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In this paper, we prove global in time Strichartz estimates for the fractional Schrödinger operators, namely e -itΛ σ g with σ ∈ (0, ∞)\{1} and Λg := -∆g where ∆g is the Laplace-Beltrami operator on asymptotically Euclidean manifolds (R d , g). Let f 0 ∈ C ∞ 0 (R) be a smooth cutoff equal 1 near zero. We firstly show that the high frequency part (1 -f 0 )(P )e -itΛ σ g satisfies global in time Strichartz estimates as on R d of dimension d ≥ 2 inside a compact set under non-trapping condition. On the other hand, under the moderate trapping assumption (1.12), the high frequency part also satisfies the global in time Strichartz estimates outside a compact set. We next prove that the low frequency part f 0 (P )e -itΛ σ g satisfies global in time Strichartz estimates as on R d of dimension d ≥ 3 without using any geometric assumption on g. As a byproduct, we prove global in time Strichartz estimates for the fractional Schrödinger and wave equations on (R d , g), d ≥ 3 under non-trapping condition.

Introduction

Let (M, g) be a d-dimensional Riemannian manifold. We consider the time dependent fractional Schrödinger equation on (M, g), namely i∂ t u -Λ σ g u = 0, u |t=0 = u 0 , (

with σ ∈ (0, ∞)\{1}, Λ g = -∆ g where ∆ g is the Laplace-Beltrami operator associated to the metric g. The fractional Schrödinger equation (1.1) arises in many physical contexts. When σ ∈ (0, 2)\{1}, the fractional Schrödinger equation was discovered by N. Laskin (see [START_REF] Laskin | Fractional quantum mechanis and Lévy path integrals[END_REF], [28]) as a result of extending the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. This type of equation also appears in the water wave models (see [22], [START_REF] Bouclet | Distributions spectrales pour des opérateurs perturbés[END_REF]). When σ = 2, it corresponds to the well-known Schrödinger equation. In the case σ = 4, it is the fourth-order Schrödinger equation introduced by Karpman [24] and Karpman and Shagalov [25] to take into account the role of small fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity.

When M = R d and g = Id, i.e. the flat Euclidean space, the solution to (1.1) enjoys the following global in time Strichartz estimates (see [16]),

u L p (R,L q (R d )) u 0 Ḣγp,q (R d ) ,
where (p, q) satisfies the fractional admissible condition, i.e.

p ∈ [2, ∞], q ∈ [2, ∞), (p, q, d) = (2, ∞, 2), 2 p + d q ≤ d 2 , (1.2) with γ p,q = d 2 - d q - σ p . ( 1.3) 
Remark that one also has global in time Strichartz estimates for q = ∞, but one has to replace the Lebesgue norm L ∞ (R d ) by a corresponding Besov norm due to the Littlewood-Paley theorem. We refer the reader to [16] for more details.

When M is a compact Riemannian manifold without boundary and g is smooth, we also have (see [START_REF] Dinh | Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary[END_REF]) Strichartz estimates but only local in time,

u L p ([0,1],L q (M ))
u 0 H γ (M ) .

In the case σ ∈ (0, 1), we have the same (local in time) Strichartz estimates as in (R d , Id), i.e. γ = γ p,q .

In the case σ ∈ (1, ∞), there is a "loss" of derivatives (σ -1)/p comparing to the one on (R d , Id), i.e. γ = γ p,q + (σ -1)/p. When M is a non-compact Riemannian manifold, global in time Strichartz estimates for the Schrödinger equation (i.e. σ = 2) have been studied intensively. In [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF], Bouclet-Tzvetkov established global in time Strichartz estimates on asymptotically Euclidean manifold, i.e. R d equipped with a long range perturbation metric g (see (1.5)) with a low frequency cutoff under non-trapping condition. The first breakthrough on this topic was done by Tataru in [START_REF] Bouclet | Global in time Strichartz inequalities on asymptotically conic manifolds with temperate trapping[END_REF] where the author considered long range and globally small perturbations of the Euclidean metric with C 2 and time dependent coefficients. In this setting, no trapping could occur. Later, Marzuola-Metcalfe-Tataru in [29] improved the results considering more general perturbations in a compact set, including some weak trapping. Afterward, Hassell-Zhang in [START_REF] Hassell | Global in time Strichartz estimates on non-trapping asymptotically conic manifolds[END_REF] extended those results for general geometric framework of asymptotically conic manifolds and including very short range potentials with non-trapping condition. Recently, established global in time Strichartz estimates for a more general class of asymptotically conic manifolds including all usual smooth long range perturbations of the Euclidean metric.

In order to prove Strichartz estimates on curved backgrounds, one uses the Littlewood-Paley decomposition to localize the solution in frequency. One then uses microlocal techniques to derive dispersive estimates and obtain Strichartz estimates for each spectrally localized components. By summing over all frequency pieces, one gets Strichartz estimates for the solution. For local in time Strichartz estimates, this usual scheme works very well. However, for global in time Strichartz estimates, one has to face a difficulty arising at low frequency. Due to the uncertainty principle, one can only use microlocal techniques for data supported outside compact sets at low frequency. Therefore, one has to use another technique for data supported inside compact sets. Note also that on R d , one can use the scaling technique to reduce the analysis at low frequency to the study at frequency one, but this technique does not work on manifolds in general.

The goal of this paper is to study global in time Strichartz estimates for the fractional Schrödinger equation on asymptotically Euclidean manifolds. In the case of Schrödinger equation, it can be seen as a completion of those in [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF] of spatial dimensions greater than or equal to 3. In order to achieve this goal, we will use the techniques of [5] combined with the analysis of [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF]. Note that since we consider a larger range of admissible condition comparing to the sharp Schrödinger admissible condition (i.e. the inequality in (1.2) is replaced by the equality) of [5], we have to be more careful in order to apply the techniques of [5].

Before giving the main results, let us introduce some notations. Let g(x) = (g jk (x)) d j,k=1 be a metric on R d , d ≥ 2, and denote G(x) = (g jk (x)) d j,k=1 := g -1 (x). We consider the Laplace-Beltrami operator associated to g, i.e.

∆ g = d j,k=1 |g(x)| -1 ∂ xj g jk (x)|g(x)|∂ x k ,
where |g(x)| := det g(x). Throughout the paper, we assume that g satisfies the following assumptions.

(1) There exists C > 0 such that for all x, ξ ∈ R d ,

C -1 |ξ| 2 ≤ d j,k=1
g jk (x)ξ j ξ k ≤ C|ξ| 2 .

(1.4)

(2) There exists ρ > 0 such that for all α ∈ N d , there exists C α > 0 such that for all x ∈ R d ,

∂ α g jk (x) -δ jk ≤ C α x -ρ-|α| .
(1.5)

The elliptic assumption (1.4) implies that |g(x)| is bounded from below and above by positive constants. Thus for 1 ≤ q ≤ ∞, the spaces L q (R d , d g x) where d g x = |g(x)|dx and L q (R d ) coincide and have equivalent norms. In the sequel, we will use the same notation L q (R d ). It is well-known that -∆ g is essentially self-adjoint on C ∞ 0 (R d ) under the assumptions (1.4) and (1.5). We denote the unique self-adjoint extension on L 2 (R d ) by P . Note that the principal symbol of P is

p(x, ξ) = ξ t G(x)ξ = d j,k=1
g jk (x)ξ j ξ k .

(

Now let γ ∈ R and q ∈ [1, ∞]. The inhomogeneous Sobolev space W γ,q g (R d ) associated to P is defined as a closure of the Schwartz space S (R d ) under the norm

u W γ,q g (R d ) := Λ g γ u L q (R d ) .
It is very useful to recall that for all γ ∈ R and q ∈ (1, ∞), there exists C > 1 such that

C -1 Λ γ u L q (R d ) ≤ u W γ,q g (R d ) ≤ C Λ γ u L q (R d ) , (1.7) 
with Λ = √ 1 -∆ where ∆ is the free Laplace operator on R d . This fact follows from the L qboundedness of zero order pseudo-differential operators (see e.g [START_REF] Sogge | Fourier integrals in classical analysis[END_REF]Theorem 3.1.6]). The estimates (1.7) allow us to use the Sobolev embedding as on R d . For the homogeneous Sobolev space associated to P , one should be careful since the Schwartz space is not a good candidate due to the singularity at 0 of λ → |λ| γ . Recall that (see [START_REF] Ginibre | The global Cauchy problem for the nonlinear Klein-Gordon equation[END_REF]Appendix], [47, chapter 5] and [START_REF] Bergh | Interpolation spaces[END_REF]Chapter 6]) on R d , the homogeneous Sobolev space Ẇ γ,q (R d ) is the closure of L (R d ) under the norm

u Ẇ γ,q (R d ) := Λ γ u L q (R d ) ,
where

L (R d ) := u ∈ S (R d ) | D α û(0) = 0, ∀α ∈ N d .
Here • is the spatial Fourier transform. Since there is no Fourier transform on manifolds, we need to use the spectral theory instead. We denote

L g (R d ) := ϕ(P )u | u ∈ S (R d ), ϕ ∈ C ∞ 0 ((0, ∞)) . (1.8)
We define the homogeneous Sobolev space Ẇ γ,q g (R d ) associated to P as the closure of L g (R d ) under the norm u Ẇ γ,q g (R d ) := Λ γ g u L q (R d ) .

When q = 2, we use H γ (R d ), Ḣγ (R d ), H γ g (R d ) and Ḣγ g (R d ) instead of W γ,2 (R d ), Ẇ γ,2 (R d ), W γ,2 g (R d ) and Ḣγ g (R d ) respectively. Thanks to the equivalence (1.7), we will only use the usual notation H γ (R d ) in the sequel. It is important to note (see [START_REF] Bouclet | Low frequency estimates and local energy decay for asymptotically euclidean Laplacians[END_REF]Proposition 2.3] or [START_REF] Sogge | Concerning the wave equation on asymptotically Euclidean manifolds[END_REF]Lemma 2.4]) that for d ≥ 2,

u 2 Ḣ1 g (R d ) = (Λ g u, Λ g u) = (u, P u) ∇u 2 L 2 (R d ) = u 2 Ḣ1 (R d ) .
(1.9)

By the Stone theorem, the solution to (1.1) is given by u(t) = e -itΛ σ g u 0 . Let f 0 ∈ C ∞ 0 (R) be such that f 0 = 1 on [-1, 1]. We split u(t) = u low (t) + u high (t), where u low (t) := f 0 (P )e -itΛ σ g u 0 , u high (t) = (1 -f 0 )(P )e -itΛ σ g u 0 .

(1.10)

We see that u low (t) and u high (t) correspond to the low and high frequencies respectively. By the Littlewood-Paley decomposition which is very similar to the one given in [5, Subsection 4.2] (see Subsection 3.1), we split the high frequency term into two parts: inside and outside a compact set.

Our first result concerns the global in time Strichartz estimates for the high frequency term inside a compact set.

Theorem 1.1. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and assume that the geodesic flow associated to g is non-trapping. Then for all χ ∈ C ∞ 0 (R d ) and all (p, q) fractional admissible, there exists C > 0 such that for all u 0 ∈ L g (R d ),

χu high L p (R,L q (R d )) ≤ C u 0 Ḣγp,q g (R d ) .
(1.11)

The proof of Theorem 1.1 is based on local in time Strichartz estimates and global L 2 integrability estimates of the fractional Schrödinger operator. This strategy was first used in [44] for the Schrödinger equation. We will make use of dispersive estimates given in [START_REF] Dinh | Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary[END_REF] to get Strichartz estimates with a high frequency spectral cutoff on a small time interval. Thanks to global L 2 integrability estimates, we can upgrade these local in time Strichartz estimates in to global in time Strichartz estimates. This strategy depends heavily on the non-trapping condition. We believe that one can improve this result to allow some weak trapped condition such as hyperbolic trapping in [11]. We hope to come back this interesting question in a future work.

Our next result is the following global in time Strichartz estimates for the high frequency term outside a compact set. Theorem 1.2. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and assume that there exists M > 0 large enough such that for all χ ∈ C ∞ 0 (R d ),

χ(P -λ ± i0) -1 χ L(L 2 (R d )) χ λ M , λ ≥ 1.
(1.12)

Then there exists R > 0 large enough such that for all (p, q) fractional admissible, there exists C > 0 such that for all u 0 ∈ L g (R d ),

1 {|x|>R} u high L p (R,L q (R d )) ≤ C u 0 Ḣγp,q g (R d ) .
(1.13)

The assumption (1.12) is known to hold in certain trapping situations (see e.g. [14], [33] or [11]) as well as in the non-trapping case (see [START_REF] Robert | Asymptotique de la phase de diffusion à haute énergie pour les perturbations du second ordre du Laplacien[END_REF] or [48]). We remark that under the trapping condition of [14], [33] or [11], we have

χ(P -λ ± i0) -1 χ L(L 2 (R d )) χ λ -1/2 log λ, λ ≥ 1,
and under non-trapping condition, we have (see e.g. [10], [START_REF] Robert | Asymptotique de la phase de diffusion à haute énergie pour les perturbations du second ordre du Laplacien[END_REF]) that

χ(P -λ ± i0) -1 χ L(L 2 (R d )) χ λ -1/2 , λ ≥ 1.
The proof of Theorem 1.2 relies on the so called Isozaki-Kitada parametrix (see [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF]) and resolvent estimates given in [5] using (1.12). Recall that the Isozaki-Kitada parametrix was first introduced on R d to study the scattering theory of Schrödinger operators with long range potentials [23]. It was then modified and successfully used to show the Strichartz estimates for Schrödinger equation outside a compact set in many papers (see e.g. [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF], [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF], [START_REF] Bouclet | Strichartz estimates on asymptotically hyperbolic manifolds[END_REF], [30], [31] or [5]).

The low frequency term in (1.10) enjoys the following global in time Strichartz estimates.

Theorem 1.3. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). Then for all (p, q) fractional admissible, there exists C > 0 such that for all u 0 ∈ L g (R d ),

u low L p (R,L q (R d )) ≤ C u 0 Ḣγp,q g (R d ) . (1.14)
As mentioned earlier, since we consider a larger range of admissible condition than the one studied in [5], we can not apply directly the low frequency Littlewood-Paley decomposition given in [5]. We thus need a "refined" version of Littlewood-Paley decomposition. To do so, we will take the advantage of heat kernel estimates (see Subsection 3.1). As a result, we split the low frequency term into two parts: one supported outside a compact set and another one localized in a weak sense, i.e. by means of a spatial decay weight. The term with a spatial decay weight is treated easily by using global L p integrability estimates of the fractional Schrödinger operator at low frequency. Note that this type of global L p integrability estimate relies on the low frequency resolvent estimates of [START_REF] Bouclet | Sharp low frequency estimates on asymptotically conical manifolds[END_REF] which is available for spatial dimensions d ≥ 3. We expect that global in time Strichartz estimates for the fractional Schrödinger equation at low frequency may hold in dimension d = 2 as well. However, we do not know how to prove it at the moment. For the term outside a compact set, we make use of microlocal techniques and a low frequency version of the Isozaki-Kitada parametrix. We refer the reader to Section 5 for more details.

Combining Theorem 1.1, Theorem 1.2 and Theorem 1.3, we have the following result.

Theorem 1.4. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5) and assume that the geodesic flow associated to g is non-trapping. Let u be a weak solution to (1.1). Then for all (p, q) fractional admissible, there exists C > 0 such that for all u 0 ∈ L g (R d ),

u L p (R,L q (R d )) ≤ C u 0 Ḣγp,q g (R d ) .
(1.15)

Using the homogeneous Strichartz estimate (1.15) and the Christ-Kiselev Lemma, we get the following inhomogeneous Strichartz estimates. Proposition 1.5. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5) and assume that the geodesic flow associated to g is non-trapping. Let σ ∈ (0, ∞)\{1} and u be a weak solution to the Cauchy problem

i∂ t u(t, x) -Λ σ g u(t, x) = F (t, x), (t, x) ∈ R × R d , u(0, x) = u 0 (x), x ∈ R d , (1.16) with data u 0 ∈ L g and F ∈ C(R, L g ).
Then for all (p, q) and (a, b) fractional admissible, there exists

C > 0 such that u L p (R,L q (R d )) + u L ∞ (R, Ḣγp,q g (R d )) ≤ C u 0 Ḣγp,q g (R d ) + F L a (R,L b (R d )) , (1.17)
provided that (p, a) = (2, 2) and

γ p,q = γ a ,b + σ. (1.18)
Remark 1.6.

1. The homogeneous Strichartz estimates (1.15) and the Minkowski inequality imply

u L p (R,L q (R d )) ≤ C u 0 Ḣγp,q g (R d ) + F L 1 (R, Ḣγp,q g (R d )) .
(1.19) 2. When σ ∈ (0, 2)\{1}, we always have γ p,q > 0 for any fractional admissible pair (p, q) except (p, q) = (∞, 2). Thus, condition (1.18) implies that (p, a) = (2, 2), and (1.17) includes the endpoint case. When σ ≥ 2, the estimates (1.17) do not include the endpoint estimate. 3. In the case σ ∈ (0, 2]\{1}, we can replace the homogeneous Sobolev norms in (1.17) and (1.19) by the inhomogeneous ones.

Proposition 1.7. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5) and assume that the geodesic flow associated to g is non-trapping. Let σ ∈ (0, ∞)\{1} and v be a weak solution to the Cauchy problem

∂ 2 t v(t, x) + Λ 2σ g v(t, x) = F (t, x), (t, x) ∈ R × R d , v(0, x) = v 0 (x), ∂ t v(0, x) = v 1 (x), x ∈ R d , (1.20) with data v 0 , v 1 ∈ L g and F ∈ C(R, L g ).
Then for all (p, q) and (a, b) fractional admissible, there exists C > 0 such that

v L p (R,L q (R d )) + [v] L ∞ (R, Ḣγp,q g (R d )) ≤ C [v](0) Ḣγp,q g (R d ) + F L a (R,L b (R d )) , (1.21 
)

where [v](t) := (v(t), ∂ t v(t)) and [v] L ∞ (R, Ḣγp,q g (R d )) := v L ∞ (R, Ḣγp,q g (R d )) + ∂ t v L ∞ (R, Ḣγp,q-σ g (R d ))
provided that (p, a) = (2, 2) and

γ p,q = γ a ,b + 2σ. (1.22)
Remark 1.8. As in Remark 1.6, we have

v L p (R,L q (R d )) ≤ C [v](0) Ḣγp,q g (R d ) + F L 1 (R, Ḣγp,q-σ g (R d )) . (1.23)
We finally emphasize that this paper is only devoted to study global in time Strichartz estimates. We refer the reader to [16] for applications of Strichartz estimates to the local well-posedness of the nonlinear fractional Schrödinger and wave equations.

The paper is organized as follows. In Section 2, we recall some properties of the semi-classical and rescaled pseudo-differential operators, and prove some propagation estimates related to our problem. We then prove a "refined" version of the Littlewood-Paley decomposition at low frequency and give a reduction of global in time Strichartz estimates in Section 3. In Section 4, we prove global in time Strichartz estimates inside compact sets at high frequency. Section 5 is devoted to the construction of the Isozaki-Kitada parametrix for the fractional Schrödinger operator both at high and low frequencies and to the proofs of Strichartz estimates outside compact sets. Finally, we give in Section 6 the proofs for the inhomogeneous Strichartz estimates due to the Christ-Kiselev Lemma. Notation. In this paper the constant may change from line to line and will be denoted by the same C. The constants with a subscript C 1 , C 2 , ... will be used when we need to compare them to one another. The notation A D B means that there exists a universal constant C > 0 depending on D such that A ≤ CB. For Banach spaces X and Y , the notation • L(X,Y ) denotes the operator norm from X to Y and • L(X) := • L(X,X) . The one T = O L(X,Y ) (A) means that there exists C > 0 such that T L(X,Y ) ≤ CA. In order to simplify the presentation, we shall drop the notation R d and only write L q , S , L g , W γ,q , Ẇ γ,q g , H γ , Ḣγ g .

Functional calculus and propagation estimates

In this section, we recall some well-known results on pseudo-differential operators and prove some propagation estimates related to our problem.

2.1. Pseudo-differential operators. Let µ, m ∈ R. We consider the symbol class S(µ, m) the space of smooth functions a on R 2d satisfying

∂ α x ∂ β ξ a(x, ξ) ≤ C αβ x µ-|α| ξ m-|β| .
In practice, we mainly use S(µ, -∞) := ∩ m∈R S(µ, m).

