aε)e−itεΛ

σJε(bε)? reads

Kε(t, x, y) = (2π)−d
∫
Rd
ei(Sε,R(x,ξ)−tε|ξ|σ−Sε,R(y,ξ))aε(x, ξ)bε(y, ξ)dξ.

The dispersive estimates (5.29) follow from

|Kε(t, x, y)| ≤ C(1 + ε|t|)−d/2, (5.32)

for all t ∈ R uniformly in x, y ∈ Rd, ε ∈ (0, 1] and the fact that

‖Dε‖L(L∞) = εd/2, ‖D−1
ε ‖L(L1) = εd/2.

The estimates (5.32) are proved by repeating the same line as above. The proof is complete. �

Micro-local propagation estimates. In this paragraph, we will prove some propagation estimates
which are useful for our purpose. To do this, we need the following result (see [8, Lemma 4.1]).

Lemma 5.11. Let τ+, τ− ∈ (−1, 1).
1. For all x, y, ξ ∈ Rd\{0} satisfying ±x · ξ/|x‖ξ| > τ± and ±t ≥ 0, we have

± (x+ tξ) · ξ
|x+ tξ||ξ|

> τ± and |x+ tξ| ≥ c±(|x|+ |tξ|), (5.33)

where c± =
√

1 + τ±/
√

2.
2. If τ−+ τ+ > 0, then there exists c = c(τ−, τ+) > 0 such that for all x, y, ξ ∈ Rd\{0} satisfying

+x · ξ/|x‖ξ| > τ+ and −y · ξ/|y‖ξ| > τ−, we have

|x− y| ≥ c(|x|+ |y|). (5.34)

We start with the following estimates.

Lemma 5.12. Let σ ∈ (0,∞) and χ ∈ C∞0 (Rd) satisfying χ(x) = 1 for |x| ≤ 1.
1. Using the notations given in Theorem 5.8, if R > 0 is large enough, then for all m ≥ 0, there

exists C > 0 such that for all ±s ≥ 0 and all h ∈ (0, 1],

‖χ
(
x/R2) J±h (ǎ±(h))e−ish

−1(hΛ)σJ±h (b±(h))? 〈x〉m ‖L(H−m,Hm) ≤ Chm 〈s〉
−m

. (5.35)

Moreover,

‖ 〈x〉m (1− χ)
(
x/R2) J±h (ǎ±(h))e−ish

−1(hΛ)σJ±h (b±(h))? 〈x〉m ‖L(H−m,Hm) ≤ Chm 〈s〉
−m

. (5.36)

In particular

‖ 〈x〉m J±h (ǎ±(h))e−ish
−1(hΛ)σJ±h (b±(h))? 〈x〉m ‖L(H−m,Hm) ≤ Chm 〈s〉

−m
. (5.37)
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2. Using the notations given in Theorem 5.9, if R > 0 is large enough, then for all m ≥ 0, there
exists C > 0 such that for all ±s ≥ 0 and all ε ∈ (0, 1],

‖χ(εx/R2)J±ε (ǎ±(ε))e−isεΛ
σ

J±ε (b±ε )? 〈εx〉m ‖L(L2) ≤ C 〈εs〉
−m

. (5.38)
Moreover,

‖ 〈εx〉m (1− χ)(εx/R2)J±ε (ǎ±(ε))e−isεΛ
σ

J±ε (b±ε )? 〈εx〉m ‖L(L2) ≤ C 〈εs〉
−m

. (5.39)
In particular

‖ 〈εx〉m J±ε (ǎ±(ε))e−isεΛ
σ

J±ε (b±ε )? 〈εx〉m ‖L(L2) ≤ C 〈εs〉
−m

. (5.40)

Proof. 1. We firstly consider the high frequency case. The proof in this case is essentially given in
[8]. For reader’s convenience, we will give a sketch of the proof. The kernel of the operator in the left
hand side of (5.35) reads

K±h (s, x, y) = (2πh)−dχ(x/R2)
∫
Rd
eih
−1Φ±(R,s,x,y,ξ)ǎ±(h, x, ξ)b±(h, y, ξ)dξ 〈y〉m ,

where the phase Φ±(R, s, x, y, ξ) = S±R (x, ξ)− s|ξ|σ − S±R (y, ξ). Using (5.5), we have
|∇ξΦ±(R, s, x, y, ξ)| = |x− σsξ|ξ|σ−2 − y +O(1)| ≥ |σsξ|ξ|σ−2 + y| − |x|+O(1),

where |x| ≤ CR2 and (y, ξ) ∈ Γ±(R3, J3, τ3). We then apply (5.33) with ±y · ξ/|y‖ξ| > τ3 and
±t = ±σs|ξ|σ−2 ≥ 0 to get

|σsξ|ξ|σ−2 + y| ≥ C(|s|+ |y|), (5.41)

for all ±s ≥ 0. We next use |y| > R3 to control |x| . R2 and obtain
|∇ξΦ±(R, s, x, y, ξ)| ≥ C(1 + |s|+ |x|+ |y|),

for all ±s ≥ 0. By integrations by part with respect to ξ with remark that higher derivatives of ∂ξΦ±
are controlled by |∇ξΦ±|, we get for all N ≥ 0,∣∣∣∣χ(x/R2)

∫
Rd
eih
−1Φ±(R,s,x,y,ξ)ǎ±(h, x, ξ)b±(h, y, ξ)dξ

∣∣∣∣ ≤ ChN (1 + |s|+ |x|+ |y|)−N .

By choosing N large enough, we can dominate 〈y〉m and get
|K±h (s, x, y)| ≤ ChN (1 + |s|+ |x|+ |y|)−N ,

for all N large enough, therefore for all N ≥ 0. We do the same for higher derivatives ∂αx ∂βyKh(s, x, y)
and the result follows. The kernel of the operator in the left hand side of (5.36) reads

K±h (s, x, y) = (2πh)−d 〈x〉m (1− χ)(x/R2)
∫
Rd
eih
−1Φ±(R,s,x,y,ξ)ǎ±(h, x, ξ)b±(h, y, ξ)dξ 〈y〉m .

We use the form of ǎ±(h) given in (5.23). In the case derivatives fall on κ(x/R2), we have that
|x| ≤ CR2 and we can proceed as above. Note that we have from (5.33) with ±y · ξ/|y‖ξ| > σ3 and
±t = ±σs|ξ|σ−2 ≥ 0 that

± (y + σsξ|ξ|σ−2)ξ
|y + σsξ|ξ|σ−2‖ξ|

> σ3 and |y + σsξ|ξ|σ−2| ≥ c±(|s|+ |y|).

In the case derivatives fall on θ1→2, we have

τ1 + ε ≤ ± x · ξ
|x‖ξ|

≤ τ2 − ε or ∓ x · ξ
|x‖ξ|

≥ −τ2 + ε > −τ2 + ε/2.

By choosing ε > 0 small enough such that τ3 − τ2 + ε/2 > 0, (5.34) gives
|y + σsξ|ξ|σ−2 − x| ≥ c

(
|y + σsξ|ξ|σ−2|+ |x|

)
≥ C(|s|+ |x|+ |y|).
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Thus |∇ξΦ±| ≥ C(1 + |s|+ |x|+ |y|) for ±s ≥ 0 and (5.36) follows as above.
2. The proof for the low frequency case is the same as above up to the conjugation by the unitary
map Dε in L2(Rd). For instance, the kernel of the operator in the left hand side of (5.38) reads

K±ε (s, x, y) = (2π)−dχ(x/R2)
∫
Rd
eiΦ
±
ε (R,s,x,y,ξ)ǎ±(ε, x, ξ)b±ε (y, ξ)dξ 〈y〉m ,

where the phase Φ±ε (R, s, x, y, ξ) = S±ε,R(x, ξ)− εs|ξ|σ − S±ε,R(y, ξ). �

Lemma 5.13. Let σ ∈ (0,∞).
1. Under the notations of Theorem 5.8, for all m ≥ 0 and all N large enough, there exists C > 0

such that for all ±s ≥ 0 and all h ∈ (0, 1],

‖ 〈x〉N/8 J±h (r±N (h))e−ish
−1(hΛ)σJ±h (b±(h))? 〈x〉N/4 ‖L(H−m,Hm) ≤ Ch−d−2m 〈s〉−N/4 . (5.42)

2. Under the notations of Theorem 5.9, for all N large enough, there exists C > 0 such that for
all ±s ≥ 0 and all ε ∈ (0, 1],

‖ 〈εx〉N/8 J±ε (r±N (ε))e−iεsΛ
σ

J±ε (b±ε )? 〈εx〉N/4 ‖L(L2) ≤ C 〈εs〉
−N/4

. (5.43)

Proof. We only give the proof for the high frequency case, the low frequency one is similar. The kernel
of the operator in the left hand side of (5.42) reads

K±h (s, x, y) = (2πh)−d
∫
Rd
eih
−1Φ±(R,s,x,y,ξ)A±(h, x, y, ξ)dξ,

where the amplitude A±(h, x, y, ξ) = 〈x〉N/8 r±N (h, x, ξ)b±(h, y, ξ) 〈y〉N/4 and is compactly supported
in ξ. We have from Proposition 5.1 and (5.41) that ∇ξΦ±(R, s, x, y, ξ) = x − σsξ|ξ|σ−2 − y + O(1)
and |σsξ|ξ|σ−2 + y| ≥ C(|s|+ |y|) for all ±s ≥ 0. By Peetre’s inequality, we see that〈

∇ξΦ±
〉−1 ≤ 〈x〉

〈
y + σsξ|ξ|σ−2〉−1 ≤ C 〈x〉 (〈y〉+ 〈s〉)−1.

We next write
1 = χ(∇ξΦ±) + (1− χ)(∇ξΦ±),

where χ ∈ C∞0 (Rd) with χ = 1 near 0. Then K±h (s, x, y) is split into two terms. For the first term

I1 = (2πh)−d
∫
Rd
eih
−1Φ±(R,s,x,y,ξ)χ(∇ξΦ±)A±(h, x, y, ξ)dξ,

by using the fact that

|χ(∇ξΦ±)| ≤ C
〈
∇ξΦ±

〉−3N/4 ≤ C 〈x〉3N/4 (〈y〉+ 〈s〉)−3N/4

≤ C 〈x〉3N/4 〈y〉−N/2 〈s〉−N/4 , (5.44)

and A±(h, x, y, ξ) = O(〈x〉−7N/8 〈y〉N/4), it is bounded by Ch−d 〈x〉−N/8 〈y〉−N/4 〈s〉−N/4. For the
second term

I2 = (2πh)−d
∫
Rd
eih
−1Φ±(R,s,x,y,ξ)(1− χ)(∇ξΦ±)A±(h, x, y, ξ)dξ,

thanks to the support of (1 − χ), we can integrate by parts with respect to L := h∇ξΦ±
i|∇ξΦ±|2 ◦ ∇ξ to

get many negative powers of |∇ξΦ±| as we wish and estimate as in (5.44). Combine two terms and
Schur’s lemma, we have (5.42) for m = 0. For m ≥ 1, we can do the same with ∂αx ∂βyK±h (s, x, y) with
|α| ≤ m, |β| ≤ m. This completes the proof. �

Combining Lemma 5.12 and Lemma 5.13, we have the following result.
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Proposition 5.14. 1. Using the notations given in Theorem 5.8, for all 0 ≤ m ≤ d+ 1 and all
N large enough, we can write for k = 2, 3, 4,

R±k (N, t, h) = hN/2
∫ t

0
e−i(t−s)h

−1ψ(h2P ) 〈x〉−N/8B±m(N, s, h) 〈x〉−N/4 ds,

with
‖B±m(N, s, h)‖L(H−m,Hm) ≤ C 〈s〉

−N/4
, (5.45)

for all ±s ≥ 0 and h ∈ (0, 1].
2. Using the notations given in Theorem 5.9 and for all N large enough, we can write for k =

2, 3, 4,

R±k (N, t, ε) = ε

∫ t

0
e−i(t−s)εψ(ε−2P ) 〈εx〉−N/8 B±N (s, ε) 〈εx〉−N/4 ds,

with
‖B±N (s, ε)‖L(L2) ≤ C 〈εs〉

−N/4
, (5.46)

for all ±s ≥ 0 and all ε ∈ (0, 1].
Proof. The cases k = 3, 4 follow immediately from Lemma 5.12 and Lemma 5.13. It remains to show
the case k = 2. Let us consider the high frequency case. We can write RN (h)E±(h) as

〈x〉−N/8
(
〈x〉N/8RN (h) 〈x〉7N/8

)(
〈x〉N/8 〈x〉−N E±(h) 〈x〉N/4

)
〈x〉−N/4 ,

where E±(h) := J±h (a±(h))e−ish−1(hΛ)σJ±h (b±(h))?. The first bracket is bounded in L(L2) using
Proposition 2.2. The second one is bounded in L(H−m, Hm) using Lemma 5.13 with the fact that
〈x〉−N J±h (a±(h)) = J±h (˜̃r±N (h)) where ˜̃r±N (h) are bounded in S(−N,−∞). The low frequency case is
similar using Proposition 2.7. �

Next, we have the following micro-local propagation estimates both at high and low frequencies.
Proposition 5.15. Let σ ∈ (0,∞), f ∈ C∞0 (R\{0}), J4 b (0,+∞) be an open interval and −1 <
τ4 < 1.

1. Consider Rd, d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and suppose that
(1.12) is satisfied. Then for R > 0 large enough and χ± ∈ S(0,−∞) supported in Γ±(R4, J4, τ4),
we have the following estimates.

i. For all m ∈ N and all integer l large enough, there exists C > 0 such that for all ±t ≤ 0
and all h ∈ (0, 1],

‖Oph(χ±)?e−ith
−1(hΛg)σf(h2P ) 〈x〉−l ‖L(L2,Hm) ≤ Ch−m 〈t〉

−3l/4
. (5.47)

ii. For all m ∈ N, all χ ∈ C∞0 (Rd) and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0
and all h ∈ (0, 1],

‖Oph(χ±)?e−ith
−1(hΛg)σf(h2P )χ(x/R2)‖L(L2,Hm) ≤ Chl 〈t〉

−l
. (5.48)

iii. For all χ̃∓ ∈ S(0,−∞) supported in Γ∓(R, J1, τ̃1) with −τ4 < τ̃1 < 1 and J4 b J1 and
all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all h ∈ (0, 1],

‖Oph(χ±)?e−ith
−1(hΛg)σf(h2P )Oph(χ̃∓)‖L(L∞) ≤ Chl 〈t〉

−l
. (5.49)

2. Consider Rd, d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). Let ζ ∈ C∞(Rd)
be supported outside B(0, 1) and equal to 1 near infinity. Then for R > 0 large enough and all
(χ±ε )ε∈(0,1] bounded families in S(0,−∞) supported in Γ±(R4, J4, τ4), we have the following
estimates.
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i. For all integer l large enough, there exists C > 0 such that for all ±t ≤ 0 and all ε ∈ (0, 1],