For a ∈ S(µ, m) and h ∈ (0, 1], we consider the semi-classical pseudo-differential operator Op h (a) which is defined by

Op h (a)u(x) = (2πh) -d R 2d
e ih -1 (x-y)ξ a(x, ξ)u(y)dydξ.

(2.1)

By the long range assumption (1.5), we see that h 2 P = Op h (p) + hOp h (p 1 ) with p ∈ S(0, 2) given in (1.6) and p 1 ∈ S(-ρ -1, 1) ⊂ S(-1, 1). We recall that for a ∈ S(µ 1 , m 1 ) and b ∈ S(µ 2 , m 2 ), the composition Op h (a)Op h (b) is given by

Op h (a)Op h (b) = N -1 j=0 h j Op h ((a#b) j ) + h N Op h (r # N (h)), (2.2) where (a#b) j = |α|=j 1 α! ∂ α ξ aD α x b ∈ S(µ 1 + µ 2 -j, m 1 + m 2 -j) and (r # N (h)) h∈(0,1] is a bounded family in S(µ 1 + µ 2 -N, m 1 + m 2 -N ).
The adjoint with respect to the Lebesgue measure Op h (a) is given by

Op h (a) = N -1 j=0 h j Op h (a j ) + h N Op h (r N (h)), (2.3) 
where

a j = |α|=j 1 α! ∂ α ξ D α x a ∈ S(µ 1 -j, m 1 -j) and (r N (h)) h∈(0,1] is a bounded family in S(µ 1 - N, m 1 -N ).
We next recall the definition of rescaled pseudo-differential operator which is essentially given in [5]. This type of operator is very useful for the analysis at low frequency. Let a ∈ S(µ, m) and ∈ (0, 1]. The rescaled pseudo-differential operator Op (a) is defined by

Op (a)u(x) = (2π) -d R 2d e i(x-y)ξ a( x, -1 ξ)u(y)dydξ. Setting D u(x) := d/2 u( x). It is easy to see that D is a unitary map on L 2 and Op (a) = D Op(a)D -1 , (2.4)
where 

D -1 u(x) = -d/2 u( -1 x)
Op (a)Op (b) = N -1 j=0 Op ((a#b) j ) + Op (r # N ), Op (a) = N -1 j=0 
Op (a j ) + Op (r N ).

Functional calculus.

In this subsection, we will recall the approximations for φ(h 2 P ) and ζ( x)φ( -2 P ) in terms of semi-classical and rescaled pseudo-differential operators respectively where We firstly recall the following L(L q , L r )-bound of pseudo-differential operators (see e.g. [7, Proposition 2.4]).

φ ∈ C ∞ 0 (R) and ζ ∈ C ∞ (R d ) is supported outside B(0,
Proposition 2.1. Let m > d and a be a continuous function on R 2d smooth with respect to the second variable satisfying for all β ∈ N d , there exists C β > 0 such that for all x, ξ ∈ R d ,

|∂ β ξ a(x, ξ)| ≤ C β ξ -m .
Then for 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

Op h (a) L(L q ,L r ) ≤ Ch d/r-d/q .
The following proposition gives an approximation of φ(h 2 P ) in terms of semi-classical pseudodifferential operators (see e.g. [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF] or [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]).

Proposition 2.2. Consider R d equipped with a smooth metric g satisfying (1.4) and (1.5). Then for a given φ ∈ C ∞ 0 (R), there exist a sequence of symbols q j ∈ S(-j, -∞) satisfying q 0 = φ • p and supp(q j ) ⊂ supp(φ • p) such that for all N ≥ 1,

φ(h 2 P ) = N -1 j=0 h j Op h (q j ) + h N R N (h),
and for m ≥ 0 and 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1],

R N (h) x N L(L q ,L r ) ≤ Ch d/r-d/q , R N (h) x N L(H -m ,H m ) ≤ Ch -2m .
Combining Proposition 2.1 and Proposition 2.2, one has the following result (see e.g. [7, Proposition 2.9]).

Proposition 2.3. Consider R d equipped with a smooth metric g satisfying (1.4) and (1.5). Let φ ∈ C ∞ 0 (R). Then for 1 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all h ∈ (0, 1], φ(h 2 P ) L(L q ,L r ) ≤ Ch d/r-d/q .

It is also known (see [5]) that the rescaled pseudo-differential operator is very useful to approximate the low frequency localization of P , i.e. operators of the form φ( -2 P ). By the uncertainty principle, one can only expect to get such approximation whenever |x| is large, typically |x| -1 .

Remark 2.4. Let µ ≤ 0, m ∈ R and a ∈ S(µ, m). If we set a (x, ξ) := µ a( -1 x, ξ), then for all α, β ∈ N d , there exists

C αβ > 0 such that for all |x| ≥ 1, ξ ∈ R d , |∂ α x ∂ β ξ a (x, ξ)| ≤ C αβ ξ m-|β| , ∀ ∈ (0, 1].
We next rewrite -2 P as D (D -1 ( -2 P )D )D -1 . A direct computation gives

D -1 ( -2 P )D = Op(p ) + Op(p ,1 ) =: P ,
where p (x, ξ) = p( -1 x, ξ) and p ,1 (x, ξ) = -1 p 1 ( -1 x, ξ). We thus obtain 

-2 P = Op (p ) + Op (p ,1
ζ( x)( -2 P -z) -k = N -1 j=0 ζ( x)Op (b ,j (z)) ζ( x) + R N (z, ),
where (b ,j (z)) ∈(0,1] is a bounded family in S(-j, -2k -j) which is a linear combination of d ,l (pz) -k-l with (d ,l ) ∈(0,1] a bounded family in S(-j, 2l -j) and

R N (z, ) = ζ( x)Op (r N (z, )) ζ( x)( -2 P -z) -k
where r N (z, ) ∈ S(-N, -N ) has seminorms growing polynomially in 1/dist(z, R + ) uniformly in ∈ (0, 1] as long as z belongs to a bounded set of C\[0, +∞).

A first application of Proposition 2.5 is the following result.

Proposition 2.6. Using the notations given in Proposition 2.5, let k > d/2 and 2 ≤ q ≤ ∞. Then there exists C > 0 such that for all ∈ (0, 1],

ζ( x)( -2 P + 1) -k L(L 2 ,L q ) ≤ C d/2-d/q . (2.6)
Proof. We apply Proposition 2.5 with N > d, we see that

ζ( x)( -2 P + 1) -k = N -1 j=0 ζ( x)Op (b ,j (-1)) ζ( x) + ζ( x)Op (r N (-1, )) ζ( x)( -2 P + 1) -k , = N -1 j=0 D ζ(x)Op(b ,j (-1)) ζ(x) + ζ(x)Op(r N (-1, )) ζ(x)(P + 1) -k D -1 ,
where (b ,j (-1)) ∈(0,1] , (r N (-1, )) ∈(0,1] are bounded in S(-j, -2k -j) and S(-N, -N ) respectively. The result then follows from Proposition 2.1 with h = 1 and that

D L(L q ) = d/2-d/q , D -1 L(L 2 ) = 1.
We also use that (P + 1) -k L(L 2 ) ≤ 1 for the remainder term.

Another application of Proposition 2.5 is the following approximation of ζ( x)φ( -2 P ) in terms of rescaled pseudo-differential operators.

Proposition 2.7. Consider R d equipped with a smooth metric g satisfying (1.4) and (1.5). Let φ ∈ C ∞ 0 (R) and ζ, ζ, ζ be as in Proposition 2.5. Then there exists a sequence of bounded families of symbols (q ,j ) ∈(0,1] ∈ S(-j, -∞) with q ,0 = φ • p and supp(q ,j ) ⊂ supp(φ • p ) such that for all N ≥ 1,

ζ( x)φ( -2 P ) = N -1 j=0 ζ( x)Op (q ,j ) ζ( x) + R N ( ).
(2.7)

Moreover, for any m ≥ 0, there exists C > 0 such that for all ∈ (0, 1],

( -2 P + 1) m R N ( ) x N L(L 2 ) ≤ C. (2.8)
Proof. By using Proposition 2.5 with k = 1 and the Helffer-Sjöstrand formula (see [15]) namely

φ( -2 P ) = - 1 π C ∂ φ(z)( -2 P -z) -1 dL(z),
where φ is an almost analytic extension of φ, the Cauchy formula gives (2.7) with

R N ( ) = 1 π C ∂ φ(z)ζ( x)Op (r N (z, )) ζ( x)( -2 P -z) -1 dL(z).
(2.9)

Here (r N (z, )) ∈(0,1] is bounded in S(-N, -N ) and has semi-norms growing polynomially in |Im z| -1 which is harmless since ∂ φ(z) = O(|Im z| ∞ ). The left hand side of (2.8) is bounded by

1 π C |∂ φ(z)| ( -2 P + 1) m ζ( x)Op (r N (z, )) ζ( x)( -2 P -z) -1 x N L(L 2 ) dL(z). By choosing ζ 1 ∈ C ∞ (R d ) supported outside B(0, 1) such that ζ 1 = 1 near supp( ζ), we can write ( -2 P -z) -1 = ( -2 P -z) -1 (1 -ζ 1 )( x) + ( -2 P -z) -1 ζ 1 ( x).
We note that (1

-ζ 1 )( x) x N is of size O L(L 2 ) (1)
due to the compact support in x, and (

-2 P + 1)( -2 P -z) -1 is of size O L(L 2 ) (|Im z| -1
) by functional calculus. Moreover, using (2.5) and the same process as in the proof of Proposition 2.6, there exists τ (m) ∈ N such that m) . This shows that

( -2 P + 1) m ζ( x)Op (r N (z, )) ζ( x)( -2 P + 1) -1 L(L 2 ) ≤ C|Im z| -τ (
( -2 P + 1) m R N ( )(1 -ζ 1 )( x) x N L(L 2 ) ≤ C.
(2.10)

For the term (

-2 P + 1) m R N ( )ζ 1 ( x)
x N , using Proposition 2.5 (by taking the adjoint), we see that

( -2 P -z) -1 ζ 1 ( x) = N -1 j=0 ζ1 ( x)Op ( b ,j (z))ζ 1 ( x) + RN (z, ),
where ( b ,j (z)) ∈(0,1] is a bounded family in S(-j, -2 -j) and

RN (z, ) = ( -2 P -z) -1 ζ1 ( x)Op (r N (z, ))ζ 1 ( x),
where rN (z, ) ∈ S(-N , -N ) has seminorms growing polynomially in |Im z| -1 uniformly in ∈ (0, 1]. By the same argument as above, we obtain

( -2 P + 1) m R N ( )ζ 1 ( x) x N L(L 2 ) ≤ C. (2.11)
Combining (2.10) and (2.11), we prove (2.8).

As a consequence of Proposition 2.7, we have the following result.

Corollary 2.8. Let φ ∈ C ∞ 0 (R). Then for 2 ≤ q ≤ r ≤ ∞, there exists C > 0 such that for all ∈ (0, 1],

ζ( x)φ( -2 P ) L(L q ,L r ) ≤ C d/q-d/r .
(2.12)

Proof. By (2.7) and (2.8) (see also (2.9)), we can write for any N ≥ 1 and any m ≥ 0,

ζ( x)φ( -2 P ) = N -1 j=0 ζ( x)Op (q ,j ) ζ( x) + R N ( ),
where

R N ( ) = ζ( x)( -2 P + 1) -m B x -N with B = O L(L 2 ) (1) uniformly in ∈ (0, 1].
The main terms can be estimated by using Proposition 2.1 (see also the proof of Proposition 2.6). It remains to treat the remainder term. We firstly note that

x -N = O L(L q ,L 2 ) ( d/q-d/2 ) provided N > d(q-2) 2q .
Using this bound together with B = O L(L 2 ) (1) and (2.6), we see that

R N ( ) L(L q ,L r ) ζ( x)( -2 P + 1) -m L(L 2 ,L r ) B L(L 2 ) x -N L(L q ,L 2 ) d/2-d/r d/q-d/2 d/q-d/r .
This proves (2.12).

Another consequence of Proposition 2.7 is the following estimate.

Corollary 2.9. Let φ ∈ C ∞ 0 (R). For m ≥ 0, there exists C > 0 such that for all ∈ (0, 1],

x -m φ( -2 P ) x m L(L 2 ) ≤ C.
(2.13)

Proof. By choosing ζ ∈ C ∞ (R d
) supported outside B(0, 1) and equal to 1 near infinity, we can write

x -m φ( -2 P ) x m as x -m φ( -2 P )ζ( x) x m + x -m φ( -2 P )(1 -ζ)( x) x m .
The L(L 2 )-boundedness of the first term follows from the parametrix of φ( -2 P )ζ( x) which is obtained by taking the adjoint of (2.7). The second term follows from the fact that (1

-ζ)( x) x m is bounded in L(L 2 ) since 1 -ζ vanishes outside a compact set.

Propagation estimates.

In this subsection, we recall some results on resolvent estimates and prove some propagation estimates both at high and low frequencies. Let us start with the following result.

Proposition 2.10.

1. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and suppose that the assumption (1.12) holds. Then for k ≥ 0, there exist C > 0 and nondecreasing N k ∈ N such that for all h ∈ (0, 1] and all λ belongs to a relatively compact interval of (0, +∞),

x -1-k (h 2 P -λ ∓ i0) -1-k x -1-k L(L 2 ) ≤ Ch -N k .
(2.14) 2. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). Then for k ≥ 0, there exists C > 0 such that for all ∈ (0, 1] and all λ belongs to a relatively compact interval of (0, +∞),

x -1-k ( -2 P -λ ∓ i0) -1-k x -1-k L(L 2 ) ≤ C.
(2.15)

The high frequency resolvent estimates (2.14) are given in [5, Proposition 7.5] and the low frequency resolvent estimates (2.15) are given in [6, Theorem 1.2]. Note that under the non-trapping condition, the estimates (2.14) hold with N k = k + 1 (see e.g. [37, Theorem 2.8]). We next use the resolvent estimates given in Proposition 2.10 to have the following resolvent estimates for the fractional Schrödinger operator.

Proposition 2.11. Let σ ∈ (0, ∞).

1. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and suppose that the assumption (1.12) holds. Then for k ≥ 0, there exist C > 0 and non-decreasing N k ∈ N such that for all h ∈ (0, 1] and all µ ∈ I (0, +∞),

x -1-k ((hΛ g ) σ -µ ∓ i0) -1-k x -1-k L(L 2 ) ≤ Ch -N k . (2.16) 2. Consider R d , d ≥ 3
equipped with a smooth metric g satisfying (1.4), (1.5). Then for k ≥ 0, there exists C > 0 such that for all ∈ (0, 1] and all µ ∈ I (0, +∞),

x -1-k (( -1 Λ g ) σ -µ ∓ i0) -1-k x -1-k L(L 2 ) ≤ C.
(2.17)

Proof. We only give the proof for (2.16), the one for (2.17) is similar using (2.13). We firstly note that the estimates (2.16) are equivalent to

x -1-k ((hΛ g ) σ -µ ∓ i0) -1-k φ(h 2 P ) x -1-k L(L 2 ) ≤ Ch -N k , where φ ∈ C ∞ 0 ((0, +∞)) satisfying φ = 1 near I.
Note that here Λ g = √ P . Next, we write µ = λ σ/2 with λ lied in a relatively compact interval of (0, +∞). By functional calculus, we write

(hΛ g ) σ -µ ∓ i0 = (h 2 P -λ ∓ i0)Q(h 2 P, µ),
where Q(•, µ) is smooth and non vanishing on the support of φ. This implies for all k ≥ 0,

((hΛ g ) σ -µ ∓ i0) -1-k φ(h 2 P ) = (h 2 P -λ ∓ i0) -1-k Q(h 2 P, µ), where Q(h 2 P, µ) = φ(h 2 P )Q -1-k (h 2 P, µ
). This allows us to approximate Q(h 2 P, µ) by pseudodifferential operators by means of Proposition 2.2. Thus, we have that

x 1+k Q(h 2 P, µ) x -1-k is of size O L(L 2 ) (1)
uniformly in µ ∈ I (0, +∞) and h ∈ (0, 1]. Therefore, (2.16) follows from (2.14). The proof is complete.

We now give an application of resolvent estimates given in Proposition 2.11 when k = 0 and obtain the following global L 2 integrability estimates for the fractional Schrödinger operators both at high and low frequencies.

Proposition 2.12. Let σ ∈ (0, ∞) and f ∈ C ∞ 0 ((0, +∞)). 1. Consider R d , d ≥ 2 equipped
with a smooth metric g satisfying (1.4), (1.5) and suppose that the assumption (1.12) holds. Then there exists C > 0 such that for all u 0 ∈ L 2 and all h ∈ (0, 1],

x -1 f (h 2 P )e -ith -1 (hΛg) σ u 0 L 2 (R,L 2 ) ≤ Ch (1-N0)/2 u 0 L 2 . (2.18)
2. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). Then there exists C > 0 such that for all u 0 ∈ L 2 and all ∈ (0, 1],

x -1 f ( -2 P )e -it ( -1 Λg) σ u 0 L 2 (R,L 2 ) ≤ C -1/2 u 0 L 2 . (2.19)
Remark 2.13. 1. By interpolating between L 2 (R) and L ∞ (R), we get the following L p integrability estimates

x -1 f (h 2 P )e -ith -1 (hΛg) σ u 0 L p (R,L 2 ) ≤ Ch (1-N0)/p u 0 L 2 .
(2.20)

x -1 f ( -2 P )e -it ( -1 Λg) σ u 0 L p (R,L 2 ) ≤ C -1/p u 0 L 2 . (2.21)
2. Thanks to the fact that P is non-negative, these estimates are still true for f ∈ C ∞ 0 (R\{0}). Moreover, we can replace u 0 L 2 in the right hand side of (2.18) and (2.20

) (resp. (2.19) and (2.21)) by f (h 2 P )u 0 L 2 (resp. f ( -2 P )u 0 L 2 ). Indeed, we choose f ∈ C ∞ 0 (R\0) such that f = 1 near supp(f ) and write f (h 2 P ) = f (h 2 P )f (h 2 P ).
We apply (2.18) and (2.20) with f instead of f . Similarly for the low frequency case.

Proof of Proposition 2.12. We again only consider the high frequency case, the low frequency one is completely similar. By the limiting absorption principle (see [34, Theorem XIII.25]), we see that

x -1 f (h 2 P )e -it(hΛg) σ u 0 2 L 2 (R,L 2 ) is bounded by 2π sup µ∈R >0 x -1 f (h 2 P )((hΛ g ) σ -µ -i ) -1 f (h 2 P ) x -1 L(L 2 ) u 0 2 L 2 .
By functional calculus and the holomorphy of the resolvent, it suffices to bound x

-1 f (h 2 P )((hΛ g ) σ - µ -i0) -1 f (h 2 P ) x -1 L(L 2 )
, uniformly with respect to µ ∈ R. As a function of hΛ g , the operator

f (h 2 P )((hΛ g ) σ -µ -i0) -1 f (h 2 P ) reads f (λ 2 )(λ σ -µ -i0) -1 f (λ 2 ). Assume that supp(f ) ⊂ 1/c 2 , c 2 for some c > 1, so λ ∈ [1/c, c].
In the case µ ≥ 2c σ or λ ≤ 1/2c σ , we have that µ -

λ σ ≥ c σ or λ σ -µ ≥ 1/2c σ . The functional calculus gives f (h 2 P )((hΛ g ) σ -µ -i0) -1 f (h 2 P ) L(L 2 ) ≤ 2c σ f 2 L ∞ (R) . Thus we can assume that µ ∈ [1/2c σ , 2c σ ]. Using (2.16) with k = 0, we have x -1 ((hΛ g ) σ -µ ∓ i0) -1 x -1 L(L 2 ) ≤ Ch -N0 . On the other hand, x -1 f (h 2 P ) x is bounded in L(L 2
) by pseudo-differential calculus. This implies

x -1 f (h 2 P )e -it(hΛg) σ u 0 L 2 (R,L 2 ) ≤ Ch -N0/2 u 0 L 2 .
By scaling in time, this gives the result.

Another application of the resolvent estimates given in Proposition 2.11 is the following local energy decays for the fractional Schrödinger operators both at high and low frequencies.