‖ζ(εx)Opε(χ±ε )?e−itε(ε
−1Λg)σf(ε−2P ) 〈εx〉−l ‖L(L2) ≤ C 〈εt〉

−3l/4
. (5.50)

ii. For all χ ∈ C∞0 (Rd) and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all
ε ∈ (0, 1],

‖ζ(εx)Opε(χ±ε )?e−itε(ε
−1Λg)σf(ε−2P )χ(εx/R2)‖L(L2) ≤ C 〈εt〉

−l
. (5.51)

iii. For all ζ̃ ∈ C∞(Rd) supported outside B(0, 1) and equal to 1 near infinity and all
(χ̃∓ε )ε∈(0,1] bounded families in S(0,−∞) supported in Γ∓(R, J1, τ̃1) with −τ4 < τ̃1 < 1
and J4 b J1 and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all ε ∈ (0, 1],

‖ζ(εx)Opε(χ±ε )?e−itε(ε
−1Λg)σf(ε−2P )Opε(χ̃∓ε )ζ̃(εx)‖L(L2) ≤ C 〈εt〉

−l
. (5.52)

Proof. We only give the proof for the low frequency case, the proof at high frequency is similar and
essentially given in [8, Proposition 4.5].

i. We only consider the case χ+
ε and t ≤ 0, the case χ−ε and t ≥ 0 is similar. By taking the adjoint,

(5.50) is equivalent to

‖ 〈εx〉−l f(ε−2P )e−itε(ε
−1Λg)σOpε(χ+

ε )ζ(εx)‖L(L2(Rd)) ≤ C 〈εt〉
−3l/4

, t ≥ 0, (5.53)
uniformly in ε ∈ (0, 1]. Thanks to the spectral localization, we can apply the Isozaki-Kitada parametrix
given in Theorem 5.9 and obtain

e−itε(ε
−1Λg)σOpε(χ+

ε )ζ(εx) = J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? +R+

N (t, ε).
The main term can be written as

〈εx〉−l f(ε−2P ) 〈εx〉l 〈εx〉−n 〈εx〉n−l J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? 〈εx〉n 〈εx〉−n .

By using Corollary 2.9, we have the terms 〈εx〉−l f(ε−2P ) 〈εx〉l and 〈εx〉−n are bounded in L(L2). It
suffices to show for l large enough,

‖ 〈εx〉n−l J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? 〈εx〉n ‖L(L2) ≤ C 〈εt〉

−3l/4
, t ≥ 0,

uniformly in ε ∈ (0, 1]. This expected estimate follows by using the same process as in Lemma 5.13.
We now study the remainders.

For k = 1, we have

‖ 〈εx〉−l f(ε−2P )R+
1 (N, t, ε)‖L(L2) = ‖ 〈εx〉−l f(ε−2P )e−itε(ε

−1Λg)σOpε(r̃+
N (ε))ζ(εx)‖L(L2)

≤ C 〈εt〉1−l .

Here we insert 〈εx〉−l 〈εx〉l in the middle and use (2.23) and rescaled pseudo-differential calculus.
For k = 2, 3, 4, Item 2 of Proposition 5.14 yields

〈εx〉−l f(ε−2P )R+
k (N, t, ε) = ε

∫ t

0
〈εx〉−l f(ε−2P )e−i(t−s)ε(ε

−1Λg)σ 〈εx〉−N/8 BN (s, ε) 〈εx〉−N/4 ds.

Using again (2.23) and the fact that 〈εx〉l−N/8 and 〈εx〉−N/4 are of size OL(L2)(1) for N large enough
and (5.46), we obtain

‖ 〈εx〉−l f(ε−2P )R+
k (N, t, ε)‖L(L2) ≤ Cε

∫ t

0
〈ε(t− s)〉1−l 〈εs〉−N/4 ds ≤ C 〈εt〉1−l .

By choosing l large enough such that l − 1 ≥ 3l/4, it shows (5.53).
ii. We do the same for (5.51), it is equivalent to show

‖χ(εx/R2)f(ε−2P )e−itε(ε
−1Λg)σOpε(χ+

ε )ζ(εx)‖L(L2(Rd)) ≤ C 〈εt〉
−l
, t ≥ 0, (5.54)
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uniformly in ε ∈ (0, 1]. We again use the Isozaki-Kitada parametrix. Let us firstly study remainder
terms. We write the first remainder term χ(εx/R2)f(ε−2P )R+

1 (N, t, ε) as

χ(εx/R2) 〈εx〉l 〈εx〉−l f(ε−2P )e−itε(ε
−1Λg)σ 〈εx〉−l 〈εx〉lOpε(r̃+

N (ε))ζ(εx).

Using (2.23) and the fact that χ(εx/R2) 〈εx〉l and 〈εx〉lOpε(r̃+
N (ε))ζ(εx) are bounded in L(L2) due to

the support property of χ and rescaled pseudo-differential calculus given as in Proposition 2.7, we get

‖χ(εx/R2)f(ε−2P )R+
1 (N, t, ε)‖L(L2) ≤ C 〈εt〉

1−l
.

For k = 2, 3, 4, we have

‖χ(εx/R2)f(ε−2P )R+
k (N, t, ε)‖L(L2) ≤ Cε

∫ t

0
〈ε(t− s)〉1−l 〈εs〉−N/4 ds ≤ C 〈εt〉1−l .

For the main term, we can write

χ(εx/R2) 〈εx〉l 〈εx〉−l f(ε−2P ) 〈εx〉l 〈εx〉−n 〈εx〉n−l J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? 〈εx〉n 〈εx〉−n .

Thanks to the L2-boundedness of χ(εx/R2) 〈εx〉l, 〈εx〉−l f(ε−2P ) 〈εx〉l, 〈εx〉−n, it suffices to prove

‖ 〈εx〉n−l J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? 〈εx〉n ‖L(L2) ≤ C 〈εt〉

−l
, t ≥ 0,

uniformly in ε ∈ (0, 1]. This expected estimate again follows from Lemma 5.12 by taking l large
enough. This proves (5.54).

iii. For (5.52), we firstly use the Isozaki-Kitada parametrix for χ̃−ε , namely

e−itεψ(ε−2P )Opε(χ̃−ε )ζ̃(εx) = J−ε (ã−ε )e−itεΛ
σ

J−ε (b̃−ε )? +
4∑
k=1
R̃−k (N, t, ε), (5.55)

where supp(ã−ε ) ⊂ Γ−(R1/4, J̃1/4, τ̃1/4) and supp(b̃−ε ) ⊂ Γ−(R3/4, J̃3/4, τ̃3/4) with J̃3/4 b J̃1/4 small
neighborhood of J1 and τ̃1/4, τ̃3/4 can be chosen so that

−1 < −τ4 < τ̃1/4 < τ̃3/4 < τ̃1 < 1.

Multiplying ζ(εx)Opε(χ+
ε )?f(ε−2P ) to the left of (5.55), the terms ζ(εx)Opε(χ+

ε )?f(ε−2P )R̃−k (N, t, ε)
for k = 1, 2, 3, 4 satisfy the required estimate using the estimate (5.50), Lemma 5.12 and (5.46).
Therefore, it remains to show

‖ζ(εx)Opε(χ+
ε )?f(ε−2P )J−ε (ã−ε )e−itεΛ

σ

J−ε (b̃−ε )?‖L(L2) ≤ C 〈εt〉
−l
, ±t ≤ 0,

uniformly in ε ∈ (0, 1]. Thanks to the support of ã−ε , we can write J−ε (ã−ε ) = ζ1(εx)J−ε (ã−ε ) with
ζ1 ∈ C∞(Rd) supported outside B(0, 1) such that ζ1(x) = 1 for |x| > R1/4. The parametrix of
f(ε−2P )ζ1(εx) given in Proposition 2.7 and symbolic calculus give

ζ(εx)Opε(χ+
ε )?f(ε−2P )ζ1(εx) = Opε(c+ε ) +B+

N (ε) 〈εx〉−N ,
where (c+ε )ε∈(0,1] ∈ S(0,−∞) with supp(c+ε ) ⊂ supp(χ+

ε ) and B+
N (ε) = OL(L2)(1) uniformly in ε ∈

(0, 1]. We treat the remainder term by using Lemma 5.13. For the main terms, we need to recall the
following version of Proposition 5.4 which is essentially 2 given in [8, Lemma 4.6].