Proposition 2.14. Let σ ∈ (0, ∞) and f ∈ C ∞ 0 (R\{0}). 1. Consider R d , d ≥ 2 equipped
with a smooth metric g satisfying (1.4), (1.5) and suppose that the assumption (1.12) holds. Then for k ≥ 0, there exists C > 0 such that for all t ∈ R and all h ∈ (0, 1],

x -1-k e -ith -1 (hΛg) σ f (h 2 P ) x -1-k L(L 2 ) ≤ Ch -N k th -1 -k . (2.22) 2. Consider R d , d ≥ 3
equipped with a smooth metric g satisfying (1.4), (1.5). Then for k ≥ 0, there exists C > 0 such that for all t ∈ R and all ∈ (0, 1],

x -1-k e -it ( -1 Λg) σ f ( -2 P ) x -1-k L(L 2 ) ≤ C t -k . (2.23) Proof.
As above, we only give the proof for the high frequency case. Using the Stone formula, the operator e -it(hΛg) σ f (h 2 P ) reads

1 2iπ R e -itµ f (µ 2/σ )(((hΛ g ) σ -µ -i0) -1 -((hΛ g ) σ -µ + i0) -1 )dµ.
We use the same trick as in [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF]. By multiplying to above equality with (it) k and using integration by parts in the weighted spaces x

-1-k L 2 , we see that (it) k e -it(hΛg) σ f (h 2 P ) is a linear combination with l + n = k of terms of the form R e -itµ ∂ l µ (f (µ 2/σ ))(((hΛ g ) σ -µ -i0) -1-n -((hΛ g ) σ -µ + i0) -1-n )dµ.
The compact support of f implies that µ is bounded from above and below. The resolvent estimates (2.16) then imply

x -1-k e -it(hΛg) σ f (h 2 P ) x -1-k L(L 2 ) ≤ Ch -N k t -k .
Here we use that N m is non-decreasing with respect to m. By scaling in time, we have (2.22). The proof is complete. 

(λ) = f 0 (λ) -f 0 (2λ)
, where f 0 given as in (1.10). We have f ∈ C ∞ 0 (R\{0}) and

∞ k=1 f (2 -k λ) = (1 -f 0 )(λ), ∞ k=0 f (2 k λ) = 1 R\{0} (λ)f 0 (λ), λ ∈ R.
The Spectral Theorem implies that

(1 -f 0 )(P ) = ∞ k=1 f (2 -k P ), f 0 (P ) = ∞ k=0 f (2 k P ). (3.1)
In the second sum, we use the fact that 0 is not an eigenvalue of P (see e.g. [46]).

Theorem 3.1.

1. Let N ≥ 1 and χ ∈ C ∞ 0 (R d ). Then for q ∈ [2, ∞), there exists C > 0 such that (1 -χ)(1 -f 0 )(P )v L q ≤ C h 2 =2 -k (1 -χ)f (h 2 P )v 2 L q + h N x -N f (h 2 P )v 2 L 2 1/2 , (3.2) for all v ∈ S (R d ),
where k ∈ N\{0}. The same estimates hold for χ in place of

1 -χ. 2. Let χ ∈ C ∞ 0 (R d ) be such that χ(x) = 1 for |x| ≤ 1. Then for q ∈ (2, ∞), there exists C > 0 such that for all v ∈ L 2 , f 0 (P )v L q ≤ C -2 =2 k (1 -χ)( x)f ( -2 P )v 2 L q + d/2-d/q x -1 f ( -2 P )v 2 L 2 1/2 . (3.3)
Here we use in the sum that k ∈ N. 

Note that the

v L 2 ≤ C Λ g v L 2 , 2 = 2d d -2 . (3.4)
Since we consider a larger range of admissible condition (1.2), we can not apply this interpolation technique. To overcome this difficulty, we will take the advantage of heat kernel estimates. Our estimate (3.3) is robust and can be applied for another types of dispersive equations such as the wave or Klein-Gordon equations. Let K(t, x, y) be the kernel of the heat operator e -tP , t > 0, i.e.

e -tP u(x) = R d K(t, x, y)u(y)dy.
We recall some properties (see e.g. [12], [19]) of the heat kernel on arbitrary Riemannian manifold.

Lemma 3.2. Let (M, g) be an arbitrary Riemannian manifold. Then the heat kernel K satisfies the following properties:

(i) K is a strictly positive C ∞ function on (0, ∞) × M × M . (ii) K is symmetric in the space components. (iii) (Maximum principle) M K(t, x, y)d g (y) ≤ 1. (iv) (Semi-group property) M K(s, x, y)K(t, y, z)d g (y) = K(s + t, x, z).
In order to obtain the heat kernel estimate, we will make use of the Nash inequality (see e.g. [39, Theorem 3.2.1]), namely

u L 2 ≤ C u 2 d+2 ∇u d d+2 L 2 .
(3.5)

Note that the Nash inequality on R d is valid for any d ≥ 1. Thanks to (1.9), we have for d ≥ 2,

u L 2 ≤ C u 2 d+2 L 1 Λ g u d d+2 L 2 . (3.6)
Using (3.6), we have the following upper bound for the heat kernel.

Theorem 3.3.

There exists C > 0 such that for all x, y ∈ R d and all t > 0 such that

K(t, x, x) ≤ Ct -d/2 , (3.7) K(t, x, y) ≤ Ct -d/2 exp - |x -y| 2 Ct . (3.8)
In particular,

e -tP L(L 1 ,L ∞ ) ≤ Ct -d/2 , t > 0. (3.9)
Proof. The proof is similar to the one given in [19, Theorem 6.1] where the author shows how to get (3.7) from the homogeneous Sobolev embedding (3.4). For the reader's convenience, we give a sketch of the proof. Fix x ∈ R d and denote v(t, y) = K(t, y, x) and

J(t) := v(t) 2 L 2 . Using the fact that ∂ t v(t, y) = -P v(t, y), we have J (t) = 2 v(t), ∂ t v(t) = -2 v(t), P v(t) = -2 Λ g v(t) 2
L 2 . This implies that J(t) is non-increasing. On the other hand, the maximum principle (see also [19]) shows that

v(t) L 1 = R d K(t, x, y)dy ≤ 1.
This together with (3.6) yield

v(t) 2 L 2 ≤ C v(t) 2 d+2 L 1 Λ g v(t) d d+2 L 2 ≤ C Λ g v(t) d d+2 L 2 .
We thus get

J (t) ≤ -C v(t) d+2 d L 2 = -CJ(t) d+2 d .
Integrating between 0 and t with the fact that the non-increasing property of J(t), we obtain

J(t) ≤ Ct -d/2 .
The estimate (3.7) then follows by the symmetric property of K(t, x, y), i.e. J(t) = K(2t, x, x). Using (3.7), the off-diagonal argument (see also [19]) implies the following upper bound for the heat kernel

K(t, x, y) ≤ Ct -d/2 exp - d 2 (x, y) Ct , ∀x, y ∈ R d , t > 0,
where d(x, y) is the geodesic distance from x to y. Thanks to the elliptic condition (1.4) of the metric g, it is easy to see that d(x, y) ∼ |x -y|. This shows (3.8) and the proof is complete.

We now give some applications of the upper bound (3.8). A first application is the following homogeneous Sobolev embedding.

Lemma 3.4. Let q ∈ (2, ∞) and α = d 2 -d q .
Then the operator Λ -α g maps L 2 to L q . In particular, there exists C > 0 such that

u L q ≤ C Λ α g u L 2 . (3.10)
Proof. We firstly recall the following version of Hardy-Littlewood-Sobolev theorem.

Theorem 3.5 ([20, 40]). Let 1 < p < q < ∞, γ = d+ d q -d p and K γ (x) := |x| -γ . Then the convolution operator T γ := f * K γ maps L p to L q . In particular, there exists C > 0 such that

T γ u L q ≤ C u L p . Now let Γ(z) := ∞ 0 t z-1 e -t
dt, Re (z) > 0 be the Gamma function. The spectral theory with the fact

Λ g = √ P gives Λ -α g = P -α/2 = 1 Γ(α/2) ∞ 0 e -tP t α/2-1 dt. Let [Λ -α g ](x, y) be the kernel of Λ -α g . By (3.8), |[Λ -α g ](x, y)| ≤ C Γ(α/2) ∞ 0 t -d/2 e -|x-y| 2 Ct t α/2-1 dt. A change of variable shows |[Λ -α g ](x, y)| ≤ C Γ(α/2) |x -y| -(d-α) ∞ 0 t d/2-α/2-1 e -t dt = CΓ(d/2 -α/2) Γ(α/2) |x -y| -(d-α) .
The result follows by applying Theorem 3.5 with γ = d -α and p = 2.

Another application of the heat kernel upper bound (3.8) is the following L q -L r -bound of the heat operator. Lemma 3.6. Let 1 ≤ q ≤ r ≤ ∞. The heat operator e -tP , t > 0 maps L q to L r . In particular, there exists C > 0 such that for all t > 0,

e -tP L(L q ,L r ) ≤ Ct -d 2 ( 1 q -1 r ) .
Proof. By the symmetric and maximal principle properties of the heat kernel, the Schur's Lemma yields

e -tP L(L q ) ≤ C, t > 0. (3.11)
Interpolating between (3.9) and (3.11), we have the result.

Corollary 3.7. Let f ∈ C ∞ 0 (R\{0}) and q ∈ [2, ∞]. Then there exists C > 0 such that for all ∈ (0, 1], f ( -2 P ) L(L 2 ,L q ) ≤ C d/2-d/q .
Proof. By writing f ( -2 P ) = e --2 P (e -2 P f ( -2 P )), and using Proposition 3.6 with t = -2 , we get

f ( -2 P ) L(L 2 ,L q ) ≤ e --2 P L(L 2 ,L q ) e -2 P f ( -2 P ) L(L 2 ) ≤ C d/2-d/q .
Here, using the compactly supported property of f and spectral theorem, we have e

-2 P f ( -2 P ) is of size O L(L 2 ) (1)
. This gives the result.

We now are able to prove Theorem 3.1. We only give the proof for the low frequency case. The high frequency one is essentially given in [5, Theorem 4.6]. Proof of Theorem 3.1. By the second term of (3.1), we have

f 0 (P )v L q = sup w L q =1 |(w, f 0 (P )v)| = sup w L q =1 lim M →∞ M k=0 (w, f ( -2 P )v) , (3.12)
where

-2 = 2 k and (•, •) is the inner product on L 2 . By choosing f ∈ C ∞ 0 (R\{0}) satisfying f = 1 near supp(f ), we use Proposition 2.7 to write (1 -χ)( x) f ( -2 P ) = Q( ) + R( ), where Q( ) = (1 -χ)( x)Op ( f • p )ζ( x), R( ) = ζ( x)( -2 P + 1) -m B( ) x -1 , with ζ ∈ C ∞ (R d ) supported outside B(0, 1) and equal to 1 near supp(1 -χ) and B( ) = O L(L 2 ) (1) uniformly in ∈ (0, 1]. We next write f ( -2 P ) = Q( )(1 -χ)( x)f ( -2 P ) + A( ) α x -1 f ( -2 P ), with α = d/2 -d/q and A( ) = -α (1 -χ)( x) f ( -2 P )χ( x) + R( )(1 -χ)( x) + χ( x) f ( -2 P ) x .
We now bound

M k=0 (w, f ( -2 P )v) M k=0 w, Q( )(1 -χ)( x)f ( -2 P )v + M k=0 (w, A( ) α x -1 f ( -2 P )v) M k=0 Q ( )w, (1 -χ)( x)f ( -2 P )v + w L q M k=0 A( ) α x -1 f ( -2 P )v L q =: (I) + (II). (3.13)
We use the Cauchy-Schwarz inequality in k and the Hölder inequality in space to have

(I) S M w L q S M v L q ,
where

S M w := M k=0 |Q ( )w| 2 1/2 , S M v := M k=0 |(1 -χ)( x)f ( -2 P )v| 2 1/2 .
We now make use of the following estimate (see [5, Proposition 4.3]).

Proposition 3.8. For r ∈ (1, 2], there exists C > 0 such that for all M ≥ 0 and all w ∈ S (R d ),

S M w L r ≤ C w L r .
We thus get

(I) S M v L q w L q M k=0 (1 -χ)( x)f ( -2 P )v 2 L q 1/2 w L q . (3.14)
For the second term in (3.13), we use the homogeneous Sobolev embedding (3.10) to have

M k=0 A( ) α x -1 f ( -2 P )v L q M k=0 Λ α g A( ) α x -1 f ( -2 P )v L 2 .
We next write

Λ α g A( ) = ( -2 P ) α/2 ( -2 P + 1) -α D( ), (3.15) with D( ) = O L(L 2 ) (1) uniformly in ∈ (0, 1].
It is easy to have (3.15) from the first two terms in A( ) by using Proposition 2.7. The less obvious contribution in (3.14) is the uniform L 2 boundedness of ( -2 P + 1) α χ( x) f ( -2 P ) x . By the functional calculus, it is enough to show for N large enough the uniform L 2 boundedness of ( -2 P + 1) N χ( x) f ( -2 P ) x . To see it, we write

( -2 P + 1) N χ( x) f ( -2 P ) x = χ( x)( -2 P + 1) N f ( -2 P ) x + [( -2 P + 1) N , χ( x)] f ( -2 P ) x ,
where [•, •] is the commutator. The L 2 boundedness of χ( x)( -2 P + 1) N f ( -2 P ) x follows as in (2.13). On the other hand, note that the commutator [( -2 P + 1) N , χ( x)] can be written as a sum of rescaled pseudo-differential operators vanishing outside the support of

ζ( x) for some ζ ∈ C ∞ (R d )
supported outside B(0, 1) and equal to 1 near infinity. This allows to use Proposition 2.7, and the L 2 boundedness of [( -2 P + 1) N , χ( x)] f ( -2 P ) x follows. We next need to recall the following well-known discrete Schur estimate.

Lemma 3.9. Let θ > 0 and (T l ) l be a sequence of linear operators on a Hilbert space H. If T l T k L(H) 2 -θ|k-l| , then there exits C > 0 such that for all sequence (v k ) k of H,

T k v k H ≤ C v k 2 H 1/2 . Now let T k = ( -2 k P ) α/2 ( -2 k P + 1) -α D( k ) with -2 k = 2 k . We see that T l T k = 2 α(l+k) 2 D ( l )(2 l P + 1) -α P α (2 k P + 1) -α D( k ). Note that l + k = -|k -l| + 2k for k ≥ l and l + k = -|k -l| + 2l for l ≥ k. Thus for k ≥ l, T l T k L(L 2 ) = 2 -α|k-l| 2 D ( l )(2 l P + 1) -α (2 k P ) α (2 k P + 1) -α D( k ) L(L 2 ) 2 -α|k-l| 2 .
Similarly for l ≥ k. Therefore, we can apply Lemma 3.9 for 

T k = ( -2 k P ) α/2 ( -2 k P + 1) -α D( k ) with -2 k = 2 k , H = L 2 and θ = α/2 to get sup M M k=0 Λ α g A( ) α x -1 f ( -2 P )v k≥0 α x -1 f ( -2 P )v 2 L 2 1/2 . ( 3 
u high = χu high + (1 -χ)u high . Using (3.
2) and Minkowski inequality with p, q ≥ 2, we have

(1 -χ)u high L p (R,L q ) ≤ C h 2 =2 -k (1 -χ)f (h 2 P )e -itΛ σ g u 0 2 L p (R,L p ) + h N x -N f (h 2 P )e -itΛ σ g u 0 2 L p (R,L 2 ) 1/2 . (3.17)
The same estimate holds for χu high L p (R,L q ) with χ in place of 1 -χ. We can apply the Item 2 of Remark 2.13 with scaling in time for the second term in the right hand side of above quantity to get

h N/2 x -N f (h 2 P )e -itΛ σ g u 0 L p (R,L 2 ) ≤ Ch N/2+(σ-N0)/p f (h 2 P )u 0 L 2 . (3.18)
By taking N large enough, this term is bounded by h -γp,q f (h 2 P )u 0 L 2 . Thus we have the following reduction.

Proposition 3.10. 1. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and suppose that the geodesic flow associated to g is non-trapping. If for all χ ∈ C ∞ 0 (R d ) and all (p, q) fractional admissible, there exists C > 0 such that for all u 0 ∈ L g and all h ∈ (0, 1],

χe -itΛ σ g f (h 2 P )u 0 L p (R,L q ) ≤ Ch -γp,q f (h 2 P )u 0 L 2 , (3.19) then χu high L p (R,L q ) ≤ C u 0 Ḣγp,q g , ( 3.20) 
i.e. Theorem 1.1 holds true. 2. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and suppose that (1.12) is satisfied. If there exists R > 0 large enough such that for all (p, q) fractional admissible and all χ ∈ C ∞ 0 (R d ) satisfying χ = 1 for |x| < R, there exists C > 0 such that for all u 0 ∈ L g and all h ∈ (0, 1], 

(1 -χ)e -itΛ σ g f (h 2 P )u 0 L p (R,L q ) ≤ Ch -γp,q f (h 2 P )u 0 L 2 , (3.21) then (1 -χ)u high L p (R,L q ) ≤ C u 0 Ḣγp,q g , ( 3 
u high L p (R,L q ) ≤ C u 0 Ḣγp,q g .
Proof. We only consider the case 1 -χ, for χ it is similar. By using (3.18) and (3.21), we see that (3.17) implies

(1 -χ)u high L p (R,L q ) ≤ C h 2 =2 -k h -2γp,q f (h 2 P )u 0 2 L 2 1/2 ≤ C u 0 Ḣγp,q g .
Here we use the almost orthogonality and the support property of f to obtain the last inequality. This proves (3.22).

Reduction of the low frequency problem.

Let us consider the low frequency case. We only treat the case q ∈ (2, ∞) since the Strichartz estimate for (p, q) = (∞, 2) is trivial. We apply the Littlewood-Paley estimates (3.3) and Minkowski inequality with p ≥ 2 to have

u low L p (R,L q ) ≤ C -2 =2 k (1 -χ)( x)f ( -2 P )e -itΛ σ g u 0 2 L p (R,L q ) + d/2-d/q x -1 f ( -2 P )e -itΛ σ g u 0 2 L p (R,L 2 ) 1/2 .
We use global L p integrability estimates (2.21) with rescaling in time to bound the second term in the right hand side as

d/2-d/q x -1 f ( -2 P )e -itΛ σ g u 0 L p (R,L 2 ) ≤ C γp,q f ( -2 P )u 0 L 2 . (3.23)
Here we recall that γ p,q = d/2 -d/q -σ/p. This leads to the following reduction.

Proposition 3.11. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). If for all χ ∈ C ∞ 0 (R d ) satisfying χ(x) = 1 for |x| ≤ 1 and all (p, q) fractional admissible, there exists C > 0 such that for all u 0 ∈ L g and all ∈ (0, 1],

(1 -χ)( x)f ( -2 P )e -itΛ σ g u 0 L p (R,L q ) ≤ C γp,q f ( -2 P )u 0 L 2 , (3.24) then u low L p (R,L q ) ≤ C u 0 Ḣγp,q g .
Proof. Indeed, if the estimates (3.24) hold true, then the Littlewood-Paley estimates (3.3) and (3.23) give

u low L p (R,L q ) ≤ C -2 =2 k 2γp,q f ( -2 P )u 0 2 L 2 1/2 . Note that γp,q f ( -2 P )u 0 L 2 ≤ γp,q f ( -2 P )Λ -γp,q g L(L 2 ) f ( -2 P )Λ γp,q g u 0 L 2 ,
where f ∈ C ∞ 0 (R\{0}) satisfies f = 1 near supp(f ). By functional calculus, the first factor in the right hand side is bounded by

γp,q sup λ∈R f ( -2 λ 2 ) λ γp,q ≤ γp,q f L ∞ (R) ( /c) γp,q ≤ c γp,q f L ∞ (R) .
Here -2 λ 2 ∈ supp( f ) hence |λ| ∈ [ /c, c] for some constant c > 1. Thus we have

u low L p (R,L q ) ≤ C -2 =2 k f ( -2 P )Λ γp,q g u 0 2 L 2 1/2
≤ C u 0 Ḣγp,q g , the last inequality follows from the almost orthogonality. This completes the proof.

Strichartz estimates inside compact sets

In this section, we will give the proof of (3.19). Our main tools are the local in time Strichartz estimates which are proved by the WKB method (see [START_REF] Dinh | Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary[END_REF]) and the L 2 integrability estimate at high frequency given in Proposition 2.12. Theorem 4.1. Let σ ∈ (0, ∞)\{1} and q be a smooth function on R 2d compactly support in ξ away from zero and satisfying for all α, β ∈ N d , there exists C αβ > 0 such that for all x, ξ ∈ R d ,

|∂ α x ∂ β ξ q(x, ξ)| ≤ C αβ .
Then there exist t 0 > 0 small enough, a function S ∈ C ∞ ([-t 0 , t 0 ] × R 2d ) and a sequence of smooth functions a j (t, x, ξ) compactly supported in ξ away from zero uniformly in t ∈ [-t 0 , t 0 ] such that for all N ≥ 1,

e -ith -1 (hΛg) σ Op h (q)u 0 = J N (t)u 0 + R N (t)u 0 ,
where

J N (t)u 0 (x) = (2πh) -d R 2d
e ih -1 (S(t,x,ξ)-yξ)

N -1 j=0 h j a j (t, x, ξ)u 0 (y)dydξ, J N (0) = Op h (q) and the remainder R N (t) satisfies for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1],

R N (t) L(L 2 ) ≤ Ch N -1 .
Moreover, there exists a constant C > 0 such that for all t ∈ [-t 0 , t 0 ] and all h ∈ (0, 1],

J N (t) L(L 1 ,L ∞ ) ≤ Ch -d (1 + |t|h -1 ) -d/2 .
In [START_REF] Dinh | Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary[END_REF], we consider the smooth bounded metric, i.e. for all α ∈ N d , there exists C α > 0 such that for all x ∈ R d ,

|∂ α g jk (x)| ≤ C α , j, k ∈ {1, ...d}. (4.1)
It is obvious to see that the assumption (1.5) implies (4.1). This theorem and the parametrix given in Proposition 2.2 give the following dispersive estimates for the fractional Schrödinger equations (see also [START_REF] Dinh | Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary[END_REF]Remark 2.8]).

Proposition 4.2. Let σ ∈ (0, ∞)\{1} and ϕ ∈ C ∞ 0 (R\{0}). Then there exists t 0 > 0 small enough and C > 0 such that for all u 0 ∈ L 1 (R d ) and all h ∈ (0, 1], 

e -ith -1 (hΛg) σ ϕ(h 2 P )u 0 L ∞ ≤ Ch -d (1 + |t|h -1 ) -d/2 u 0 L 1 , ( 4 
T (t) L(L 2 ) ≤ C, ( 4.3 
)

T (t)T (s) L(L 1 ,L ∞ ) ≤ Ch -δ (1 + |t -s|h -1 ) -τ , ( 4.4) 
for all t, s ∈ I. Then for all (p, q) satisfying

p ∈ [2, ∞], q ∈ [1, ∞], (p, q, τ ) = (2, ∞, 1), 1 p ≤ τ 1 2 - 1 q , we have T v L p (I,L q ≤ Ch -κ v L 2 ,
where κ = δ(1/2 -1/q) -1/p. Proposition 4.3 together with energy estimate and dispersive estimate (4.2) give the following result.

Corollary 4.4. Let σ ∈ (0, ∞)\{1}, ϕ ∈ C ∞ 0 (R\{0}) and t 0 be as in Theorem 4.1. Denote I = [-t 0 , t 0 ]. Then for all (p, q) fractional admissible, there exists C > 0 such that

ϕ(h 2 P )e -ith -1 (hΛg) σ v L p (I,L q ) ≤ Ch -κp,q v L 2 , ( 4.5) 
where

κ p,q = d/2 -d/q -1/p. Moreover, t 0 ϕ 2 (h 2 P )e -i(t-s)h -1 (hΛg) σ G(s)ds L p (I,L q ) ≤ Ch -κp,q G L 1 (I,L 2 ) . (4.6)
Proof. The homogeneous estimates (4.5) follow directly from Proposition 4.2 and Proposition 4.3 with T (t) = ϕ(h 2 P )e -ith -1 (hΛg) σ . It remains to prove the inhomogeneous estimates (4.6). Let us set U h (t) := h κp,q ϕ(h 2 P )e -ith -1 (hΛg) σ .

Using the homogeneous Strichartz estimates (4.5), we see that U h (t) is a bounded operator from L 2 to L p (I, L q ). Similarly, we have U h (s) = ϕ(h 2 P )e -ish -1 (hΛg) σ is a bounded operator from L 2 to L ∞ (I, L 2 ). Here we use the fact that (∞, 2) is fractional admissible with κ ∞,2 = 0. Thus the adjoint U h (s) , namely

U h (s) : G ∈ L 1 (I, L 2 ) → I ϕ(h 2 P )e ish -1 (hΛg) σ G(s)ds ∈ L 2
is also a bounded operator. This implies U h (t)U h (s) is a bounded operator from L 1 (I, L 2 ) to L p (I, L q ). In particular, we have

I h κp,q ϕ 2 (h 2 P )e -i(t-s)h -1 (hΛg) σ G(s)ds L p (I,L q ) ≤ C G L 1 (I,L 2 ) .
The Christ-Kiselev Lemma (see Lemma 6.1) implies that for all (p, q) fractional admissible,

t 0 ϕ 2 (h 2 P )e -i(t-s)h -1 (hΛg) σ G(s)ds L p (I,L q ) ≤ Ch -κp,q G L 1 (I,L 2 ) .
This completes the proof. We emphasize that the non-trapping assumption is supposed here.

Let us set v(t) = x -1 f (h 2 P )e -ith -1 (hΛg) σ u 0 . By choosing f 1 ∈ C ∞ 0 (R\{0}) with f 1 = 1 near supp(f ), we see that the study of v L p (R,L q ) is reduced to the one of f 1 (h 2 P )v L p (R,L q ) . Indeed, we can write v(t) = f 1 (h 2 P )v(t) + (1 -f 1 )(h 2 P )v(t),
where the term (1 -f 1 )(h 2 P )v(t) can be written as

((1 -f 1 )(h 2 P ) x -1 f1 (h 2 P ) x ) x -1 f (h 2 P )e -ith -1 (hΛg) σ u 0 , with f1 ∈ C ∞ 0 (R\{0}) such that f 1 = 1 near supp( f1 ) and f1 = 1 near supp(f ). By pseudo-differential calculus, we have (1 -f 1 )(h 2 P ) x -1 f1 (h 2 P ) x = O L(L 2 ,L q ) (h ∞ ),
for all q ≥ 2. This implies that there exists C > 0 such that for all N ≥ 1,

v -f 1 (h 2 P )v L p (R,L q ) ≤ Ch N x -1 f (h 2 P )e -ith -1 (hΛg) σ u 0 L p (R,L 2 ) ≤ Ch N f (h 2 P )u 0 L 2 ≤ Ch -κp,q f (h 2 P )u 0 L 2 (4.7)
provided that N is taken large enough. Here we use (2.20) with N 0 = 1 due to the non-trapping condition.

We next write

v(t) = x -1 f (h 2 P )e -ith -1 ψ(h 2 P ) u 0 , where ψ(λ) = f (λ) √ λ σ with f ∈ C ∞ 0 (R\{0}) and f = 1 near supp(f ). Now, let t 0 > 0 be as in Corollary 4.4. We next choose θ ∈ C ∞ 0 (R, [0, 1]) satisfying θ = 1 near 0 and supp(θ) ⊂ (-1, 1) such that k∈Z θ(t-k) = 1, for all t ∈ R. We then write v(t) = k∈Z v k (t), where v k (t) = θ((t-t k )/t 0 )v(t) with t k = t 0 k. By the Duhamel formula, we have v k (t) = e -ith -1 ψ(h 2 P ) v k (0) + ih -1 t 0 e -i(t-s)h -1 ψ(h 2 P ) (hD s + ψ(h 2 P ))v k (s)ds.
For k = 0, we compute the action of hD s + ψ(h 2 P ) on v k (s) and get

(hD s + ψ(h 2 P ))v k (s) = h(it 0 ) -1 θ ((s -t k )/t 0 )v(s) + θ((s -t k )/t 0 ) ψ(h 2 P ), x -1 f (h 2 P )e -ish -1 ψ(h 2 P ) u 0 =: v 1 k (s) + v 2 k (s).
Due to the support property of θ, we have v k (0) = 0. Now, we have for k = 0,

f 1 (h 2 P )v k (t) = ih -1 t 0 e -i(t-s)h -1 ψ(h 2 P ) f 1 (h 2 P )(v 1 k (s) + v 2 k (s))ds.
We remark that both t, s belong to I k = (t k -t 0 , t k + t 0 ). Up to a translation in time t → t -t k and the same for s, we can apply the inhomogeneous Strichartz estimates given in Corollary 4.4 with ϕ 2 = f 1 and obtain

f 1 (h 2 P )v k L p (R,L q ) = f 1 (h 2 P )v k L p (I k ,L q ) ≤ Ch -κp,q-1 v 1 k L 1 (I k ,L 2 ) + v 2 k L 1 (I k ,L 2
) . Here κ p,q is given in Corollary 4.4. We have

v 1 k L 1 (I k ,L 2 ) = h(it 0 ) -1 θ ((s -t k )/t 0 ) x -1 f (h 2 P )e -ish -1 (hΛg) σ u 0 L 1 (I k ,L 2 ) ≤ h(it 0 ) -1 θ ((s -t k )/t 0 ) L 2 (I k ) x -1 f (h 2 P )e -ish -1 (hΛg) σ u 0 L 2 (I k ,L 2 ) ≤ Ch x -1 f (h 2 P )e -ish -1 (hΛg) σ u 0 L 2 (I k ,L 2 ) ,
where we use Cauchy Schwarz inequality to go from the first to the second line. Similarly

v 2 k L 1 (I k ,L 2 ) ≤ [ψ(h 2 P ), x -1 ]f (h 2 P )e -ith -1 (hΛg) σ u 0 L 2 (I k ,L 2 ) ≤ Ch x -1 f (h 2 P )e -ith -1 (hΛg) σ u 0 L 2 (I k ,L 2 ) ,
where we use the fact that [ψ(h 2 P ),

x -1 ] f1 (h 2 P ) x is of size O L(L 2 ) (h) by pseudo-differential cal- culus. This implies that for k = 0, f 1 (h 2 P )v k L p (I k ,L q ) ≤ Ch -κp,q x -1 f (h 2 P )e -ith -1 (hΛg) σ u 0 L 2 (I k ,L 2 ) .
For k = 0, we have

f 1 (h 2 P )v 0 L p (R,L q ) ≤ C f (h 2 P )e -ith -1 (hΛg) σ u 0 L p (I,L q ) ≤ Ch -κp,q f (h 2 P )u 0 L 2 .
Here the first inequality follows from the facts that θ(t/t 0 ) and f 1 (h 2 P ) x -1 are bounded in L(L p (R)) and L(L q ) respectively. The second inequality follows from homogeneous Strichartz estimates (4.5). By almost orthogonality in time and the fact that p ≥ 2, we have

f 1 (h 2 P )v L p (R,L q ) ≤ C k∈Z f 1 (h 2 P )v k 2 L p (R,L q ) 1/2 ≤ Ch -κp,q k∈Z\0 x -1 f (h 2 P )e -ith -1 (hΛg) σ u 0 2 L 2 (I k ,L 2 ) + f (h 2 P )u 0 2 L 2 1/2 ≤ Ch -κp,q x -1 f (h 2 P )e -ith -1 (hΛg) σ u 0 L 2 (R,L 2 ) + f (h 2 P )u 0 L 2 ≤ Ch -κp,q f (h 2 P )u 0 L 2 ,
the last inequality comes from Proposition 2.12 with N 0 = 1. By using (4.7), we obtain

x -1 f (h 2 P )e -ith -1 (hΛg) σ u 0 L p (R,L q ) ≤ Ch -κp,q f (h 2 P )u 0 L 2 . This implies that for all χ ∈ C ∞ 0 (R d ), χf (h 2 P )e -ith -1 (hΛg) σ u 0 L p (R,L q ) ≤ Ch -κp,q f (h 2 P )u 0 L 2 .
Therefore, by scaling in time, we get χf (h 2 P )e -itΛ σ g u 0

L p (R,L q ) ≤ Ch -γp,q f (h 2 P )u 0 L 2 .
The proof of (3.19) is now complete.

Strichartz estimates outside compact sets

5.1. The Isozaki-Kitada parametrix. Notations and the Hamilton-Jacobi equations. For any J (0, +∞) an open interval, any R > 0, any τ ∈ (-1, 1), we define the outgoing region Γ + (R, J, τ ) and the incoming region Γ -(R, J, τ ) by

Γ ± (R, J, τ ) := (x, ξ) ∈ R 2d , |x| > R, |ξ| 2 ∈ J, ± x • ξ |x ξ| > τ .
Let σ ∈ (0, ∞) 1 . We will use the so called Isozaki-Kitada parametrix to give an approximation at high frequency of the form

e -ith -1 ψ(h 2 P ) Op h (χ ± ) = J ± h (a ± (h))e -ith -1 (hΛ) σ J ± h (b ± (h)) + R ± N (h), (5.1) 
with Λ = √ -∆ where ∆ is the free Laplacian operator on R d and ψ

(•) = f (•) √ • σ ∈ C ∞ 0 (R\{0}) for some f ∈ C ∞ 0 (R\{0}) satisfying f = 1 near supp(f ).
The functions χ ± are supported in Γ ± (R 4 , J 4 , τ 4 ) (see Proposition 5.6 for the choice of J 4 and τ 4 ) and

J ± h (a ± (h)) = N -1 j=1 h j J ± h (a ± j ),
where

J ± h (a ± )u(x) = (2πh) -d R 2d e ih -1 (S ± R (x,ξ)-y•ξ) a ± (x, ξ)u(y)dydξ, u ∈ S (R d ).
The amplitude functions a ± j are supported in Γ ± (R, J 1 , τ 1 ) (see Proposition 5.1) and the phase functions S ± R := S ± 1,R will be described later. The same notation for

J ± h (b ± (h)) is used with b ± k in place of a ± j .
The Isozaki-Kitada parametrix at low frequency is of the form

e -it ψ( -2 P ) Op (χ ± )ζ( x) = J ± (a ± )e -it Λ σ J ± (b ± ) + R ± N (t, ), (5.2) 
where ψ is as above and ζ ∈ C ∞ (R d ) supported outside B(0, 1) and equal to 1 near infinity. The functions χ ± are supported in Γ ± (R 4 , J 4 , τ 4 ) and

J ± (a ± ) = N j=1 J ± (a ± ,j ),
where

J ± (a) := D J ± (a), J ± (b) := J ± (b) D -1 , ( 5.3) 
with D as in (2.4),

J ± (a)u(x) := (2π) -d R 2d e i(S ± ,R (x,ξ)-y•ξ) a(x, ξ)u(y)dydξ,
and

J ± (b) u(x) = (2π) -d R 2d e i(x•ξ-S ± ,R (y,ξ)) b(y, ξ)u(y)dydξ.
The amplitude functions a ± ,j are supported in Γ ± (R, J 1 , τ 1 ) and the phase functions S ± ,R will be described in the next proposition. The same notation for J ± (b ± ) will be used with b ± in place of a ± . 1 The construction of the Isozaki-Kitada parametrix we present here works well for the (half) wave equation, i.e. σ = 1.

Proposition 5.1. Fix J 1 (0, +∞) and τ 1 ∈ (-1, 1). Then there exists two families of smooth functions (S ± ,R ) R 1 satisfying the following Hamilton-Jacobi equation

p (x, ∇ x S ± ,R (x, ξ)) = |ξ| 2 , (5.4)
for all (x, ξ) ∈ Γ ± (R, J 1 , τ 1 ), where p is given in (2.5). Moreover, for all α, β ∈ N d , there exists

C αβ > 0 such that ∂ α x ∂ β ξ S ± ,R (x, ξ) -x • ξ ≤ C αβ min R 1-ρ-|α| , x 1-ρ-|α| , (5.5)
for all x, ξ ∈ R d , all ∈ (0, 1] and R 1.

Remark 5.2. From (5.5), we see that for R > 0 large enough, the phase functions satisfy for all x, ξ ∈ R d and all ∈ (0, 1],

∇ x • ∇ ξ S ± ,R (x, ξ) -Id R d ≤ 1 2 , ( 5.6) 
and for all |α| ≥ 1 and all |β| ≥ 1,

|∂ α x ∂ β ξ S ± ,R (x, ξ)| ≤ C αβ .
(5.7)

The estimates (5.6) and (5.7) are useful in the construction of Isozaki-Kitada parametrix as well as the L 2 -boundedness of Fourier integral operators.

Proof of Proposition 5.1. We firstly note that the case = 1 is given in [7, Proposition 3.1]. Let J 1 J 0 (0, +∞) and -1 < τ 0 < τ 1 < 1. By using Lemma 2.4, in the region Γ ± (R/2, J 0 , τ 0 ) which implies that |x| > 1, we see that the function p (x, ξ) satisfies for all α, β ∈ N d , there exists C αβ > 0 such that for all (x, ξ) ∈ Γ ± (R/2, J 0 , τ 0 ) and all ∈ (0, 1],

|∂ α x ∂ β ξ p (x, ξ)| ≤ C αβ ξ 2-|β| .
Thanks to this uniform bound, by using the argument given in [37, Proposition 4.1], we can solve (for R > 0 large enough) the Hamilton-Jacobi equation (5.4) in Γ ± (R/2, J 0 , τ 0 ) uniformly with respect to ∈ (0, 1]. We denote such solutions by S± . Next, by choosing a special cutoff (see [START_REF] Bouclet | Strichartz estimates for long range perturbations[END_REF], see also (5.9))

χ ± R ∈ S(0, -∞) such that χ ± R (x, ξ) = 1 for (x, ξ) ∈ Γ ± (R, J 1 , τ 1 ) and supp(χ ± R ) ⊂ Γ ± (R/2, J 0 , τ 0 ), then the functions S ± ,R (x, ξ) = χ ± R (x, ξ) S± (x, ξ) + (1 -χ ± R )(x, ξ)
x, ξ satisfy the properties of Proposition 5.1, where x, ξ = x • ξ. Construction of the parametrix. Let us firstly consider the high frequency case (5.1). The construction in the low frequeny case (5.2) is similar up to some modifications (see after Theorem 5.8). We only treat the outgoing case (+), the incoming one is similar. We start with the following Duhamel formula

e -ith -1 ψ(h 2 P ) J + h (a + (h)) = J + h (a + (h))e -ith -1 (hΛ) σ -ih -1 t 0 e -i(t-s)h -1 ψ(h 2 P ) ψ(h 2 P )J + h (a + (h)) -J + h (a + (h))(hΛ) σ e -ish -1 (hΛ) σ ds. (5.8)
We want the term ψ(h 2 P )J + h (a + (h)) -J + h (a + (h))(hΛ) σ to have a small contribution. To do so, we firstly introduce a special cutoff. For any J 2 J 1 (0, +∞) and -1 < τ 1 < τ 2 < 1, we define

χ + 1→2 (x, ξ) = κ |x| R 2 ρ 1→2 (|ξ| 2 )θ 1→2 + x • ξ |x ξ| , ( 5.9) 
where κ ∈ C ∞ (R) is non-decreasing such that κ(t) = 1 when t ≥ 1/2 0 when t ≤ 1/4 ,

and ρ 1→2 ∈ C ∞ (R) is non-decreasing such that ρ 1→2 = 1 near J 2 , supported in J 1 and θ 1→2 ∈ C ∞ 0 (R) such that θ 1→2 (t) = 1 when t > τ 2 -ε 0 when t < τ 1 + ε , with ε ∈ (0, τ 2 -τ 1 ). We see that χ + 1→2 ∈ S(0, -∞) and for R 1, supp(χ + 1→2 ) ⊂ Γ + (R, J 1 , τ 1 ), χ + 1→2 = 1 near Γ + (R 2 , J 2 , τ 2 ). Proposition 5.3. Let S + R := S + 1,R
be the solution of (5.4) given as in Proposition 5.1. Let J 2 be an arbitrary open interval such that J 2 J 1 (0, +∞) and τ 2 be an arbitrary real number such that -1 < τ 1 < τ 2 < 1. Then for R > 0 large enough, we can find a sequence of symbols a + j ∈ S(-j, -∞) supported in Γ + (R, J 1 , τ 1 ) such that for all N ≥ 1,

ψ(h 2 P )J + h (a + (h)) -J + h (a + (h))(hΛ) σ = h N R N (h)J + h (a + (h)) + h N J + h (r + N (h)) + J + h (ǎ + (h)), (5.10) sup Γ + (R,J1,τ1) |a + 0 (x, ξ)| 1, (5.11) where a + (h) = N -1 j=0 h j a + j and (r + N (h)) h∈(0,1] is bounded in S(-N, -∞), R N (h) is as in Proposition 2.2, (ǎ + (h)) h∈(0,1] is bounded in S(0, -∞) and

is a finite sum depending on N of the form

ǎ+ (h) = |α|≥1 ǎ+ α (h)∂ α x χ + 1→2 ,
(5.12) with (ǎ + α (h)) h∈(0,1] bounded in S(0, -∞) and χ + 1→2 given in (5.9). Proof. We firstly use the parametrix of ψ(h 2 P ) given in Proposition 2.2 and get ψ(h 2 P ) = Op h (q(h)) + h N R N (h),

(5. [START_REF] Christ | Maximal functions associated to filtrations[END_REF] where q(h) = N -1 k=0 h k q k and q k ∈ S(-k, -∞), k = 0, ..., N -1. Note that q 0 (x, ξ) = ψ(p(x, ξ)) = f (p(x, ξ)) p(x, ξ) σ and supp(q k ) ⊂ supp(ψ • p). Up to remainder term, we consider the action of Op h (q(h)) on J + h (a + (h)). To do this, we need the following action of a pseudo-differential operator on a Fourier integral operator (see e.g. [START_REF] Robert | Autour de l'approximation semi-classique[END_REF]], [2, Appendix] or [START_REF] Ruzhansky | Weighted Sobolev L 2 estimates for a class of Fourier integral operators[END_REF]).