Lemma 5.16. Given J b (0,+∞), −1 < τ < 1 and the associated families of phase functions
(S±ε,R)R�1 as in Proposition 5.1. Let (aε)ε∈(0,1] and (cε)ε∈(0,1] be bounded families in S(0,−∞). Then
for all N ≥ 1,

Opε(cε)J±ε (aε) =
N−1∑
j=0
J±ε (eε,j) + J±ε (eN (ε)),

2See (2.4), (5.3) and use Lemma 4.6 of [8] with h = 1.
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where (eε,j)ε∈(0,1] and (eN (ε))ε∈(0,1] are bounded families in S(0,−∞) and S(−N,−∞) respectively.
In particular, for all ε > 0 small enough, by choosing R > 0 large enough, we have

supp(cε) ⊂ Γ±(R, J, τ) =⇒ supp(eε,j) ⊂ Γ±(R, J + (−ε, ε), τ − ε)
since ∇xS±ε,R(x, ξ) = ξ +O(R−ρ).

Using this lemma, we expand Opε(c+ε )J−ε (ã−ε ) and treat the remainder terms using again Lemma
5.13. It remains to prove the required estimate for the general term, namely

‖J−ε (e+
ε )e−itεΛ

σ

J−ε (b̃−ε )?‖L(L2) ≤ C 〈εt〉
−l
, ±t ≤ 0,

uniformly in ε ∈ (0, 1], where (e+
ε )ε∈(0,1] ∈ S(0,−∞) and supp(e+

ε ) ∈ Γ+(R4, J4 + (−ε, ε), τ4 − ε). Up
to the conjugation by Dε, the kernel of the left hand side operator reads

Kε(t, x, y) = (2π)−d
∫
Rd
eiΦε(R,t,x,y,ξ)e+

ε (x, ξ)b̃−ε (y, ξ)dξ,

where Φε(R, t, x, y, ξ) = S−ε,R(x, ξ)− εt|ξ|σ − S−ε,R(y, ξ). Since supp(e+
ε ) ⊂ Γ+(R4, J4 + (−ε, ε), τ4 − ε)

and supp(b̃−ε ) ⊂ Γ−(R3/4, J̃3/4, τ̃3/4), we have
x · ξ
|x‖ξ|

> τ4 − ε, − y · ξ
|y‖ξ|

> τ̃3/4.

By choosing R > 0 large enough, we have that τ4 − ε+ τ̃3/4 > 0. Thus by Item 2 of Lemma 5.11, we
have

|∇ξΦε| ≥ C(1 + ε|t|+ |x|+ |y|).
Using the non-stationary phase argument as in the proof of Lemma 5.12, we have

‖J +
ε (e+

ε )e−itεΛ
σ

J−ε (b̃−ε )?‖L(L2) ≤ C 〈εt〉
−l
, ±t ≤ 0,

uniformly in ε ∈ (0, 1]. The proof of Proposition 5.15 is now complete. �

5.2. Strichartz estimates.
High frequencies. In this paragraph, we give the proof of (3.21). By scaling in time, it is in turn
equivalent to prove

‖(1− χ)e−ith
−1(hΛg)σf(h2P )u0‖Lp(R,Lq) ≤ Ch−κp,q‖f(h2P )u0‖L2 ,

where κp,q = d/2− d/q− 1/p. By choosing f̃ ∈ C∞0 (R\0) such that f̃ = 1 near supp(f), we can write
for all l ∈ N,

(1− χ)f̃(h2P ) =
N−1∑
k=0

hkOph(ak)? + hNBN (h) 〈x〉−l ,

where for q ≥ 2,
‖BN (h)‖L(L2,Lq) ≤ Ch−(d/2−d/q). (5.56)

Thus (1− χ)e−ith−1(hΛg)σf(h2P )u0 becomes
N−1∑
k=0

hkOph(ak)?e−ith
−1(hΛg)σf(h2P )u0 + hNBN (h) 〈x〉−l e−ith

−1(hΛg)σf(h2P )u0.

Using (5.56) and (2.20), ‖BN (h) 〈x〉−l e−ith−1(hΛg)σf(h2P )u0‖Lp(R,Lq) is bounded by

Ch−(d/2−d/q)‖ 〈x〉−l e−ith
−1(hΛg)σf(h2P )u0‖Lp(R,L2) ≤ Ch−(d/2−d/q)+(1−N0)/p‖f(h2P )u0‖L2 .

Hence, by taking N large enough, the remainder is bounded by Ch−κp,q‖f(h2P )u0‖L2 . For the main
terms, by choosing χ0 ∈ C∞0 (Rd) such that χ0 = 1 for |x| ≤ 2 and setting χ(x) = χ0(x/R4), we see
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that (1 − χ) is supported in {x ∈ Rd, |x| ≥ 2R4 > R4}. For R > 0 large enough and supp(f̃) close
enough to supp(f) and J4 b (0,+∞) any open interval containing supp(f), we have

supp(ak) ⊂
{

(x, ξ) ∈ R2d, |x| > R4, |ξ|2 ∈ J4
}
, k = 0, ..., N − 1. (5.57)

We want to show

‖Oph(ak)?e−ith
−1(hΛg)σf(h2P )u0‖Lp(R,Lq) ≤ Ch−κp,q‖f(h2P )u0‖L2 , k = 0, ..., N − 1.

Let us consider a general term, namely Oph(a)?e−ith−1(hΛg)σf(h2P )u0 with a ∈ S(0,−∞) satisfying
(5.57). Next, by choosing a suitable partition of unity θ− + θ+ = 1 such that supp(θ−) ⊂ (−∞,−τ4)
and supp(θ+) ⊂ (τ4,+∞) and setting

χ±(x, ξ) = a(x, ξ)θ±
(
± x · ξ
|x‖ξ|

)
,

we have that χ± ∈ S(0,−∞), supp(χ±) ⊂ Γ±(R4, J4, τ4) and

Oph(a)?e−ith
−1(hΛg)σf(h2P )u0 = (Oph(χ−)? +Oph(χ+)?)e−ith

−1(hΛg)σf(h2P )u0.

We only prove the estimate for χ+, i.e.

‖Oph(χ+)?e−ith
−1(hΛg)σf(h2P )u0‖Lp(R,Lq) ≤ Ch−κp,q‖f(h2P )u0‖L2 ,

the one for χ− is similar. Since Oph(χ+)?e−ith−1(hΛg)σf(h2P ) is bounded in L(L2) uniformly in
h ∈ (0, 1] and t ∈ R, by Proposition 4.3, it suffices to prove the dispersive estimates, i.e.