Proposition 5.4. Let a ∈ S(µ 1 , -∞) and b ∈ S(µ 2 , -∞) and S satisfy (5.6) and (5.7). Then

Op h (a) • J h (S, b) = N -1 j=0 h j J h (S, (a b)j) + h N J h (S, r N (h)),
where (a b) j is an universal linear combination of

∂ β η a(x, ∇ x S(x, ξ))∂ β-α x b(x, ξ)∂ α1 x S(x, ξ) • • • ∂ α k x S(x, ξ), with α ≤ β, α 1 + • • • α k = α and |α l | ≥ 2 for all l = 1, ..., k and |β| = j. The maps (a, b) → (a b) j and (a, b) → r N (h) are continuous from S(µ 1 , -∞) × S(µ 2 , -∞) to S(µ 1 + µ 2 -j, -∞) and S(µ 1 + µ 2 -N, -∞) respectively.
In particular, we have

(a b) 0 (x, ξ) = a(x, ∇ x S(x, ξ))b(x, ξ), i(a b) 1 (x, ξ) = ∇ η a(x, ∇ x S(x, ξ)) • ∇ x b(x, ξ) + 1 2 tr ∇ 2 η,η a(x, ∇ x S(x, ξ)) • ∇ 2 x,x S(x, ξ) b(x, ξ).
Using this result, we have

Op h (q(h))J + h (a + (h)) = N -1 k+j+l=0 h k+j+l J + h ((q k a + j ) l ) + h N J + h (r + N (h)).
On the other hand, we have

J + h (a + (h))(hΛ) σ = J + h (a + (h)|ξ| σ ). Thus we get ψ(h 2 P )J + h (a + (h)) -J + h (a + (h))(hΛ) σ = N -1 r=0 h r J + h   k+j+l=r (q k a + j ) l -a + r |ξ| σ   +h N J + h (r + N (h)) + h N R N (h)J + h (a + (h))
. In order to make the left hand side of (5.10) small, we need to find a + j ∈ S(-j, -∞) supported in Γ + (R, J 1 , τ 1 ) such that k+j+l=r (q k a + j ) l -a + r |ξ| σ = 0, r = 0, ..., N -1.

In particular, q 0 (x, ∇ x S + R (x, ξ)) -|ξ| σ a + 0 (x, ξ) = 0. By noting that if p(x, ξ) ∈ supp(f ) (see after (5.1)), then q 0 (x, ξ) = p(x, ξ) σ . Thus in the region where the Hamilton-Jacobi equation (5.4) with = 1 is satisfied, we need to show the following transport equations (q 0 a + 0 ) 1 + (q 1 a + 0 ) 0 = 0 (5.14)

(q 0 a + r ) 1 + (q 1 a + r ) 0 = - k+j+l=r+1 j≤r-1
(q k a + j ) l , r = 1, ..., N -1.

(5.15)

Here (q 0 a + ) 1 + (q 1 a + ) 0 can be written as

i (q 0 a + ) 1 (x, ξ) + (q 1 a + ) 0 (x, ξ) = d j=1 V + j (x, ξ)∂ xj a + (x, ξ) + p + 0 (x, ξ)a + (x, ξ),
where

V + j (x, ξ) = (∂ ξj q 0 )(x, ∇ x S + R (x, ξ)), p + 0 (x, ξ) = iq 1 (x, ∇ x S + R (x, ξ)) + 1 2 tr ∇ 2 ξ q 0 (x, ∇ x S + R (x, ξ)) • ∇ 2 x S + R (x, ξ) .
We now consider the flow X + (t, x, ξ) associated to

V + = (V + j ) d j=1 as Ẋ+ (t) = V + (X + (t), ξ), X + (0) = x.
(5.16)

We have the following result (see [3, Proposition 3.2] or [2, Appendix]).

Proposition 5.5. Let σ ∈ (0, ∞), J 1 (0, +∞) and -1 < τ 1 < 1. There exists R > 0 large enough and e 1 > 0 small enough such that for all (x, ξ) ∈ Γ + (R, J 1 , τ 1 ), the solution X + (t, x, ξ) to (5.16) is defined for all t ≥ 0 and satisfies

|X + (t, x, ξ)| ≥ e 1 (t + |x|),
(5.17)

(X + (t, x, ξ), ξ) ∈ Γ + (R, J 1 , τ 1 ).
(5.18)

Moreover, for all α, β ∈ N d , there exists C αβ > 0 such that for all t ≥ 0 and all h ∈ (0, 1],

|∂ α x ∂ β ξ (X + (t, x, ξ) -x -σtξ|ξ| σ-2 )| ≤ C αβ t x -ρ-|α| , (5.19)
for all (x, ξ) ∈ Γ + (R, J 1 , τ 1 ). Now, we can define for (x, ξ) ∈ Γ + (R, J 1 , τ 1 ) the functions

A + 0 (x, ξ) = exp +∞ 0 p + 0 (X + (t, x, ξ), ξ)dt , A + r (x, ξ) = +∞ 0 p + r (X + (t, x, ξ), ξ) exp t 0 p + 0 (X + (s, x, ξ), ξ)ds dt,
for r = 1, ..., N -1, where

p + r (x, ξ) = i k+j+l=r+1 j≤r-1 (q k A + j ) l (x, ξ).
Using (5.17) and the fact that p + r ∈ S(-1 -ρ -r, -∞) for r = 0, ..., N -1, we see that p + r (X + (t, x, ξ)) are integrable with respect to t. Hence A + r (x, ξ) are well-defined. Moreover, we have (see e.g. [3, Proposition 3.1]) that for all (x, ξ)

∈ Γ + (R, J 1 , τ 1 ), |∂ α x ∂ β ξ (A + 0 (x, ξ) -1)| ≤ C αβ x -|α| , (5.20) |∂ α x ∂ β ξ A + r (x, ξ)| ≤ C αβ x -r-|α| .
We also have that A + 0 , A + r for r = 1, ..., N -1 solve (5.14) and (5.15) respectively in Γ + (R, J 1 , τ 1 ). Now, by setting a + r = χ + 1→2 A + r (see (5.9)), we see that a + r are globally defined on R 2d and a + r ∈ S(-r, -∞). It is easy to see (5.11) from (5.20). We next insert a + (h) = N -1 j=1 h j a + j into the left hand side of (5.10) and get

ψ(h 2 P )J + h (a + (h)) -J + h (a + (h))(hΛ) σ = N -1 r=0 h r J + h   k+j+l=r (q k χ + 1→2 A + j ) l -χ + 1→2 A + r |ξ| σ   +h N J + h (r + N (h)) + h N R N (h)J + h (a + (h))
. Using the expression of (a b) l given in Proposition 5.4, we see that

(q k χ + 1→2 A + j ) l = χ + 1→2 (q k A + j ) l + terms in which derivatives fall into χ + 1→2 .
This gives (5.10) with ǎ+ (h) as in (5.12). The proof is complete.

We now are able to construct the symbols b + k , for k = 0, ..., N -1. Proposition 5.6. Let J 3 , J 4 and τ 3 , τ 4 be such that J 4 J 3 J 2 and -1 < τ 2 < τ 3 < τ 4 < 1. Then for R > 0 large enough and all χ + supported in Γ + (R 4 , J 4 , τ 4 ), there exists a sequence of symbols b

+ k ∈ S(-k, -∞), for k = 0, ..., N -1, supported in Γ + (R 3 , J 3 , τ 3 ) such that J + h (a + (h))J + h (b + (h)) = Op h (χ + ) + h N Op h (r + N (h)), (5.21)
where a

+ (h) = N -1 j=0 h j a + j is given in Proposition 5.3 and b + (h) = N -1 k=0 h k b + k and (r + N (h)) h∈(0,1] is bounded in S(-N, -∞).
Before giving the proof, we need the following result (see [2,Appendix] or [START_REF] Bouclet | Spectral distributions for long range perturbations[END_REF]Lemma 3.3]).

Lemma 5.7. Let S + R := S + 1,R be as in Proposition 5.1. For x, y, ξ ∈ R d , we define

η + (R, x, y, ξ) := 1 0 ∇ x S + R (y + λ(x -y), ξ)dλ.
(5.22)

Then for R > 0 large enough, we have the following properties. i. For all x, y ∈ R d , the map ξ → η + (R, x, y, ξ) is a diffeomorphism from R d onto itself. Let η → ξ + (R, x, y, η) be its inverse. ii. There exists C > 1 such that for all x, y, η ∈ R d ,

C -1 η ≤ ξ + (R, x, y, η) ≤ C η .
iii. For all α, α , β ∈ N d , there exists

C αα β > 0 such that for all x, y, η ∈ R d and all k ≤ |α|, k ≤ |α |, |∂ α x ∂ α y ∂ β η ξ + (R, x, y, η) -η | ≤ C αα β x -k y -ρ-k x -y ρ+k+k .
Proof of Proposition 5.6. We firstly consider the general term J + h (a + )J + h (b + ) and write its kernel as

K + h (x, y) = (2πh) -d R d e ih -1 (S + R (x,ξ)-S + R (y,ξ)) a + (x, ξ)b + (y, ξ)dξ.
By Taylor's formula, we have

S + R (x, ξ) -S + R (y, ξ) = x -y, η + (R,
x, y, ξ) , where η + given in (5.22). By change of variable ξ → ξ + (R, x, y, η), the kernel becomes

K + h (x, y) = (2πh) -d R d e ih -1 (x-y)η a + (x, ξ + (R, x, y, η))b + (y, ξ + (R, x, y, η))| det ∂ η ξ + (R, x, y, η)|dη.
Now, using Lemma (5.7), the symbolic calculus gives

J + h (a + )J + h (b + ) = N -1 l=0 h l Op h ((a + b + ) l ) + h N Op h (r + N (h)),
where (a

+ b + ) l ∈ S(-l, -∞) is of the form (a + b + ) l (x, η) = |α|=l ∂ α y D α η c + (x, y, η) y=x α! , for l = 0, ..., N -1 with c + (x, y, η) = a + (x, ξ + (R, x, y, η))b + (y, ξ + (R, x, y, η))| det ∂ η ξ + (R, x, y, η)|, and (r + N (h)) h∈(0,1] is bounded in S(-N, -∞). We have now J + h (a + (h))J + h (b + (h)) = j,k h j+k J + h (a + j )J + h (b + k ) = N -1 j+k+l=0 h j+k+l Op h ((a + j b + k ) l ) + h N Op h (r + N (h)).
Compare with (5.21), the result follows if we solve the following equations:

(a + 0 b + 0 ) 0 = χ + , (a + 0 b + r ) 0 = - j+k+l=r k≤r-1 (a + j b + k ) l , r = 1, ..., N -1.
We can define b + 0 , ..., b + N -1 iteratively by

b + 0 (x, ξ) = χ + (x, η + (R, x, x, ξ)) a + 0 (x, ξ) det ∂ η ξ + (R, x, x, η + (R, x, x, ξ)) -1 , b + r (x, ξ) = - j+k+l=r k≤r-1 (a + j b + k ) l (x, η + (R, x, x, ξ)) a + 0 (x, ξ) det ∂ η ξ(R, x, x, η + (R, x, x, ξ)) -1
, for r = 1, ..., N -1. Note that by (5.11) and Lemma 5.7, the term in (

• • • ) -1 cannot vanish on the support of χ + (•, η + (R, •, •, •)).
Thus the above functions are well-defined. Moreover, by choosing R > 0 large enough with the fact

η + (R, x, x, ξ) = ∇ x S + R (x, ξ) = ξ + O(min{R -ρ , x -ρ }),
we see that the support of

χ + (x, η + (R, x, x, ξ)) is contained in Γ + (R 3 , J 3 , τ 3
). This completes the proof of Proposition 5.6. By (5.8), Proposition 5.3 and Proposition 5.6, we are able to state the Isozaki-Kitada parametrix for the fractional Schrödinger equation at high frequency.

Theorem 5.8. Let σ ∈ (0, ∞). Fix J 4 (0, +∞) open interval and -1 < τ 4 < 1. Choose arbitrary open intervals J 1 , J 2 , J 3 such that J 4 J 3 J 2 J 1 (0, +∞) and arbitrary τ 1 , τ 2 , τ 3 such that -1 < τ 1 < τ 2 < τ 3 < τ 4 < 1.
Then for R > 0 large enough, we can find sequences of symbols

a ± j ∈ S(-j, -∞), supp(a ± j ) ⊂ Γ ± (R, J 1 , τ 1 ), such that for all χ ± ∈ S(0, -∞), supp(χ ± ) ⊂ Γ ± (R 4 , J 4 , τ 4 ),
there exist sequences of symbols

b ± k ∈ S(-k, -∞), supp(b ± k ) ⊂ Γ ± (R 3 , J 3 , τ 3
), such that for all N ≥ 1, for all h ∈ (0, 1] and all ±t ≥ 0,

e -ith -1 ψ(h 2 P ) Op h (χ ± ) = J ± h (a ± (h))e -ith -1 (hΛ) σ J ± h (b ± (h)) + R ± N (t, h)
, where the phase functions S ± R := S ± 1,R are as in Proposition 5.1 and the remainder terms

R ± N (t, h) = R ± 1 (N, t, h) + R ± 2 (N, t, h) + R ± 3 (N, t, h) + R ± 4 (N, t, h), with R ± 1 (N, t, h) = -h N -1 e -ith -1 ψ(h 2 P ) Op h (r ± N (h)), R ± 2 (N, t, h) = -ih N -1 t 0 e -i(t-s)h -1 ψ(h 2 P ) R N (h)J ± h (a ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) ds, R ± 3 (N, t, h) = -ih N -1 t 0 e -i(t-s)h -1 ψ(h 2 P ) J ± h (r ± N (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) ds, R ± 4 (N, t, h) = -ih -1 t 0 e -i(t-s)h -1 ψ(h 2 P ) J ± h (ǎ ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) ds.
Here (r ± N (h)) h∈(0,1] , (r ± N (h)) h∈(0,1] are bounded in S(-N, -∞), R N (h) is as in (5.13), (ǎ ± (h)) h∈(0,1] are bounded in S(0, -∞) and are finite sums depending on N of the form

ǎ± (h) = |α|≥1 ǎ± α (h)∂ α x χ ± 1→2 , (5.23)
where (ǎ ± α (h)) h∈(0,1] are bounded in S(0, -∞) and χ ± 1→2 are given in (5.9).

We now give the main steps for the construction of the Isozaki-Kitada parametrix at low frequency. For simplicity, we omit the ± sign. Let us start with the following Duhamel formula e -it ψ( -2 P ) J (a ) = J (a )e -it Λ σ -i t 0 e -i(t-s) ψ( -2 P ) ψ( -2 P )J (a ) -J (a )Λ σ e -is Λ σ ds.

Thanks to the support of a , we can write

ψ( -2 P )J (a ) = ψ( -2 P )ζ 1 ( x)J (a ),
where

ζ 1 ∈ C ∞ (R d ) is supported outside B(0, 1) and satisfies ζ 1 (x) = 1 for |x| > R. Using the parametrix of ψ( -2 P )ζ 1 ( x)
given in Proposition 2.7 (by taking the adjoint), we have

ψ( -2 P )ζ 1 ( x) = N -1 k=0 ζ1 ( x)Op (q ,k )ζ 1 ( x) + R N ( ),
where

q ,0 (x, ξ) = ψ(p (x, ξ)) = f (p (x, ξ)) p (x, ξ) σ , supp(q ,k ) ⊂ supp(ψ • p ) and (R N ( )) ∈(0,1]
satisfies (2.8). Here ζ1 ∈ C ∞ (R d ) is supported outside B(0, 1) and ζ1 = 1 near supp(ζ 1 ). We want to find a = N -1 j=0 a ,j so that the term ψ( -2 P )J (a ) -J (a )Λ σ has a small contribution. By the choice of cutoff functions and the action of pseudo-differential operators on Fourier integral operators given in Proposition 5.4 with h = 1, we have

ψ( -2 P )J (a ) -J (a )Λ σ = N -1 r=0   k+j+l=r J ((q ,k a ,j ) l ) -J (a ,r |ξ| σ )   +R N ( )J (a ) + J (r N ( )), (5.24) 
where (r N ( )) ∈(0,1] is bounded in S(-N, -∞). This implies that we need to find (a ,j ) ∈(0,1] bounded in S(-j, -∞) supported in Γ(R, J 1 , τ 1 ) such that k+j+l=r (q ,k a ,j ) l -a ,r |ξ| σ = 0, r = 0, ..., N -1.

By noting that if p (x, ξ) ∈ supp(f ), then q ,0 (x, ξ) = p (x, ξ) σ . This leads to the following Hamilton-Jacobi and transport equations,

p (x, ∇ x S ,R (x, ξ)) = |ξ| 2 , (5.25) (q ,0 a ,0 ) 1 + (q ,1 a ,0 ) 0 = 0 (5.26) (q ,0 a ,r ) 1 + (q ,1 a ,r ) 0 = - k+j+l=r+1 j≤r-1
(q ,k a ,j ) l , r = 1, ..., N -1.

(5.27)

We can solve (5.25) on Γ ± (R, J 1 , τ 1 ) using Proposition 5.1. We then solve (5.26), (5.27) on Γ ± (R, J 1 , τ 1 ) and extend solutions globally on R 2d . We obtain

ψ( -2 P )J (a ) -J (a )Λ σ = R N ( )J (a ) + J (r N ( )) + J (ǎ( )),
where (ǎ( )) ∈(0,1] is bounded in S(0, -∞) and is a finite sum depending on N of the form

ǎ( ) = |α|≥1 ǎα ( )∂ α x χ 1→2 ,
with (ǎ α ( )) ∈(0,1] bounded in S(0, -∞) and χ 1→2 as in (5.9). Next, we can find bounded families of symbols b ,k ∈ S(-k, -∞) for k = 0, ..., N -1 supported in Γ(R 3 , J 3 , τ 3 ) such that N, -∞). This is possible by writing for R large enough J (b ) = ζ( x)J (b ) and taking the adjoint. We have the following Isozaki-Kitata parametrix for the fractional Schrödinger equation at low frequency.

J (a )J (b ) = Op (χ )ζ( x) + Op (r N ( ))ζ( x), where b = N -1 k=0 b ,k and (r N ( )) ∈(0,1] is bounded in S(-
Theorem 5.9. Let σ ∈ (0, ∞), ζ ∈ C ∞ (R d ) be supported outside B(0, 1) and equal to 1 near infinity. Fix J 4 (0, +∞) open interval and -1 < τ 4 < 1. Choose arbitrary open intervals J 1 , J 2 , J 3 such that J 4 J 3 J 2 J 1 (0, +∞) and arbitrary τ 1 , τ 2 , τ 3 such that -1 < τ 1 < τ 2 < τ 3 < τ 4 < 1. Then for R > 0 large enough, we can find bounded families of symbols

(a ± ,j ) ∈(0,1] ∈ S(-j, -∞), supp(a ± ,j ) ⊂ Γ ± (R, J 1 , τ 1 ), such that for all (χ ± ) ∈(0,1] ∈ S(0, -∞), supp(χ ± ) ⊂ Γ ± (R 4 , J 4 , τ 4
), there exists families of symbols

(b ± ,k ) ∈(0,1] ∈ S(-k, -∞), supp(b ± ,k ) ⊂ Γ ± (R 3 , J 3 , τ 3
), such that for all N ≥ 1, for all ∈ (0, 1] and all ±t ≥ 0,

e -it ψ( -2 P ) Op (χ ± )ζ( x) = J ± (a ± )e -it Λ σ J ± (b ± ) + R ± N (t, )
, where the phase functions S ± ,R are given in Proposition 5.1 and the remainder terms

R ± N (t, ) = R ± 1 (N, t, ) + R ± 2 (N, t, ) + R ± 3 (N, t, ) + R ± 4 (N, t, ), with R ± 1 (N, t, ) = -e -it ψ( -2 P ) Op (r ± N ( ))ζ( x), R ± 2 (N, t, ) = -i t 0 e -i(t-s) ψ( -2 P ) R N ( )J ± (a ± )e -is Λ σ J ± (b ± ) ds, R ± 3 (N, t, ) = -i t 0 e -i(t-s) ψ( -2 P ) J ± (r ± N ( ))e -is Λ σ J ± (b ± ) ds, R ± 4 (N, t, ) = -i t 0 e -i(t-s) ψ( -2 P ) J ± (ǎ ± ( ))e -is Λ σ J ± (b ± ) ds.
Here (r ± N ( )) ∈(0,1] , (r ± N ( )) ∈(0,1] are bounded in S(-N, -∞), (R N ( )) ∈(0,1] is given in Proposition 2.7, (ǎ ± ( )) ∈(0,1] are bounded in S(0, -∞) and are finite sums depending on N of the form

ǎ± ( ) = |α|≥1 ǎ± α ( )∂ α x χ ± 1→2 ,
where (ǎ ± α ( )) ∈(0,1] are bounded in S(0, -∞) and χ ± 1→2 are as in (5.9). We have the following dispersive estimates for the main terms of the Isozaki-Kitada parametrix both at high and low frequencies. Proposition 5.10. Let σ ∈ (0, ∞)\{1}, S ± ,R be as in Proposition 5.1 and (a ± ) ∈(0,1] , (b ± ) ∈(0,1] be bounded in S(0, -∞) compactly supported in ξ away from zero.

1. Then for R > 0 large enough, there exists C > 0 such that for all t ∈ R and all h ∈ (0, 1],

J ± h (a ± )e -ith -1 (hΛ) σ J ± h (b ± ) L(L 1 ,L ∞ ) ≤ Ch -d (1 + |t|h -1 ) -d/2 , (5.28)
where a ± := a ± =1 , b ± := b ± =1 . 2. Then for R > 0 large enough, there exists C > 0 such that for all t ∈ R and all ∈ (0, 1],

J ± (a ± )e -it Λ σ J ± (b ± ) L(L 1 ,L ∞ ) ≤ C d (1 + |t|) -d/2 .
(5.29)

Proof. 1. For simplicity, we drop the superscript ±. The kernel of J h (a)e -ith -1 (hΛ) σ J h (b) reads

K h (t, x, y) = (2πh) -d R d e ih -1 (S R (x,ξ)-S R (y,ξ)-t|ξ| σ ) a(x, ξ)b(y, ξ)dξ.
The estimates (5.28) are in turn equivalent to

|K h (t, x, y)| ≤ Ch -d (1 + |t|h -1 ) -d/2 , ( 5.30) 
for all t ∈ R, h ∈ (0, 1] and x, y ∈ R d . We only consider t ≥ 0, the case t ≤ 0 is similar. Let us denote the compact support of the amplitude by K. Since a, b are bounded uniformly in x, y ∈ R d , we have

|K h (t, x, y)| ≤ Ch -d , for all t ∈ R and all x, y ∈ R d . If 0 ≤ t ≤ h or 1 + th -1 ≤ 2, then |K h (t, x, y)| ≤ Ch -d ≤ Ch -d (1 + th -1 ) -d/2 .
So, we can assume that t ≥ h or (1 + th -1 ) ≤ 2th -1 and denote the phase function

Φ(R, t, x, y, ξ) = (S R (x, ξ) -S R (y, ξ))/t -|ξ| σ ,
and parameter λ = th -1 ≥ 1. We can rewrite

Φ(R, t, x, y, ξ) = (x -y)/t, η(R, x, y, ξ) -|ξ| σ , where η(R, x, y, ξ) = 1 0 ∇ x S R (y + λ(x -y), ξ)dλ.
Using the properties of the phase functions S R given in (5.5), we have that

η(R, x, y, ξ) = ξ + Q(R, x, y, ξ),
where Q(R, x, y, ξ) is a vector in R d satisfying for R > 0 large enough,

|∂ β ξ Q(R, x, y, ξ)| ≤ C β R -ρ , ( 5.31) 
for all x, y ∈ R d and ξ ∈ K. We have

∇ ξ Φ(R, t, x, y, ξ) = x -y t • (Id R d + ∇ ξ Q(R, x, y, ξ)) -σξ|ξ| σ-2 .
If |(x -y)/t| ≥ C for some constant C > 0 large enough then for R > 0 large enough, there exists

C 1 > 0, |∇ ξ Φ(R, t, x, y, ξ)| ≥ 1 2 x -y t ≥ C 1 .
Thus the phase is non-stationary. By using integration by parts with respect to ξ together with the fact

|∂ β ξ Φ(R, t, x, y, ξ)| ≤ C β x -y t , |β| ≥ 2,
we have that for all N ≥ 1,

|K h (t, x, y)| ≤ Ch -d (th -1 ) -N ≤ Ch -d (1 + th -1 ) -d/2 ,
provided N is taken bigger than d/2. The same result still holds for |(x -y)/t| ≤ c for some c > 0 small enough. Therefore, we can assume that c ≤ |x -y/t| ≤ C. In this case, we write

∇ 2 ξ Φ(R, t, x, y, ξ) = x -y t • ∇ 2 ξ Q(R, x, y, ξ) -σ|η| σ-2 Id R d + (σ -2) η • η t |η| 2 .
Using the fact that σ ∈ (0, ∞)\{1} and

det σ|η| σ-2 Id R d + (σ -2) η • η t |η| 2 = σ d |σ -1 η| (σ-2)d ≥ C
and (5.31), we see that for R > 0 large enough, the map ξ → ∇ ξ Φ(R, t, x, y, ξ) is a local diffeomorphism from a neighborhood of K to its range. Moreover, for all β ∈ N d satisfying |β| ≥ 1, we have

|∂ β ξ Φ(R, t, x, y, ξ)| ≤ C β .
The stationary phase theorem then implies that for R > 0 large enough, all t ≥ h and all x, y ∈ R

d satisfying c ≤ |(x -y)/t| ≤ C, |K h (t, x, y)| ≤ Ch -d λ -d/2 ≤ Ch -d (1 + th -1 ) -d/2 .
This gives (5.30). 2. We are now in position to show (5.29). As above, we drop the superscript ± for simplicity. We see that up to a conjugation by D , the kernel of J (a )e -it Λ σ J (b ) reads

K (t, x, y) = (2π) -d R d e i(S ,R (x,ξ)-t |ξ| σ -S ,R (y,ξ)) a (x, ξ)b (y, ξ)dξ.
The dispersive estimates (5.29) follow from

|K (t, x, y)| ≤ C(1 + |t|) -d/2 , ( 5.32) 
for all t ∈ R uniformly in x, y ∈ R d , ∈ (0, 1] and the fact that

D L(L ∞ ) = d/2 , D -1 L(L 1 ) = d/2
. The estimates (5.32) are proved by repeating the same line as above. The proof is complete.

Micro-local propagation estimates.

In this paragraph, we will prove some propagation estimates which are useful for our purpose. To do this, we need the following result (see [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF]Lemma 4.1]).

Lemma 5.11. Let τ + , τ -∈ (-1, 1).

1. For all x, y, ξ ∈ R d \{0} satisfying ±x • ξ/|x ξ| > τ ± and ±t ≥ 0, we have

± (x + tξ) • ξ |x + tξ||ξ| > τ ± and |x + tξ| ≥ c ± (|x| + |tξ|), (5.33 
)

where c ± = √ 1 + τ ± / √ 2. 2. If τ -+ τ + > 0, then there exists c = c(τ -, τ + ) > 0 such that for all x, y, ξ ∈ R d \{0} satisfying +x • ξ/|x ξ| > τ + and -y • ξ/|y ξ| > τ -, we have |x -y| ≥ c(|x| + |y|).
(5.34)

We start with the following estimates.

Lemma 5.12.

Let σ ∈ (0, ∞) and χ ∈ C ∞ 0 (R d ) satisfying χ(x) = 1 for |x| ≤ 1. 1.
Using the notations given in Theorem 5.8, if R > 0 is large enough, then for all m ≥ 0, there exists C > 0 such that for all ±s ≥ 0 and all h ∈ (0, 1],

χ x/R 2 J ± h (ǎ ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) x m L(H -m ,H m ) ≤ Ch m s -m . (5.35) Moreover, x m (1 -χ) x/R 2 J ± h (ǎ ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) x m L(H -m ,H m ) ≤ Ch m s -m . (5.36)
In particular

x m J ± h (ǎ ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) x m L(H -m ,H m ) ≤ Ch m s -m .
(5.37) 2. Using the notations given in Theorem 5.9, if R > 0 is large enough, then for all m ≥ 0, there exists C > 0 such that for all ±s ≥ 0 and all ∈ (0, 1],

χ( x/R 2 )J ± (ǎ ± ( ))e -is Λ σ J ± (b ± ) x m L(L 2 ) ≤ C s -m .
(5.38)

Moreover,

x m (1 -χ)( x/R 2 )J ± (ǎ ± ( ))e -is Λ σ J ± (b ± ) x m L(L 2 ) ≤ C s -m .
(5.39)

In particular

x m J ± (ǎ ± ( ))e -is Λ σ J ± (b ± ) x m L(L 2 ) ≤ C s -m .
(5.40)

Proof. 1. We firstly consider the high frequency case. The proof in this case is essentially given in [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF]. For reader's convenience, we will give a sketch of the proof. The kernel of the operator in the left hand side of (5.35) reads

K ± h (s, x, y) = (2πh) -d χ(x/R 2 ) R d e ih -1 Φ ± (R,s,x,y,ξ) ǎ± (h, x, ξ)b ± (h, y, ξ)dξ y m ,
where the phase Φ ± (R, s, x, y, ξ) = S ± R (x, ξ) -s|ξ| σ -S ± R (y, ξ). Using (5.5), we have

|∇ ξ Φ ± (R, s, x, y, ξ)| = |x -σsξ|ξ| σ-2 -y + O(1)| ≥ |σsξ|ξ| σ-2 + y| -|x| + O(1),
where |x| ≤ CR 2 and (y, ξ) ∈ Γ ± (R 3 , J 3 , τ 3 ). We then apply (5.33) with ±y • ξ/|y ξ| > τ 3 and ±t = ±σs|ξ| σ-2 ≥ 0 to get

|σsξ|ξ| σ-2 + y| ≥ C(|s| + |y|), (5.41) 
for all ±s ≥ 0. We next use |y| > R 3 to control |x| R 2 and obtain

|∇ ξ Φ ± (R, s, x, y, ξ)| ≥ C(1 + |s| + |x| + |y|),
for all ±s ≥ 0. By integrations by part with respect to ξ with remark that higher derivatives of ∂ ξ Φ ± are controlled by |∇ ξ Φ ± |, we get for all N ≥ 0,

χ(x/R 2 ) R d e ih -1 Φ ± (R,s,x,y,ξ) ǎ± (h, x, ξ)b ± (h, y, ξ)dξ ≤ Ch N (1 + |s| + |x| + |y|) -N .
By choosing N large enough, we can dominate y m and get

|K ± h (s, x, y)| ≤ Ch N (1 + |s| + |x| + |y|) -N
, for all N large enough, therefore for all N ≥ 0. We do the same for higher derivatives ∂ α x ∂ β y K h (s, x, y) and the result follows. The kernel of the operator in the left hand side of (5.36) reads

K ± h (s, x, y) = (2πh) -d x m (1 -χ)(x/R 2 ) R d e ih -1 Φ ± (R,s,x,y,ξ) ǎ± (h, x, ξ)b ± (h, y, ξ)dξ y m .
We use the form of ǎ± (h) given in (5.23). In the case derivatives fall on κ(x/R 2 ), we have that |x| ≤ CR 2 and we can proceed as above. Note that we have from (5.33) with ±y • ξ/|y ξ| > σ 3 and ±t = ±σs|ξ| σ-2 ≥ 0 that

± (y + σsξ|ξ| σ-2 )ξ |y + σsξ|ξ| σ-2 ξ| > σ 3 and |y + σsξ|ξ| σ-2 | ≥ c ± (|s| + |y|).
In the case derivatives fall on θ 1→2 , we have

τ 1 + ε ≤ ± x • ξ |x ξ| ≤ τ 2 -ε or ∓ x • ξ |x ξ| ≥ -τ 2 + ε > -τ 2 + ε/2.
By choosing ε > 0 small enough such that τ 3 -τ 2 + ε/2 > 0, (5.34) gives

|y + σsξ|ξ| σ-2 -x| ≥ c |y + σsξ|ξ| σ-2 | + |x| ≥ C(|s| + |x| + |y|). Thus |∇ ξ Φ ± | ≥ C(1 + |s| + |x| + |y|)
for ±s ≥ 0 and (5.36) follows as above.

2. The proof for the low frequency case is the same as above up to the conjugation by the unitary map D in L 2 (R d ). For instance, the kernel of the operator in the left hand side of (5.38) reads

K ± (s, x, y) = (2π) -d χ(x/R 2 ) R d e iΦ ± (R,s,x,y,ξ) ǎ± ( , x, ξ)b ± (y, ξ)dξ y m ,
where the phase Φ ± (R, s, x, y, ξ) = S ± ,R (x, ξ) -s|ξ| σ -S ± ,R (y, ξ).

Lemma 5.13. Let σ ∈ (0, ∞).

1. Under the notations of Theorem 5.8, for all m ≥ 0 and all N large enough, there exists C > 0 such that for all ±s ≥ 0 and all h ∈ (0, 1],

x N/8 J ± h (r ± N (h))e -ish -1 (hΛ) σ J ± h (b ± (h)) x N/4 L(H -m ,H m ) ≤ Ch -d-2m s -N/4 .
(5. [START_REF] Sogge | Lectures on nonlinear wave equations[END_REF] 2. Under the notations of Theorem 5.9, for all N large enough, there exists C > 0 such that for all ±s ≥ 0 and all ∈ (0, 1],

x N/8 J ± (r ± N ( ))e -i sΛ σ J ± (b ± ) x N/4 L(L 2 ) ≤ C s -N/4 .
(5.43)

Proof. We only give the proof for the high frequency case, the low frequency one is similar. The kernel of the operator in the left hand side of (5.42) reads

K ± h (s, x, y) = (2πh) -d R d e ih -1 Φ ± (R,s,x,y,ξ) A ± (h, x, y, ξ)dξ,
where the amplitude 4 and is compactly supported in ξ. We have from Proposition 5.1 and (5.41) that ∇ ξ Φ ± (R, s, x, y, ξ) = x -σsξ|ξ| σ-2 -y + O(1) and |σsξ|ξ| σ-2 + y| ≥ C(|s| + |y|) for all ±s ≥ 0. By Peetre's inequality, we see that

A ± (h, x, y, ξ) = x N/8 r ± N (h, x, ξ)b ± (h, y, ξ) y N/
∇ ξ Φ ± -1 ≤ x y + σsξ|ξ| σ-2 -1 ≤ C x ( y + s ) -1 . We next write 1 = χ(∇ ξ Φ ± ) + (1 -χ)(∇ ξ Φ ± ),
where χ ∈ C ∞ 0 (R d ) with χ = 1 near 0. Then K ± h (s, x, y) is split into two terms. For the first term

I 1 = (2πh) -d R d
e ih -1 Φ ± (R,s,x,y,ξ) χ(∇ ξ Φ ± )A ± (h, x, y, ξ)dξ, by using the fact that

|χ(∇ ξ Φ ± )| ≤ C ∇ ξ Φ ± -3N/4 ≤ C x 3N/4 ( y + s ) -3N/4 ≤ C x 3N/4 y -N/2 s -N/4 , (5.44) and A ± (h, x, y, ξ) = O( x -7N/8 y N/4
), it is bounded by Ch -d x -N/8 y -N/4 s -N/4 . For the second term

I 2 = (2πh) -d R d e ih -1 Φ ± (R,s,x,y,ξ) (1 -χ)(∇ ξ Φ ± )A ± (h, x, y, ξ)dξ,
thanks to the support of (1 -χ), we can integrate by parts with respect to L := h∇ ξ Φ ± i|∇ ξ Φ ± | 2 • ∇ ξ to get many negative powers of |∇ ξ Φ ± | as we wish and estimate as in (5.44). Combine two terms and Schur's lemma, we have (5.42) for m = 0. For m ≥ 1, we can do the same with ∂ α x ∂ β y K ± h (s, x, y) with |α| ≤ m, |β| ≤ m. This completes the proof.

Combining Lemma 5.12 and Lemma 5.13, we have the following result.

Proposition 5.14.

1. Using the notations given in Theorem 5.8, for all 0 ≤ m ≤ d + 1 and all N large enough, we can write for k = 2, 3, 4,

R ± k (N, t, h) = h N/2 t 0 e -i(t-s)h -1 ψ(h 2 P ) x -N/8 B ± m (N, s, h) x -N/4 ds, with B ± m (N, s, h) L(H -m ,H m ) ≤ C s -N/4 , (5.45)
for all ±s ≥ 0 and h ∈ (0, 1]. 2. Using the notations given in Theorem 5.9 and for all N large enough, we can write for k = 2, 3, 4,

R ± k (N, t, ) = t 0 e -i(t-s) ψ( -2 P ) x -N/8 B ± N (s, ) x -N/4 ds, with B ± N (s, ) L(L 2 ) ≤ C s -N/4 , (5.46)
for all ±s ≥ 0 and all ∈ (0, 1].

Proof. The cases k = 3, 4 follow immediately from Lemma 5.12 and Lemma 5.13. It remains to show the case k = 2. Let us consider the high frequency case. We can write R N (h)E ± (h) as

x -N/8 x N/8 R N (h) x 7N/8 x N/8 x -N E ± (h) x N/4 x -N/4
,

where E ± (h) := J ± h (a ± (h))e -ish -1 (hΛ) σ J ± h (b ± (h))
. The first bracket is bounded in L(L 2 ) using Proposition 2.2. The second one is bounded in L(H -m , H m ) using Lemma 5.13 with the fact that x -N J ± h (a ± (h)) = J ± h ( r± N (h)) where r± N (h) are bounded in S(-N, -∞). The low frequency case is similar using Proposition 2.7.