‖Oph(χ+)?e−ith
−1(hΛg)σf2(h2P )Oph(χ+)‖L(L1,L∞) ≤ Ch−d(1 + |t|h−1)−d/2,

for all t ∈ R uniformly in h ∈ (0, 1]. By taking the adjoint, it reduces to prove

‖Oph(χ+)?e−ith
−1(hΛg)σf2(h2P )Oph(χ+)‖L(L1,L∞) ≤ Ch−d(1 + |t|h−1)−d/2, (5.58)

for all t ≤ 0 uniformly in h ∈ (0, 1]. We now prove (5.58). By using the Isozaki-Kitada parametrix
with J4 and τ4 as above together with arbitrary open intervals J1, J2, J3 such that J4 b J3 b J2 b
J1 b (0,+∞) and arbitrary real numbers τ1, τ2, τ3 satisfying −1 < τ1 < τ2 < τ3 < τ4 < 1, the operator
in the left hand side of (5.58) is written as

Oph(χ+)?f2(h2P )
(
J+
h (a+(h))e−ith

−1(hΛ)σJ+
h (b+(h))? +

4∑
k=1

R+
k (N, t, h)

)
.

Using the fact that Oph(χ+)?f2(h2P ) is bounded in L(L∞) and Proposition 5.10, we have

‖Oph(χ+)?f2(h2P )J+
h (a+(h))e−ith

−1(hΛ)σJ+
h (b+(h))?‖L(L1,L∞) ≤ Ch−d(1 + |t|h−1)−d/2,

for all t ∈ R and h ∈ (0, 1]. It remains to study the remainder terms.
For k = 1, using the Sobolev embedding with m > d/2, (5.47) and the fact that 〈x〉lOph(r̃+

N (h)) is
of size OL(H−m,L2)(h−m) by pseudo-differential calculus, we have

‖Oph(χ+)?f2(h2P )R+
1 (N, t, h)‖L(L1,L∞) ≤ ChN−1−2m 〈t〉−3l/4 ≤ Ch−d(1 + |t|h−1)−d/2,

for all t ≤ 0 and all h ∈ (0, 1]. The last estimate follows by taking l = 2d/3 and N large enough.
For k = 2, by using (5.47) and the Sobolev embedding with m > d/2, we have for t− s ≤ 0,

‖Oph(χ+)?e−i(t−s)h
−1(hΛg)σf2(h2P ) 〈x〉−l ‖L(L2,L∞) ≤ Ch−m 〈t− s〉

−3l/4
. (5.59)
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We also have that 〈x〉lRN (h) is bounded in L(L∞, L2) due to Proposition 2.2 provided N > l. Thus
for N and l large enough, Proposition 5.10 implies that
‖Oph(χ+)?f2(h2P )R+

2 (N, t, h)‖L(L1,L∞)

≤ ChN−1−m−d
∫ t

0
〈t− s〉−3l/4 (1 + |s|h−1)−d/2ds ≤ Ch−d(1 + |t|h−1)−d/2.

For k = 3, by inserting 〈x〉−l 〈x〉l−N 〈x〉N and using the fact that 〈x〉l−N = OL(L∞,L2)(1) for N
large enough, (5.59) and Proposition 5.10 with J+

h (a+) = 〈x〉N J+
h (r+

N (h)), we see that this remainder
term satisfies the required estimate as for the second one.

For k = 4, we rewrite Oph(χ+)?f2(h2P )R+
4 (N, t, h) as −ih−1 times∫ t

0
Oph(χ+)?f2(h2P )e−i(t−s)h

−1(hΛg)σ (χ+ (1− χ))(x/R2)J+
h (ǎ+(h))e−ish

−1(hΛ)σJ+
h (b+(h))?ds,

where χ ∈ C∞0 (Rd) satisfying χ(x) = 1 for |x| ≤ 2. The first term can be treated similarly as the
second remainder using (5.48) instead of (5.47). For the second term, we need the following lemma
(see [8, Proposition 5.2]).

Lemma 5.17. Choose τ̃1 such that −τ4 < τ̃1 < −τ2. If R > 0 is large enough, we may choose
χ̃− ∈ S(0,−∞) satisfying supp(χ̃−) ⊂ Γ−(R, J1, τ̃1) such that for all m large enough,

f(h2P )(1− χ)(x/R2)J+
h (ǎ+(h)) = Oph(χ̃−)J+

h (ẽm(h)) + hmR̃m(h)
where

R̃m(h) = J+
h (r̃m(h)) + 〈x〉−m/2Rm(h) 〈x〉−m/2 J+

h (ǎ+(h)),
with (ẽm(h))h∈(0,1] and (r̃m(h))h∈(0,1] bounded families in S(0,−∞) and S(−m,−∞) respectively and
Rm(h) = OL(L∞)(1) uniformly in h ∈ (0, 1].

Using this lemma, the second term is written as −ih−1 times∫ t

0
Oph(χ+)?e−i(t−s)h

−1(hΛg)σ (Oph(χ̃−)J+
h (ẽm(h)) + hmR̃m(h)

)
e−ish

−1(hΛ)σJ+
h (b+(h))?ds.

The remainder terms are treated similarly as the second remainder term using (5.47). The term
involving Oph(χ̃−)J+

h (ẽm(h)) is studied by the same analysis as the second term using (5.49) instead
of (5.47). This completes the proof. �
Low frequencies. In this paragraph, we will prove (3.24). By scaling in time, it is equivalent to show

‖(1− χ)(εx)f(ε−2P )e−itε(ε
−1Λg)σu0‖Lp(R,Lq) ≤ Cεκp,q‖f(ε−2P )u0‖L2 ,

where κp,q = d/2 − d/q − 1/p. By choosing ˜̃f ∈ C∞0 (R\0) such that ˜̃f = 1 near supp(f), we can
write (1− χ)(εx)f(ε−2P ) = (1− χ)(εx) ˜̃f(ε−2P )f(ε−2P ). Next, we choose ζ ∈ C∞(Rd) supported in
Rd\B(0, 1) such that ζ = 1 near supp(1− χ) and use Proposition 2.7 to have

(1− χ)(εx) ˜̃f(ε−2P ) =
N−1∑
k=0

ζ(εx)Opε(aε,k)? +RN (ε),

where RN (ε) = ζ(εx)(ε−2P + 1)−NBN (ε) 〈εx〉−N with (BN (ε))ε∈(0,1] bounded L(L2). Thus (1 −
χ)(εx)f(ε−2P )e−itε(ε−1Λg)σu0 reads

N−1∑
k=0

ζ(εx)Opε(aε,k)?e−itε(ε
−1Λg)σf(ε−2P )u0 +RN (ε)e−itε(ε

−1Λg)σf(ε−2P )u0.

We firstly consider the remainder term.
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Proposition 5.18. Let N ≥ (d−1)/2+1. Then for all (p, q) fractional admissible, there exists C > 0
such that for all ε ∈ (0, 1],

‖RN (ε)e−itε(ε
−1Λg)σf(ε−2P )u0‖Lp(R,Lq) ≤ Cεκp,q‖u0‖L2 .

Proof. This result follows from the TT ? criterion given in Proposition 4.3 with ε−1 in place of h and
T (t) = RN (ε)e−itε(ε−1Λg)σf(ε−2P ). The L(L2) bounds of T (t) are obvious. Thus we need to prove
the dispersive estimates. Using (2.6) with q =∞ and (2.23) with N ≥ d/2 + 1, we have

‖T (t)T (s)?‖L1→L∞ ≤ Cεd‖ 〈εx〉−N e−i(t−s)ε(ε
−1Λg)σf2(ε−2P ) 〈εx〉−N ‖L(L2)

≤ Cεd 〈ε(t− s)〉1−N ≤ Cεd(1 + ε|t− s|)−d/2.
This completes the proof. �

For the main terms, by choosing χ0 ∈ C∞0 (Rd) such that χ0 = 1 for |x| ≤ 2 and setting χ(x) =
χ0(x/R4), we see that (1−χ) is supported in {x ∈ Rd, |x| > R4}. For R > 0 large enough and supp(f̃)
close enough to supp(f) and J4 b (0,+∞) any open interval containing supp(f), we have

supp(aε,k) ⊂
{

(x, ξ) ∈ R2d, |x| > R4, |ξ|2 ∈ J4
}
, k = 0, ..., N − 1. (5.60)

We want to show for k = 0, ..., N − 1,

‖ζ(εx)Opε(aε,k)?e−itε(ε
−1Λg)σf(ε−2P )u0‖Lp(R,Lq) ≤ Cεκp,q‖f(ε−2P )u0‖L2 .

Let us consider the general term, namely ζ(εx)Opε(aε)?e−itε(ε
−1Λg)σf(ε−2P )u0 with (aε)ε∈(0,1] ∈

S(0,−∞) satisfying (5.60). Next, by choosing a suitable partition of unity θ− + θ+ = 1 such that
supp(θ−) ⊂ (−∞,−τ4) and supp(θ+) ⊂ (τ4,+∞) and setting

χ±ε (x, ξ) = aε(x, ξ)θ±
(
± x · ξ
|x‖ξ|

)
,

we have that (χ±ε )ε∈(0,1] ∈ S(0,−∞), supp(χ±ε ) ⊂ Γ±(R4, J4, τ4) and

ζ(εx)Opε(aε)?e−itε(ε
−1Λg)σf(ε−2P )u0 = ζ(εx)(Opε(χ−ε )? +Opε(χ+

ε )?)e−itε(ε
−1Λg)σf(ε−2P )u0.

We only prove the estimate for χ+
ε , i.e.

‖ζ(εx)Opε(χ+
ε )?e−itε(ε

−1Λg)σf(ε−2P )u0‖Lp(R,Lq) ≤ Cεκp,q‖f(ε−2P )u0‖L2 ,

the one for χ−ε is similar. By TT ? criterion and that T (t) := ζ(εx)Opε(χ+
ε )?e−itε(ε−1Λg)σf(ε−2P ) is

bounded in L(L2) for all t ∈ R and all ε ∈ (0, 1], it suffices to prove dispersive estimates, i.e.

‖ζ(εx)Opε(χ+
ε )?e−itε(ε

−1Λg)σf2(ε−2P )Opε(χ+
ε )ζ(εx)‖L(L1,L∞) ≤ Cεd(1 + ε|t|)−d/2,

for all t ∈ R uniformly in ε ∈ (0, 1]. By taking the adjoint, it reduces to prove

‖ζ(εx)Opε(χ+
ε )?e−itε(ε

−1Λg)σf2(ε−2P )Opε(χ+
ε )ζ(εx)‖L(L1,L∞) ≤ Cεd(1 + ε|t|)−d/2, (5.61)

for all t ≤ 0 uniformly in ε ∈ (0, 1]. Let us prove (5.61). For simplicity, we set
A+
ε := ζ(εx)Opε(χ+

ε )?f2(ε−2P ).
Using the Isozaki-Kitada parametrix given in Theorem 5.9, we see that

A+
ε e
−itε(ε−1Λg)σOpε(χ+

ε )ζ(εx) = A+
ε

(
J +
ε (a+

ε )e−itεΛ
σ

J +
ε (b+ε )? +

4∑
k=1
R+
k (N, t, ε)

)
.

We firstly note that A+
ε is bounded in L(L∞). Indeed, we write
ζ(εx)Opε(χ+

ε )?f2(ε−2P ) = ζ(εx)Opε(χ+
ε )?ζ1(εx)f2(ε−2P ),
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where ζ1 ∈ C∞(Rd) is supported outside B(0, 1) satisfying ζ1(x) = 1 for |x| > R4. This is possible
since Opε(χ+

ε ) = ζ1(εx)Opε(χ+
ε ). The factors ζ(εx)Opε(χ+

ε )? and ζ1(εx)f2(ε−2P ) are bounded in
L(L∞) by the rescaled pseudo-differential operator and Corollary 2.8 respectively. Thanks to the
L(L∞)-bound of A+

ε and (5.29), we have dispersive estimates for the main terms. It remains to prove
dispersive estimates for remainder terms. By rescaled pseudo-differential calculus, we can write for
l > d/2,

A+
ε = ζ̃(εx)(ε−2P + 1)−l

(
ζ(εx)Opε(χ̃+

ε )? + B̃+
l (ε) 〈εx〉−l

)
f2(ε−2P ),

where ζ̃ ∈ C∞(Rd) is supported outsideB(0, 1) and equal to 1 near supp(ζ) and (χ̃+
ε )ε∈(0,1] ∈ S(0,−∞)

satisfying supp(χ̃+
ε ) ⊂ supp(χ+

ε ) and B̃+
l (ε) = OL(L2)(1) uniformly in ε ∈ (0, 1]. This follows by

expanding (ε−2P + 1)lζ(εx)Opε(χ+
ε )? by rescaled pseudo-differential calculus.

For k = 1, using the Proposition 2.7, we can write

R+
1 (N, t, ε) = e−itε(ε

−1Λg)σ 〈εx〉−N B+
N (ε)(ε−2P + 1)−Nζ(εx),

where B+
N (ε) = OL(L2)(1) uniformly in ε ∈ (0, 1]. Then, using Proposition 2.6 with q =∞ and (5.50),

we have

‖ζ̃(εx)(ε−2P + 1)−lζ(εx)Opε(χ̃+
ε )?f2(ε−2P )R+

1 (N, t, ε)‖L(L1,L∞) ≤ Cεd 〈εt〉
−3N/4

≤ Cεd(1 + ε|t|)−d/2,

for all t ≤ 0 and all ε ∈ (0, 1] provided N is taken large enough. Moreover, using again Proposition
2.6 and (2.23), we also have

‖ζ̃(εx)(ε−2P + 1)−lB̃l(ε) 〈εx〉−l f2(ε−2P )R+
1 (N, t, ε)‖L(L1,L∞) ≤ Cεd 〈εt〉

1−l

≤ Cεd(1 + ε|t|)−d/2,

for all t ≤ 0 and all ε ∈ (0, 1] provided l and N are taken large enough. This implies

‖A+
ε R+

1 (N, t, ε)‖L(L1,L∞) ≤ Cεd(1 + ε|t|)−d/2,

for all t ≤ 0 and all ε ∈ (0, 1].
Next, thanks to the support of b+ε , we can write

J +
ε (b+ε )? = J +

ε (b̃+ε )?(ε−2P + 1)−Nζ1(εx), (5.62)

where (b̃+ε )ε∈(0,1] ∈ S(0,−∞), supp(b̃+ε ) ⊂ Γ+(R3, J3, σ3) and ζ1 ∈ C∞(Rd) is supported outside
B(0, 1) such that ζ1(x) = 1 for |x| > R3. Indeed, we write for ζ̃1 ∈ C∞(Rd) supported outside B(0, 1)
and ζ̃1 = 1 in supp(ζ1),

J +
ε (b+ε )? = J +

ε (b+ε )?ζ̃1(εx)(ε−2P + 1)N
(
(ε−2P + 1)−Nζ1(εx)

)
.