Next, we have the following micro-local propagation estimates both at high and low frequencies. 1. Consider R d , d ≥ 2 equipped with a smooth metric g satisfying (1.4), (1.5) and suppose that (1.12) is satisfied. Then for R > 0 large enough and χ ± ∈ S(0, -∞) supported in Γ ± (R 4 , J 4 , τ 4 ), we have the following estimates. i. For all m ∈ N and all integer l large enough, there exists C > 0 such that for all ±t ≤ 0 and all h ∈ (0, 1],

Op h (χ ± ) e -ith -1 (hΛg) σ f (h 2 P ) x -l L(L 2 ,H m ) ≤ Ch -m t -3l/4 .
(5. [START_REF] Triebel | Theory of function spaces[END_REF] ii. For all m ∈ N, all χ ∈ C ∞ 0 (R d ) and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all h ∈ (0, 1],

Op h (χ ± ) e -ith -1 (hΛg) σ f (h 2 P )χ(x/R 2 ) L(L 2 ,H m ) ≤ Ch l t -l .
(5.48)

iii. For all χ∓ ∈ S(0, -∞) supported in Γ ∓ (R, J 1 , τ1 ) with -τ 4 < τ1 < 1 and J 4 J 1 and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all h ∈ (0, 1],

Op h (χ ± ) e -ith -1 (hΛg) σ f (h 2 P )Op h ( χ∓ ) L(L ∞ ) ≤ Ch l t -l .
(5.49) 2. Consider R d , d ≥ 3 equipped with a smooth metric g satisfying (1.4), (1.5). Let ζ ∈ C ∞ (R d ) be supported outside B(0, 1) and equal to 1 near infinity. Then for R > 0 large enough and all (χ ± ) ∈(0,1] bounded families in S(0, -∞) supported in Γ ± (R 4 , J 4 , τ 4 ), we have the following estimates.

i. For all integer l large enough, there exists C > 0 such that for all ±t ≤ 0 and all ∈ (0, 1],

ζ( x)Op (χ ± ) e -it ( -1 Λg) σ f ( -2 P ) x -l L(L 2 ) ≤ C t -3l/4 .
(5. [START_REF] Zhang | Strichartz estimates and nonlinear wave equation on non-trapping asymptotically conic manifolds[END_REF] ii. For all χ ∈ C ∞ 0 (R d ) and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all ∈ (0, 1],

ζ( x)Op (χ ± ) e -it ( -1 Λg) σ f ( -2 P )χ( x/R 2 ) L(L 2 ) ≤ C t -l .
(5.51)

iii. For all ζ ∈ C ∞ (R d ) supported outside B(0, 1) and equal to 1 near infinity and all ( χ∓ ) ∈(0,1] bounded families in S(0, -∞) supported in Γ ∓ (R, J 1 , τ1 ) with -τ 4 < τ1 < 1 and J 4 J 1 and all l ≥ 1, there exists C > 0 such that for all ±t ≤ 0 and all ∈ (0, 1],

ζ( x)Op (χ ± ) e -it ( -1 Λg) σ f ( -2 P )Op ( χ∓ ) ζ( x) L(L 2 ) ≤ C t -l .
(5.52)

Proof. We only give the proof for the low frequency case, the proof at high frequency is similar and essentially given in [8, Proposition 4.5]. i. We only consider the case χ + and t ≤ 0, the case χ -and t ≥ 0 is similar. By taking the adjoint, (5.50) is equivalent to

x -l f ( -2 P )e -it ( -1 Λg) σ Op (χ + )ζ( x) L(L 2 (R d )) ≤ C t -3l/4 , t ≥ 0, (5.53)
uniformly in ∈ (0, 1]. Thanks to the spectral localization, we can apply the Isozaki-Kitada parametrix given in Theorem 5.9 and obtain

e -it ( -1 Λg) σ Op (χ + )ζ( x) = J + (a + )e -it Λ σ J + (b + ) + R + N (t,
). The main term can be written as

x -l f ( -2 P ) x l x -n x n-l J + (a + )e -it Λ σ J + (b + ) x n x -n .
By using Corollary 2.9, we have the terms x -l f ( -2 P ) x l and x -n are bounded in L(L 2 ). It suffices to show for l large enough,

x n-l J + (a + )e -it Λ σ J + (b + ) x n L(L 2 ) ≤ C t -3l/4 , t ≥ 0,
uniformly in ∈ (0, 1]. This expected estimate follows by using the same process as in Lemma 5. [START_REF] Christ | Maximal functions associated to filtrations[END_REF]. We now study the remainders.

For k = 1, we have

x -l f ( -2 P )R + 1 (N, t, ) L(L 2 ) = x -l f ( -2 P )e -it ( -1 Λg) σ Op (r + N ( ))ζ( x) L(L 2 ) ≤ C t 1-l .
Here we insert x -l x l in the middle and use (2.23) and rescaled pseudo-differential calculus. For k = 2, 3, 4, Item 2 of Proposition 5.14 yields

x -l f ( -2 P )R + k (N, t, ) = t 0 x -l f ( -2 P )e -i(t-s) ( -1 Λg) σ x -N/8 B N (s, ) x -N/4 ds.
Using again (2.23) and the fact that x l-N/8 and x -N/4 are of size O L(L 2 ) (1) for N large enough and (5.46), we obtain

x -l f ( -2 P )R + k (N, t, ) L(L 2 ) ≤ C t 0 (t -s) 1-l s -N/4 ds ≤ C t 1-l .
By choosing l large enough such that l -1 ≥ 3l/4, it shows (5.53).

ii. We do the same for (5.51), it is equivalent to show

χ( x/R 2 )f ( -2 P )e -it ( -1 Λg) σ Op (χ + )ζ( x) L(L 2 (R d )) ≤ C t -l , t ≥ 0, (5.54)
uniformly in ∈ (0, 1]. We again use the Isozaki-Kitada parametrix. Let us firstly study remainder terms. We write the first remainder term χ( x/R 2 )f ( -2 P )R + 1 (N, t, ) as χ( x/R 2 ) x l x -l f ( -2 P )e -it ( -1 Λg) σ x -l x l Op (r + N ( ))ζ( x). Using (2.23) and the fact that χ( x/R 2 ) x l and x l Op (r + N ( ))ζ( x) are bounded in L(L 2 ) due to the support property of χ and rescaled pseudo-differential calculus given as in Proposition 2.7, we get

χ( x/R 2 )f ( -2 P )R + 1 (N, t, ) L(L 2 ) ≤ C t 1-l .
For k = 2, 3, 4, we have

χ( x/R 2 )f ( -2 P )R + k (N, t, ) L(L 2 ) ≤ C t 0 (t -s) 1-l s -N/4 ds ≤ C t 1-l .
For the main term, we can write

χ( x/R 2 ) x l x -l f ( -2 P ) x l x -n x n-l J + (a + )e -it Λ σ J + (b + ) x n x -n .
Thanks to the L 2 -boundedness of χ( x/R 2 ) x l , x -l f ( -2 P ) x l , x -n , it suffices to prove

x n-l J + (a + )e -it Λ σ J + (b + ) x n L(L 2 ) ≤ C t -l , t ≥ 0,
uniformly in ∈ (0, 1]. This expected estimate again follows from Lemma 5.12 by taking l large enough. This proves (5.54).

iii. For (5.52), we firstly use the Isozaki-Kitada parametrix for χ-, namely

e -it ψ( -2 P ) Op ( χ-) ζ( x) = J -(ã -)e -it Λ σ J -( b-) + 4 k=1 R- k (N, t, ), (5.55) 
where supp(ã -) ⊂ Γ -(R 1/4 , J1/4 , τ1/4 ) and supp( b-) ⊂ Γ -(R 3/4 , J3/4 , τ3/4 ) with J3/4 J1/4 small neighborhood of J 1 and τ1/4 , τ3/4 can be chosen so that

-1 < -τ 4 < τ1/4 < τ3/4 < τ1 < 1.
Multiplying ζ( x)Op (χ + ) f ( -2 P ) to the left of (5.55), the terms ζ( x)Op (χ + ) f ( -2 P ) Rk (N, t, ) for k = 1, 2, 3, 4 satisfy the required estimate using the estimate (5.50), Lemma 5.12 and (5.46). Therefore, it remains to show

ζ( x)Op (χ + ) f ( -2 P )J -(ã -)e -it Λ σ J -( b-) L(L 2 ) ≤ C t -l , ±t ≤ 0,
uniformly in ∈ (0, 1]. Thanks to the support of ã-, we can write

J -(ã -) = ζ 1 ( x)J -(ã -) with ζ 1 ∈ C ∞ (R d ) supported outside B(0, 1) such that ζ 1 (x) = 1 for |x| > R 1/4 . The parametrix of f ( -2 P )ζ 1 ( x)
given in Proposition 2.7 and symbolic calculus give

ζ( x)Op (χ + ) f ( -2 P )ζ 1 ( x) = Op (c + ) + B + N ( ) x -N , where (c + ) ∈(0,1] ∈ S(0, -∞) with supp(c + ) ⊂ supp(χ + ) and B + N ( ) = O L(L 2 ) (1)
uniformly in ∈ (0, 1]. We treat the remainder term by using Lemma 5.13. For the main terms, we need to recall the following version of Proposition 5.4 which is essentially 2 given in [8, Lemma 4.6].

Lemma 5.16. Given J (0, +∞), -1 < τ < 1 and the associated families of phase functions (S ± ,R ) R 1 as in Proposition 5.1. Let (a ) ∈(0,1] and (c ) ∈(0,1] be bounded families in S(0, -∞). Then for all N ≥ 1,

Op (c )J ± (a ) = N -1 j=0 J ± (e ,j ) + J ± (e N ( )),
2 See (2.4), (5.3) and use Lemma 4.6 of [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF] with h = 1.

where (e ,j ) ∈(0,1] and (e N ( )) ∈(0,1] are bounded families in S(0, -∞) and S(-N, -∞) respectively. In particular, for all ε > 0 small enough, by choosing R > 0 large enough, we have

supp(c ) ⊂ Γ ± (R, J, τ ) =⇒ supp(e ,j ) ⊂ Γ ± (R, J + (-ε, ε), τ -ε) since ∇ x S ± ,R (x, ξ) = ξ + O(R -ρ
). Using this lemma, we expand Op (c + )J -(ã -) and treat the remainder terms using again Lemma 5.13. It remains to prove the required estimate for the general term, namely

J -(e + )e -it Λ σ J -( b-) L(L 2 ) ≤ C t -l , ±t ≤ 0,
uniformly in ∈ (0, 1], where (e + ) ∈(0,1] ∈ S(0, -∞) and supp(e

+ ) ∈ Γ + (R 4 , J 4 + (-ε, ε), τ 4 -ε).
Up to the conjugation by D , the kernel of the left hand side operator reads

K (t, x, y) = (2π) -d R d e iΦ (R,t,x,y,ξ) e + (x, ξ) b-(y, ξ)dξ, where Φ (R, t, x, y, ξ) = S - ,R (x, ξ) -t|ξ| σ -S - ,R (y, ξ). Since supp(e + ) ⊂ Γ + (R 4 , J 4 + (-ε, ε), τ 4 -ε) and supp( b-) ⊂ Γ -(R 3/4 , J3/4 , τ3/4 ), we have x • ξ |x ξ| > τ 4 -ε, - y • ξ |y ξ| > τ3/4 .
By choosing R > 0 large enough, we have that τ 4 -ε + τ3/4 > 0. Thus by Item 2 of Lemma 5.11, we have

|∇ ξ Φ | ≥ C(1 + |t| + |x| + |y|).
Using the non-stationary phase argument as in the proof of Lemma 5.12, we have

J + (e + )e -it Λ σ J -( b-) L(L 2 ) ≤ C t -l , ±t ≤ 0,
uniformly in ∈ (0, 1]. The proof of Proposition 5.15 is now complete.

Strichartz estimates.

High frequencies. In this paragraph, we give the proof of (3.21). By scaling in time, it is in turn equivalent to prove

(1 -χ)e -ith -1 (hΛg) σ f (h 2 P )u 0 L p (R,L q ) ≤ Ch -κp,q f (h 2 P )u 0 L 2 ,
where κ p,q = d/2 -d/q -1/p. By choosing f ∈ C ∞ 0 (R\0) such that f = 1 near supp(f ), we can write for all l ∈ N,

(1 -χ) f (h 2 P ) = N -1 k=0 h k Op h (a k ) + h N B N (h) x -l ,
where for q ≥ 2,

B N (h) L(L 2 ,L q ) ≤ Ch -(d/2-d/q) .
(5.56)

Thus (1 -χ)e -ith -1 (hΛg) σ f (h 2 P )u 0 becomes N -1 k=0 h k Op h (a k ) e -ith -1 (hΛg) σ f (h 2 P )u 0 + h N B N (h) x -l e -ith -1 (hΛg) σ f (h 2 P )u 0 . Using (5.56) and (2.20), B N (h) x -l e -ith -1 (hΛg) σ f (h 2 P )u 0 L p (R,L q ) is bounded by Ch -(d/2-d/q) x -l e -ith -1 (hΛg) σ f (h 2 P )u 0 L p (R,L 2 ) ≤ Ch -(d/2-d/q)+(1-N0)/p f (h 2 P )u 0 L 2 .
Hence, by taking N large enough, the remainder is bounded by Ch -κp,q f (h 2 P )u 0 L 2 . For the main terms, by choosing χ 0 ∈ C ∞ 0 (R d ) such that χ 0 = 1 for |x| ≤ 2 and setting χ(x) = χ 0 (x/R 4 ), we see

that (1 -χ) is supported in {x ∈ R d , |x| ≥ 2R 4 > R 4 }.
For R > 0 large enough and supp( f ) close enough to supp(f ) and J 4 (0, +∞) any open interval containing supp(f ), we have

supp(a k ) ⊂ (x, ξ) ∈ R 2d , |x| > R 4 , |ξ| 2 ∈ J 4 , k = 0, ..., N -1.
(5.57)

We want to show

Op h (a k ) e -ith -1 (hΛg) σ f (h 2 P )u 0 L p (R,L q ) ≤ Ch -κp,q f (h 2 P )u 0 L 2 , k = 0, ..., N -1.
Let us consider a general term, namely Op h (a) e -ith -1 (hΛg) σ f (h 2 P )u 0 with a ∈ S(0, -∞) satisfying (5.57). Next, by choosing a suitable partition of unity θ -+ θ + = 1 such that supp(θ -) ⊂ (-∞, -τ 4 ) and supp(θ + ) ⊂ (τ 4 , +∞) and setting

χ ± (x, ξ) = a(x, ξ)θ ± ± x • ξ |x ξ| , we have that χ ± ∈ S(0, -∞), supp(χ ± ) ⊂ Γ ± (R 4 , J 4 , τ 4 ) and Op h (a) e -ith -1 (hΛg) σ f (h 2 P )u 0 = (Op h (χ -) + Op h (χ + ) )e -ith -1 (hΛg) σ f (h 2 P )u 0 .
We only prove the estimate for χ + , i.e.

Op h (χ + ) e -ith -1 (hΛg) σ f (h 2 P )u 0 L p (R,L q ) ≤ Ch -κp,q f (h 2 P )u 0 L 2 , the one for χ -is similar. Since Op h (χ + ) e -ith -1 (hΛg) σ f (h 2 P ) is bounded in L(L 2
) uniformly in h ∈ (0, 1] and t ∈ R, by Proposition 4.3, it suffices to prove the dispersive estimates, i.e.

Op h (χ + ) e -ith -1 (hΛg) σ f 2 (h 2 P )Op h (χ + ) L(L 1 ,L ∞ ) ≤ Ch -d (1 + |t|h -1 ) -d/2
, for all t ∈ R uniformly in h ∈ (0, 1]. By taking the adjoint, it reduces to prove

Op h (χ + ) e -ith -1 (hΛg) σ f 2 (h 2 P )Op h (χ + ) L(L 1 ,L ∞ ) ≤ Ch -d (1 + |t|h -1 ) -d/2 , (5.58)
for all t ≤ 0 uniformly in h ∈ (0, 1]. We now prove (5.58). By using the Isozaki-Kitada parametrix with J 4 and τ 4 as above together with arbitrary open intervals J 1 , J 2 , J 3 such that J 4 J 3 J 2 J 1 (0, +∞) and arbitrary real numbers τ 1 , τ 2 , τ 3 satisfying -1 < τ 1 < τ 2 < τ 3 < τ 4 < 1, the operator in the left hand side of (5.58) is written as

Op h (χ + ) f 2 (h 2 P ) J + h (a + (h))e -ith -1 (hΛ) σ J + h (b + (h)) + 4 k=1 R + k (N, t, h) .
Using the fact that Op h (χ + ) f 2 (h 2 P ) is bounded in L(L ∞ ) and Proposition 5.10, we have

Op h (χ + ) f 2 (h 2 P )J + h (a + (h))e -ith -1 (hΛ) σ J + h (b + (h)) L(L 1 ,L ∞ ) ≤ Ch -d (1 + |t|h -1 ) -d/2
, for all t ∈ R and h ∈ (0, 1]. It remains to study the remainder terms.

For k = 1, using the Sobolev embedding with m > d/2, (5.47) and the fact that

x l Op h (r + N (h)) is of size O L(H -m ,L 2 ) (h -m ) by pseudo-differential calculus, we have Op h (χ + ) f 2 (h 2 P )R + 1 (N, t, h) L(L 1 ,L ∞ ) ≤ Ch N -1-2m t -3l/4 ≤ Ch -d (1 + |t|h -1 ) -d/2
, for all t ≤ 0 and all h ∈ (0, 1]. The last estimate follows by taking l = 2d/3 and N large enough.

For k = 2, by using (5.47) and the Sobolev embedding with m > d/2, we have for t -s ≤ 0,

Op h (χ + ) e -i(t-s)h -1 (hΛg) σ f 2 (h 2 P ) x -l L(L 2 ,L ∞ ) ≤ Ch -m t -s -3l/4 .
(5.59)

We also have that x l R N (h) is bounded in L(L ∞ , L 2 ) due to Proposition 2.2 provided N > l. Thus for N and l large enough, Proposition 5.10 implies that

Op h (χ + ) f 2 (h 2 P )R + 2 (N, t, h) L(L 1 ,L ∞ ) ≤ Ch N -1-m-d t 0 t -s -3l/4 (1 + |s|h -1 ) -d/2 ds ≤ Ch -d (1 + |t|h -1 ) -d/2 .
For k = 3, by inserting x -l x l-N x N and using the fact that x l-N = O L(L ∞ ,L 2 ) (1) for N large enough, (5.59) and Proposition 5.10 with

J + h (a + ) = x N J + h (r + N (h))
, we see that this remainder term satisfies the required estimate as for the second one.

For k = 4, we rewrite Op h (χ

+ ) f 2 (h 2 P )R + 4 (N, t, h) as -ih -1 times t 0 Op h (χ + ) f 2 (h 2 P )e -i(t-s)h -1 (hΛg) σ (χ + (1 -χ))(x/R 2 )J + h (ǎ + (h))e -ish -1 (hΛ) σ J + h (b + (h)) ds, where χ ∈ C ∞ 0 (R d ) satisfying χ(x) = 1 for |x| ≤ 2.
The first term can be treated similarly as the second remainder using (5.48) instead of (5.47). For the second term, we need the following lemma (see [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF]Proposition 5.2]).

Lemma 5.17. Choose τ1 such that -τ

4 < τ1 < -τ 2 . If R > 0 is large enough, we may choose χ-∈ S(0, -∞) satisfying supp( χ-) ⊂ Γ -(R, J 1 , τ1 ) such that for all m large enough, f (h 2 P )(1 -χ)(x/R 2 )J + h (ǎ + (h)) = Op h ( χ-)J + h (ẽ m (h)) + h m Rm (h) where Rm (h) = J + h (r m (h)) + x -m/2 R m (h) x -m/2 J + h (ǎ + (h)), with (ẽ m (h)) h∈(0,1] and (r m (h)) h∈(0,1] bounded families in S(0, -∞) and S(-m, -∞) respectively and R m (h) = O L(L ∞ ) (1) uniformly in h ∈ (0, 1].
Using this lemma, the second term is written as -ih -1 times

t 0 Op h (χ + ) e -i(t-s)h -1 (hΛg) σ Op h ( χ-)J + h (ẽ m (h)) + h m Rm (h) e -ish -1 (hΛ) σ J + h (b + (h)) ds.
The remainder terms are treated similarly as the second remainder term using (5.47). The term involving Op h ( χ-)J + h (ẽ m (h)) is studied by the same analysis as the second term using (5.49) instead of (5.47). This completes the proof. Low frequencies. In this paragraph, we will prove (3.24). By scaling in time, it is equivalent to show

(1 -χ)( x)f ( -2 P )e -it ( -1 Λg) σ u 0 L p (R,L q ) ≤ C κp,q f ( -2 P )u 0 L 2 , where κ p,q = d/2 -d/q -1/p. By choosing f ∈ C ∞ 0 (R\0) such that f = 1 near supp(f ), we can write (1 -χ)( x)f ( -2 P ) = (1 -χ)( x) f ( -2 P )f ( -2 P ). Next, we choose ζ ∈ C ∞ (R d ) supported in R d \B(0, 1) such that ζ = 1 near supp(1 -χ) and use Proposition 2.7 to have (1 -χ)( x) f ( -2 P ) = N -1 k=0 ζ( x)Op (a ,k ) + R N ( ), where R N ( ) = ζ( x)( -2 P + 1) -N B N ( ) x -N with (B N ( )) ∈(0,1] bounded L(L 2 ). Thus (1 - χ)( x)f ( -2 P )e -it ( -1 Λg) σ u 0 reads N -1 k=0 ζ( x)Op (a ,k ) e -it ( -1 Λg) σ f ( -2 P )u 0 + R N ( )e -it ( -1 Λg) σ f ( -2 P )u 0 .
We firstly consider the remainder term.

Proposition 5.18. Let N ≥ (d-1)/2+1. Then for all (p, q) fractional admissible, there exists C > 0 such that for all ∈ (0, 1],

R N ( )e -it ( -1 Λg) σ f ( -2 P )u 0 L p (R,L q ) ≤ C κp,q u 0 L 2 .
Proof. This result follows from the T T criterion given in Proposition 4.3 with -1 in place of h and T (t) = R N ( )e -it ( -1 Λg) σ f ( -2 P ). The L(L 2 ) bounds of T (t) are obvious. Thus we need to prove the dispersive estimates. Using (2.6) with q = ∞ and (2.23) with N ≥ d/2 + 1, we have

T (t)T (s) L 1 →L ∞ ≤ C d x -N e -i(t-s) ( -1 Λg) σ f 2 ( -2 P ) x -N L(L 2 ) ≤ C d (t -s) 1-N ≤ C d (1 + |t -s|) -d/2 .
This completes the proof.

For the main terms, by choosing χ 0 ∈ C ∞ 0 (R d ) such that χ 0 = 1 for |x| ≤ 2 and setting χ(x) = χ 0 (x/R 4 ), we see that (1-χ) is supported in {x ∈ R d , |x| > R 4 }. For R > 0 large enough and supp( f ) close enough to supp(f ) and J 4 (0, +∞) any open interval containing supp(f ), we have

supp(a ,k ) ⊂ (x, ξ) ∈ R 2d , |x| > R 4 , |ξ| 2 ∈ J 4 , k = 0, ..., N -1.
(5.60)

We want to show for k = 0, ..., N -1, ζ( x)Op (a ,k ) e -it ( -1 Λg) σ f ( -2 P )u 0 L p (R,L q ) ≤ C κp,q f ( -2 P )u 0 L 2 .

Let us consider the general term, namely ζ( x)Op (a ) e -it ( -1 Λg) σ f ( -2 P )u 0 with (a ) ∈(0,1] ∈ S(0, -∞) satisfying (5.60). Next, by choosing a suitable partition of unity θ -+ θ + = 1 such that supp(θ -) ⊂ (-∞, -τ 4 ) and supp(θ + ) ⊂ (τ 4 , +∞) and setting χ ± (x, ξ) = a (x, ξ)θ ± ± x • ξ |x ξ| ,

we have that (χ ± ) ∈(0,1] ∈ S(0, -∞), supp(χ ± ) ⊂ Γ ± (R 4 , J 4 , τ 4 ) and ζ( x)Op (a ) e -it ( -1 Λg) σ f ( -2 P )u 0 = ζ( x)(Op (χ -) + Op (χ + ) )e -it ( -1 Λg) σ f ( -2 P )u 0 .

We only prove the estimate for χ + , i.e.

ζ( x)Op (χ + ) e -it ( -1 Λg) σ f ( -2 P )u 0 L p (R,L q ) ≤ C κp,q f ( -2 P )u 0 L 2 , the one for χ -is similar. By T T criterion and that T (t) := ζ( x)Op (χ + ) e -it ( -1 Λg) σ f ( -2 P ) is bounded in L(L 2 ) for all t ∈ R and all ∈ (0, 1], it suffices to prove dispersive estimates, i.e. Using the Isozaki-Kitada parametrix given in Theorem 5.9, we see that

A + e -it ( -1 Λg) σ Op (χ + )ζ( x) = A + J + (a + )e -it Λ σ J + (b + ) + 4 k=1 R + k (N, t, ) .
We firstly note that A + is bounded in L(L ∞ ). Indeed, we write We have (5.62) by taking the adjoint of ( -2 P + 1) N ζ1 ( x)J + (b + ) = J + ( b+ ).

For k = 2, using (2.6) and its adjoint, (5.50), (5.62), x l R N ( ) x N -l = O L(L 2 ) (1) and estimating as in Lemma 5.13, we have , for all t ≤ 0 and all ∈ (0, 1]. This implies

A + R + 2 (N, t, ) L(L 1 ,L ∞ ) ≤ C d (1 + |t|) -d/2
, ∀t ≤ 0, ∈ (0, 1]. The third remainder term is treated similarly as the second one. It remains to study the last remainder term. To do so, we split

A + R + 4 (N, t, ) = -i t 0
A + e -i(t-s) ( -1 Λg) σ (χ + (1 -χ))( x/R 2 )J + (ǎ + ( ))e -is Λ σ J + (b + ) ds, where χ ∈ C ∞ 0 (R d ) satisfying χ(x) = 1 for |x| ≤ 2. The first term can be treated similarly as the second remainder using (5.51) instead of (5.50) and Lemma 5.12. For the second term, we need the following lemma (see [START_REF] Bouclet | On global Strichartz estimates for non-trapping metrics[END_REF]Proposition 5.2]). We set A + = (A + ,1 + A + ,2 )f ( -2 P ), where A + ,1 = ζ( x)( -2 P + 1) -l ζ( x)Op ( χ+ ) f ( -2 P ), A + ,2 = ζ( x)( -2 P + 1) -l Bl ( ) x -l f ( -2 P ).

Using Lemma 5.19, we firstly consider -ih -1 t 0 A + ,1 e -i(t-s) ( -1 Λg) σ Op ( χ-) ζ2 ( x)J + (ẽ m ( )) + Rm ( ) e -is Λ σ J + (b + ) ds.

The remainder terms are treated similarly as the second remainder term using (5.50) and Lemma 5.13. The term involving Op ( χ-) ζ2 ( x)J + (ẽ m ( )) is studied by the same analysis as the second term using (5.52) instead of (5.47). For the term -ih -1 t 0 A + ,2 e -i(t-s) ( -1 Λg) σ Op ( χ-) ζ2 ( x)J + (ẽ m ( )) + Rm ( ) e -is Λ σ J + (b + ) ds, the required estimate follows by using (2.23) and Lemma 5.13. This completes the proof. and (6.1) follows.

Next, we prove u L ∞ (R, Ḣγp,q g ) ≤ C u 0 Ḣγp,q g + F L a (R,L b ) .

By using the homogeneous Strichartz estimate for a fractional admissible pair (∞, 2) with γ ∞,2 = 0 and that u L ∞ (R, Ḣγp,q g ) = Λ

γp,q g u L ∞ (R,L 2 ) , we have

u L ∞ (R, Ḣγp,q g ) ≤ C Λ γp,q g u 0 L 2 + t 0
Λ γp,q g e -i(t-s)Λ σ g F (s)ds

L ∞ (R,L 2 )
.

Using the Christ-Kiselev Lemma, it suffices to prove R Λ γp,q g e -i(t-s)Λ σ g F (s)ds

L ∞ (R,L 2 ) ≤ C F L a (R,L b ) .
Using the above notation, we have R Λ γp,q g e -i(t-s)Λ σ g F (s)ds

L ∞ (R,L 2 ) = T 0 T γ a,b F L ∞ (R,L 2 ) ≤ C T γ a,b F L 2 ≤ C F L a (R,L b ) .
This completes the proof of Proposition 1.5. Inhomogeneous Strichartz estimates for fractional wave equation. We give the proof of Proposition 1.7. Let v be the solution to (1.20). By Duhamel formula, we have

v(t) = cos tΛ σ g u 0 + sin tΛ σ g Λ σ g u 1 + t 0 sin(t -s)Λ σ g Λ σ g F (s)ds =: v hom (t) + v inh (t),
where v hom is the sum of first two terms and v inh is the last one. We firstly prove v L p (R,L q ) ≤ C v 0 Ḣγp,q g + v 1 Ḣγp,q-σ g + F L a (R,L b ) .

By observing that cos tΛ σ g = e itΛ σ g + e -itΛ σ g 2 , sin tΛ σ g = e itΛ σ g -e -itΛ σ g 2i , and using (1.15), we have v hom L p (R,L q ) ≤ C v 0 Ḣγp,q g + v 1 Ḣγp,q-σ g .

Let us prove the inhomogeneous part which is in turn equivalent to t 0 e -i(t-s)Λ σ g Λ σ g F (s)ds

L p (R,L q ) ≤ C F L a (R,L b ) , (6.2) 
where (p, q), (a, b) are fractional admissible satisfying the gap condition (1.22). We define the operator T γp,q : u 0 ∈ L g → Λ -γp,q g e -itΛ σ g u 0 ∈ L p (R, L q ).

Thanks to (1.15), we see that T γp,q is a bounded operator. Next, we take the adjoint for T = T γp,q T γ a,b F L p (R,L q ) ≤ C F L a (R,L b ) .

As in the proof of the inhomogeneous Strichartz estimates for the fractional Schrödinger equations, the Christ-Kiselev Lemma implies (6.2) for all fractional admissible pairs satisfying the gap condition (1.22) excluding the case p = a = 2. Next, we prove v L ∞ (R, Ḣγp,q g ) ≤ C v 0 Ḣγp,q g + v 1 Ḣγp,q-σ g + F L a (R,L b ) .

By using the homogeneous Strichartz estimate for a fractional admissible pair (∞, 2) with γ ∞,2 = 0 and that v L ∞ (R, Ḣγp,q g ) = Λ

γp,q g v L ∞ (R,L 2 ) , we have

v L ∞ (R, Ḣγp,q g ) ≤ C Λ γp,q g v 0 L 2 + Λ γp,q g v 1 Ḣ-σ g + t 0
Λ (γp,q-σ) g sin (t -s)Λ σ g F (s)ds

L ∞ (R,L 2 )
.

Using the Christ-Kiselev Lemma, it suffices to prove R Λ (γp,q-σ) g e -i(t-s)Λ σ g F (s)ds

L ∞ (R,L 2 ) ≤ C F L a (R,L b ) .
Using the above notation, we have R Λ (γp,q-σ) g e -i(t-s)Λ σ g F (s)ds

L ∞ (R,L 2 ) = T 0 T γ a,b F L ∞ (R,L 2 ) ≤ C T γ a,b F L 2 ≤ C F L a (R,L b ) .
We repeat the same process for ∂ t v and obtain

∂ t v L ∞ (R, Ḣγp,q-σ g ) ≤ C v 0 Ḣγp,q g + v 1 Ḣγp,q-σ g + F L a (R,L b ) .
This completes the proof of Proposition 1.7.

  and Op(a) := Op 1 (a), i.e. h = 1 in (2.1). Thanks to (2.2), (2.3) and (2.4), the composition Op (a)Op (b) and the adjoint with respect to the Lebesgue measure Op (a) with a ∈ S(µ 1 , m 1 ) and b ∈ S(µ 2 , m 2 ) are given by

1 )

 1 and equal to 1 near infinity. Here B(0, 1) is the open unit ball in R d .

3. Reduction of the problem 3 . 1 .

 31 The Littlewood-Paley theorems. In this subsection, we recall some Littlewood-Paley type estimates which are essentially given in [5]. Let us introduce f

  Littlewood-Paley theorem at low frequency is slightly different from the one in [5, Theorem 4.1]. In [5], Bouclet-Mizutani considered the sharp Schrödinger admissible condition. This allows to interpolate between the trivial Strichartz estimate for (∞, 2) and the endpoint Strichartz estimate for the endpoint pair (2, 2 ). The proof of the low frequency Littlewood-Paley theorem given in [5] makes use of the homogeneous Sobolev embedding

4. 1 .

 1 The WKB approximations. Let us start with the following result which is given in[START_REF] Dinh | Strichartz estimates for the fractional Schrödinger and wave equations on compact manifolds without boundary[END_REF] Theorem 2.7].

Proposition 5. 15 .

 15 Let σ ∈ (0, ∞), f ∈ C ∞ 0 (R\{0}), J 4(0, +∞) be an open interval and -1 < τ 4 < 1.

  ζ( x)Op (χ + ) e -it ( -1 Λg) σ f 2 ( -2 P )Op (χ + )ζ( x) L(L 1 ,L ∞ ) ≤ C d (1 + |t|) -d/2 , for all t ∈ R uniformly in ∈ (0, 1]. By taking the adjoint, it reduces to proveζ( x)Op (χ + ) e -it ( -1 Λg) σ f 2 ( -2 P )Op (χ + )ζ( x) L(L 1 ,L ∞ ) ≤ C d (1 + |t|) -d/2 , (5.61)for all t ≤ 0 uniformly in ∈ (0, 1]. Let us prove (5.61). For simplicity, we setA + := ζ( x)Op (χ + ) f 2 ( -2 P ).

-3N/ 4 ≤

 4 ζ( x)Op (χ + ) f 2 ( -2 P ) = ζ( x)Op (χ + ) ζ 1 ( x)f 2 ( -2 P ),where ζ 1 ∈ C ∞ (R d ) is supported outside B(0, 1) satisfying ζ 1 (x) = 1 for |x| > R4 . This is possible since Op (χ + ) = ζ 1 ( x)Op (χ + ). The factors ζ( x)Op (χ + ) and ζ 1 ( x)f 2 ( -2 P ) are bounded in L(L ∞ ) by the rescaled pseudo-differential operator and Corollary 2.8 respectively. Thanks to the L(L ∞ )-bound of A + and (5.29), we have dispersive estimates for the main terms. It remains to prove dispersive estimates for remainder terms. By rescaled pseudo-differential calculus, we can write for l > d/2,A + = ζ( x)( -2 P + 1) -l ζ( x)Op ( χ+ ) + B+ l ( ) x -l f 2 ( -2 P ), where ζ ∈ C ∞ (R d) is supported outside B(0, 1) and equal to 1 near supp(ζ) and ( χ+ )∈(0,1] ∈ S(0, -∞) satisfying supp( χ+ ) ⊂ supp(χ + ) and B+ l ( ) = O L(L 2 ) (1) uniformly in ∈ (0, 1]. This follows by expanding ( -2 P + 1) l ζ( x)Op (χ + ) by rescaled pseudo-differential calculus.For k = 1, using the Proposition 2.7, we can writeR + 1 (N, t, ) = e -it ( -1 Λg) σ x -N B + N ( )( -2 P + 1) -N ζ( x),whereB + N ( ) = O L(L 2 ) (1)uniformly in ∈ (0, 1]. Then, using Proposition 2.6 with q = ∞ and (5.50), we haveζ( x)( -2 P + 1) -l ζ( x)Op ( χ+ ) f 2 ( -2 P )R + 1 (N, t, ) L(L 1 ,L ∞ ) ≤ C d t C d (1 + |t|) -d/2, for all t ≤ 0 and all ∈ (0, 1] provided N is taken large enough. Moreover, using again Proposition 2.6 and (2.23), we also haveζ( x)( -2 P + 1) -l Bl ( ) x -l f 2 ( -2 P )R + 1 (N, t, ) L(L 1 ,L ∞ ) ≤ C d t 1-l ≤ C d (1 + |t|) -d/2, for all t ≤ 0 and all ∈ (0, 1] provided l and N are taken large enough. This impliesA + R + 1 (N, t, ) L(L 1 ,L ∞ ) ≤ C d (1 + |t|) -d/2, for all t ≤ 0 and all ∈ (0, 1]. Next, thanks to the support of b + , we can writeJ + (b + ) = J + ( b+ ) ( -2 P + 1) -N ζ 1 ( x), (5.62) where ( b+ ) ∈(0,1] ∈ S(0, -∞), supp( b+ ) ⊂ Γ + (R 3 , J 3 , σ 3 ) and ζ 1 ∈ C ∞ (R d ) is supported outside B(0, 1) such that ζ 1 (x) = 1 for |x| > R3 . Indeed, we write for ζ1 ∈ C ∞ (R d ) supported outside B(0, 1) and ζ1 = 1 in supp(ζ 1 ), J + (b + ) = J + (b + ) ζ1 ( x)( -2 P + 1) N ( -2 P + 1) -N ζ 1 ( x) .

  ζ( x)( -2 P + 1) -l ζ( x)Op ( χ+ ) f 2 ( -2 P )R + 2 (N, t, ) L(L 1 ,L ∞ ) ≤ C d t 0 (t -s) -3l/4 s -N/4 ds ≤ C d (1 + |t|) -d/2 ,for t ≤ 0 provided that l and N are taken large enough. Moreover, using (2.23) instead of (5.50), we haveζ( x)( -2 P + 1) -l Bl ( ) x -l f 2 ( -2 P )R + 2 (N, t, ) L(L 1 ,L ∞ ) s -N/4 ds ≤ C d (1 + |t|) -d/2

Lemma 5. 19 .

 19 Choose τ1 such that -τ 4 < τ1 < -τ 2 . If R > 0 is large enough, we may choose a bounded family of symbols χ-∈ S(0, -∞) satisfying supp( χ-) ⊂ Γ -(R, J 1 , τ1 ) and ζ2 ∈ C ∞ (R d ) supported outside B(0, 1) satisfying ζ2 = 1 on supp(1 -χ) such that for all m large enough, f ( -2 P )(1 -χ)( x/R 2 )J + (ǎ + ( )) = Op ( χ-) ζ2 ( x)J + (ẽ m ( )) + Rm ( ), where Rm ( ) = J + (r m ( )) + x -m/2 R m ( ) x -m/2 J + (ǎ + ( )),with (ẽ m ( )) ∈(0,1] and (r m ( )) ∈(0,1] bounded families in S(0, -∞) and S(-m, -∞) respectively and R m ( ) = O L(L 2 ) (1) uniformly in ∈ (0, 1].

F

  γ a,b and obtain a bounded operatorT γ a,b : F ∈ L a (R, L b ) → R Λ -γ a,b g e isΛ σ g F (s)ds ∈ L g . Using (1.22) or γ a,b = -γ a ,b -σ = -γ p,q + σ, we have R e -i(t-s)Λ σ g Λ σ g (s)ds L p (R,L q )

  .2)for all t ∈ [-t 0 , t 0 ].

Next, we recall the following version of T T -criterion of Keel and Tao (see

[START_REF] Zhang | Strichartz estimates and nonlinear wave equation on non-trapping asymptotically conic manifolds[END_REF]

,

[26] 

or

[49]

). Proposition 4.3. Let I ⊆ R be an interval and (T (t)) t∈I a family of linear operators satisfying for some constant C > 0 and δ, τ, h > 0,

  4.2. From local Strichartz estimates to global Strichartz estimates. We now show how to upgrade the local in time Strichartz estimates given in Corollary 4.4 to the global in time ones (3.19).
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Inhomogeneous Strichartz estimates

In this section, we will give the proofs of Proposition 1.5 and Proposition 1.7. The main tool is the homogeneous Strichartz estimates (1.15) and the so called Christ-Kiselev Lemma. To do so, we recall the following result (see [START_REF] Christ | Maximal functions associated to filtrations[END_REF] or [START_REF] Sogge | Lectures on nonlinear wave equations[END_REF]). Lemma 6.1. Let X and Y be Banach spaces and assume that K(t, s) is a continuous function taking its values in the bounded operators from Y to X. Suppose that -∞ ≤ c < d ≤ ∞, and set

Define the operator à as

We are now able to prove the inhomogeneous Strichartz estimates (1.17) and (1.21). Inhomogeneous Strichartz estimates for fractional Schrödinger equation. We give the proof of Proposition 1.5 by following a standard argument (see e.g. [START_REF] Zhang | Strichartz estimates and nonlinear wave equation on non-trapping asymptotically conic manifolds[END_REF]). Let u be the solution to (1.1). By Duhamel formula, we have

e -i(t-s)Λ σ g F (s)ds =: u hom (t) + u inh (t).

Using (1.15), we have

It remains to prove the inhomogeneous part, namely

t 0 e -i(t-s)Λ σ g F (s)ds

where (p, q), (a, b) are fractional admissible pairs satisfying (p, a) = (2, 2) and the gap condition (1.18). By the Christ-Kiselev Lemma, it suffices to prove R e -i(t-s)Λ σ g F (s)ds

for all fractional admissible pairs satisfying (1.18) excluding the case p = a = 2. We now prove (6.1). Define T γp,q : u 0 ∈ L g → Λ -γp,q g e -itΛ σ g u 0 ∈ L p (R, L q ). Thanks to (1.15), we see that T γp,q is a bounded operator. Similar result holds for T γ a,b . Next, we take the adjoint for T γ a,b and obtain a bounded operator

where L g is the dual space of L g . Using (1.18) or γ a,b = -γ a ,b -σ = -γ p,q , we have R e -i(t-s)Λ σ g F (s)ds