We have (5.62) by taking the adjoint of (ε−2P + 1)N ζ̃1(εx)J +
ε (b+ε ) = J +

ε (b̃+ε ).
For k = 2, using (2.6) and its adjoint, (5.50), (5.62), 〈εx〉lRN (ε) 〈εx〉N−l = OL(L2)(1) and estimating

as in Lemma 5.13, we have

‖ζ̃(εx)(ε−2P + 1)−lζ(εx)Opε(χ̃+
ε )?f2(ε−2P )R+

2 (N, t, ε)‖L(L1,L∞)

≤ Cεdε
∫ t

0
〈ε(t− s)〉−3l/4 〈εs〉−N/4 ds ≤ Cεd(1 + ε|t|)−d/2,
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for t ≤ 0 provided that l and N are taken large enough. Moreover, using (2.23) instead of (5.50), we
have

‖ζ̃(εx)(ε−2P + 1)−lB̃l(ε) 〈εx〉−lf2(ε−2P )R+
2 (N, t, ε)‖L(L1,L∞)

≤ Cεdε
∫ t

0
〈ε(t− s)〉1−l 〈εs〉−N/4 ds ≤ Cεd(1 + ε|t|)−d/2,

for all t ≤ 0 and all ε ∈ (0, 1]. This implies

‖A+
ε R+

2 (N, t, ε)‖L(L1,L∞) ≤ Cεd(1 + ε|t|)−d/2, ∀t ≤ 0, ε ∈ (0, 1].

The third remainder term is treated similarly as the second one. It remains to study the last
remainder term. To do so, we split

A+
ε R+

4 (N, t, ε) = −i
∫ t

0
A+
ε e
−i(t−s)ε(ε−1Λg)σ (χ+ (1− χ))(εx/R2)J +

ε (ǎ+(ε))e−isεΛ
σ

J +
ε (b+ε )?ds,

where χ ∈ C∞0 (Rd) satisfying χ(x) = 1 for |x| ≤ 2. The first term can be treated similarly as the
second remainder using (5.51) instead of (5.50) and Lemma 5.12. For the second term, we need the
following lemma (see [8, Proposition 5.2]).

Lemma 5.19. Choose τ̃1 such that −τ4 < τ̃1 < −τ2. If R > 0 is large enough, we may choose a
bounded family of symbols χ̃−ε ∈ S(0,−∞) satisfying supp(χ̃−ε ) ⊂ Γ−(R, J1, τ̃1) and ζ̃2 ∈ C∞(Rd)
supported outside B(0, 1) satisfying ζ̃2 = 1 on supp(1− χ) such that for all m large enough,

f(ε−2P )(1− χ)(εx/R2)J +
ε (ǎ+(ε)) = Opε(χ̃−ε )ζ̃2(εx)J +

ε (ẽm(ε)) + R̃m(ε),

where
R̃m(ε) = J +

ε (r̃m(ε)) + 〈εx〉−m/2Rm(ε) 〈εx〉−m/2 J +
ε (ǎ+(ε)),

with (ẽm(ε))ε∈(0,1] and (r̃m(ε))ε∈(0,1] bounded families in S(0,−∞) and S(−m,−∞) respectively and
Rm(ε) = OL(L2)(1) uniformly in ε ∈ (0, 1].

We set
A+
ε = (A+

ε,1 +A+
ε,2)f(ε−2P ),

where

A+
ε,1 = ζ̃(εx)(ε−2P + 1)−lζ(εx)Opε(χ̃+

ε )?f(ε−2P ),

A+
ε,2 = ζ̃(εx)(ε−2P + 1)−lB̃l(ε) 〈εx〉−l f(ε−2P ).

Using Lemma 5.19, we firstly consider

−ih−1
∫ t

0
A+
ε,1e
−i(t−s)ε(ε−1Λg)σ (Opε(χ̃−ε )ζ̃2(εx)J +

ε (ẽm(ε)) + R̃m(ε)
)
e−isεΛ

σ

J +
ε (b+ε )?ds.

The remainder terms are treated similarly as the second remainder term using (5.50) and Lemma
5.13. The term involving Opε(χ̃−ε )ζ̃2(εx)J +

ε (ẽm(ε)) is studied by the same analysis as the second term
using (5.52) instead of (5.47). For the term

−ih−1
∫ t

0
A+
ε,2e
−i(t−s)ε(ε−1Λg)σ (Opε(χ̃−ε )ζ̃2(εx)J +

ε (ẽm(ε)) + R̃m(ε)
)
e−isεΛ

σ

J +
ε (b+ε )?ds,

the required estimate follows by using (2.23) and Lemma 5.13. This completes the proof. �
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6. Inhomogeneous Strichartz estimates

In this section, we will give the proofs of Proposition 1.5 and Proposition 1.7. The main tool is the
homogeneous Strichartz estimates (1.15) and the so called Christ-Kiselev Lemma. To do so, we recall
the following result (see [13] or [42]).

Lemma 6.1. Let X and Y be Banach spaces and assume that K(t, s) is a continuous function taking
its values in the bounded operators from Y to X. Suppose that −∞ ≤ c < d ≤ ∞, and set

Af(t) =
∫ d

c

K(t, s)f(s)ds.

Assume that
‖Af‖Lq([c,d],X) ≤ C‖f‖Lp([c,d],Y ).

Define the operator Ã as

Ãf(t) =
∫ t

c

K(t, s)f(s)ds,

Then for 1 ≤ p < q ≤ ∞, there exists C̃ > 0 such that

‖Ãf‖Lq([c,d],X) ≤ C̃‖f‖Lp([c,d],Y ).

We are now able to prove the inhomogeneous Strichartz estimates (1.17) and (1.21).
Inhomogeneous Strichartz estimates for fractional Schrödinger equation. We give the proof
of Proposition 1.5 by following a standard argument (see e.g. [50]). Let u be the solution to (1.1). By
Duhamel formula, we have

u(t) = e−itΛ
σ
g u0 − i

∫ t

0
e−i(t−s)Λ

σ
gF (s)ds =: uhom(t) + uinh(t).

Using (1.15), we have
‖uhom‖Lp(R,Lq) ≤ C‖u0‖Ḣγp,qg

.

It remains to prove the inhomogeneous part, namely∥∥∥∫ t

0
e−i(t−s)Λ

σ
gF (s)ds

∥∥∥
Lp(R,Lq)

≤ C‖F‖La′ (R,Lb′ ),

where (p, q), (a, b) are fractional admissible pairs satisfying (p, a) 6= (2, 2) and the gap condition (1.18).
By the Christ-Kiselev Lemma, it suffices to prove∥∥∥∫

R
e−i(t−s)Λ

σ
gF (s)ds

∥∥∥
Lp(R,Lq)

≤ C‖F‖La′ (R,Lb′ ), (6.1)

for all fractional admissible pairs satisfying (1.18) excluding the case p = a′ = 2. We now prove (6.1).
Define

Tγp,q : u0 ∈ Lg 7→ Λ−γp,qg e−itΛ
σ
g u0 ∈ Lp(R, Lq).

Thanks to (1.15), we see that Tγp,q is a bounded operator. Similar result holds for Tγa,b . Next, we
take the adjoint for Tγa,b and obtain a bounded operator

T ?γa,b : F ∈ La
′
(R, Lb

′
) 7→

∫
R

Λ−γa,bg eisΛ
σ
gF (s)ds ∈ L ′g,

where L ′g is the dual space of Lg. Using (1.18) or γa,b = −γa′,b′ − σ = −γp,q, we have∥∥∥∫
R
e−i(t−s)Λ

σ
gF (s)ds

∥∥∥
Lp(R,Lq)

= ‖Tγp,qT ?γa,bF‖Lp(R,Lq) ≤ C‖F‖La′ (R,Lb′ ),
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and (6.1) follows.
Next, we prove

‖u‖L∞(R,Ḣγp,qg ) ≤ C
(
‖u0‖Ḣγp,qg

+ ‖F‖La′ (R,Lb′ )
)
.

By using the homogeneous Strichartz estimate for a fractional admissible pair (∞, 2) with γ∞,2 = 0
and that ‖u‖L∞(R,Ḣγp,qg ) = ‖Λγp,qg u‖L∞(R,L2), we have

‖u‖L∞(R,Ḣγp,qg ) ≤ C
(
‖Λγp,qg u0‖L2 +

∥∥∥ ∫ t

0
Λγp,qg e−i(t−s)Λ

σ
gF (s)ds

∥∥∥
L∞(R,L2)

)
.

Using the Christ-Kiselev Lemma, it suffices to prove∥∥∥∫
R

Λγp,qg e−i(t−s)Λ
σ
gF (s)ds

∥∥∥
L∞(R,L2)

≤ C‖F‖La′ (R,Lb′ ).

Using the above notation, we have∥∥∥ ∫
R

Λγp,qg e−i(t−s)Λ
σ
gF (s)ds

∥∥∥
L∞(R,L2)

= ‖T0T
?
γa,b

F‖L∞(R,L2)

≤ C‖T ?γa,bF‖L2 ≤ C‖F‖La′ (R,Lb′ ).

This completes the proof of Proposition 1.5. �
Inhomogeneous Strichartz estimates for fractional wave equation. We give the proof of
Proposition 1.7. Let v be the solution to (1.20). By Duhamel formula, we have

v(t) = cos tΛσgu0 +
sin tΛσg

Λσg
u1 +

∫ t

0

sin(t− s)Λσg
Λσg

F (s)ds =: vhom(t) + vinh(t),

where vhom is the sum of first two terms and vinh is the last one. We firstly prove

‖v‖Lp(R,Lq) ≤ C
(
‖v0‖Ḣγp,qg

+ ‖v1‖Ḣγp,q−σg
+ ‖F‖La′ (R,Lb′ )

)
.

By observing that

cos tΛσg = eitΛ
σ
g + e−itΛ

σ
g

2 , sin tΛσg = eitΛ
σ
g − e−itΛ

σ
g

2i ,

and using (1.15), we have

‖vhom‖Lp(R,Lq) ≤ C
(
‖v0‖Ḣγp,qg

+ ‖v1‖Ḣγp,q−σg

)
.

Let us prove the inhomogeneous part which is in turn equivalent to∥∥∥ ∫ t

0

e−i(t−s)Λ
σ
g

Λσg
F (s)ds

∥∥∥
Lp(R,Lq)

≤ C‖F‖La′ (R,Lb′ ), (6.2)

where (p, q), (a, b) are fractional admissible satisfying the gap condition (1.22). We define the operator

Tγp,q : u0 ∈ Lg 7→ Λ−γp,qg e−itΛ
σ
g u0 ∈ Lp(R, Lq).

Thanks to (1.15), we see that Tγp,q is a bounded operator. Next, we take the adjoint for Tγa,b and
obtain a bounded operator

T ?γa,b : F ∈ La
′
(R, Lb

′
) 7→

∫
R

Λ−γa,bg eisΛ
σ
gF (s)ds ∈ L ′g.

Using (1.22) or γa,b = −γa′,b′ − σ = −γp,q + σ, we have∥∥∥∫
R

e−i(t−s)Λ
σ
g

Λσg
F (s)ds

∥∥∥
Lp(R,Lq)

= ‖Tγp,qT ?γa,bF‖Lp(R,Lq) ≤ C‖F‖La′ (R,Lb′ ).
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As in the proof of the inhomogeneous Strichartz estimates for the fractional Schrödinger equations,
the Christ-Kiselev Lemma implies (6.2) for all fractional admissible pairs satisfying the gap condition
(1.22) excluding the case p = a′ = 2.

Next, we prove

‖v‖L∞(R,Ḣγp,qg ) ≤ C
(
‖v0‖Ḣγp,qg

+ ‖v1‖Ḣγp,q−σg
+ ‖F‖La′ (R,Lb′ )

)
.

By using the homogeneous Strichartz estimate for a fractional admissible pair (∞, 2) with γ∞,2 = 0
and that ‖v‖L∞(R,Ḣγp,qg ) = ‖Λγp,qg v‖L∞(R,L2), we have

‖v‖L∞(R,Ḣγp,qg ) ≤ C
(
‖Λγp,qg v0‖L2 + ‖Λγp,qg v1‖Ḣ−σg

+
∥∥∥∫ t

0
Λ(γp,q−σ)
g sin (t− s)ΛσgF (s)ds

∥∥∥
L∞(R,L2)

)
.

Using the Christ-Kiselev Lemma, it suffices to prove∥∥∥∫
R

Λ(γp,q−σ)
g e−i(t−s)Λ

σ
gF (s)ds

∥∥∥
L∞(R,L2)

≤ C‖F‖La′ (R,Lb′ ).

Using the above notation, we have∥∥∥ ∫
R

Λ(γp,q−σ)
g e−i(t−s)Λ

σ
gF (s)ds

∥∥∥
L∞(R,L2)

= ‖T0T
?
γa,b

F‖L∞(R,L2)

≤ C‖T ?γa,bF‖L2 ≤ C‖F‖La′ (R,Lb′ ).
We repeat the same process for ∂tv and obtain

‖∂tv‖L∞(R,Ḣγp,q−σg ) ≤ C
(
‖v0‖Ḣγp,qg

+ ‖v1‖Ḣγp,q−σg
+ ‖F‖La′ (R,Lb′ )

)
.

This completes the proof of Proposition 1.7. �
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[2] J. M. Bouclet, Distributions spectrales pour des opérateurs perturbés, PhD Thesis, Nantes University (2000). 26,

27, 28
[3] J. M. Bouclet, Spectral distributions for long range perturbations, J. Funct. Anal. 212, 431-471 (2004). 27, 28
[4] J. M. Bouclet, Low frequency estimates and local energy decay for asymptotically euclidean Laplacians, Comm.

in PDE. 36, No. 7, 1239-1286 (48) (2011). 4
[5] J. M. Bouclet, H. Mizutani, Global in time Strichartz inequalities on asymptotically conic manifolds with

temperate trapping, https://arxiv.org/abs/1602.06287 (2016). 2, 4, 5, 7, 8, 11, 13, 14, 17
[6] J. M. Bouclet, J. Royer, Sharp low frequency estimates on asymptotically conical manifolds, Comm. Math.

Phys. 335, No. 2, 809-850 (2015). 5, 11
[7] J. M. Bouclet, N. Tzvetkov, Strichartz estimates for long range perturbations, Amer. J. Math 129, 1565-1609

(2007). 5, 7, 8, 25
[8] J. M. Bouclet, N. Tzvetkov, On global Strichartz estimates for non-trapping metrics, J. Funct. Anal. 254,

1661-1682 (2008). 2, 5, 13, 34, 35, 38, 39, 42, 45
[9] J. M. Bouclet, Strichartz estimates on asymptotically hyperbolic manifolds, Analysis & PDE 4, No. 1, 1-84

(2011). 5
[10] N. Burq, Semi-classical estimates for the resolvent in non-trapping geometries, International Math. Res. Notices,

221-241 (2002). 4
[11] N. Burq, C. Guillarmou, A. Hassell, Strichartz estimates without loss on manifolds with hyperbolic trapped

geodesics, Geom. Funct. Anal. vol. 20, 627-656 (2010). 4

https://arxiv.org/abs/1602.06287


GLOBAL STRICHARTZ FRACTIONAL SCHRÖDINGER EQUATION 49
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