HAL
open science

Existence of Periodic solutions of integro-di fferential delay equations with two variable in vector-valued function space

Rachid Bahloul, Mohamed Bahaj, Ilias Cherti, Omar Sidki

- To cite this version:

Rachid Bahloul, Mohamed Bahaj, Ilias Cherti, Omar Sidki. Existence of Periodic solutions of integrodi fferential delay equations with two variable in vector-valued function space. 2017. hal-01522143

HAL Id: hal-01522143

https://hal.science/hal-01522143

Submitted on 12 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Existence of Periodic solutions of integro-differential delay equations with two variable in vector-valued function space

Bahloul Rachid
Faculty of Sciences and Technology, Fez, Morocco
bahloulr33@hotmail.com
Bahaj Mohamed
Faculty of Sciences and Technology, Settat, Morocco
mohamedbahai@gmail.com
Cherti Ilias
Faculty of Sciences and Technology, Settat, Morocco
iliascherti10@gmail.com
Sidki Omar
Faculty of Sciences and Technology, Fez, Morocco
osidki@hotmail.com

Abstract

The aim of this work is to study the existence of a periodic solutions of neutral integrodifferential partial functional differential equations with two variable: $\frac{\partial}{\partial \mathbf{x}} \frac{\partial}{\partial \mathbf{y}}(\mathbf{u}(\mathbf{x}, \mathbf{y})-\mathbf{B u}(\mathbf{x}-$ $\mathbf{r}, \mathbf{y}-\mathbf{r}))+\mathbf{A u}(\mathbf{x}, \mathbf{y})=\int_{-\infty}^{\mathbf{x}} \int_{-\infty}^{\mathbf{y}} \mathbf{a}(\mathbf{x}-\mathbf{s}, \mathbf{y}-\xi) \mathbf{u}(\mathbf{s}, \xi) \mathbf{d} \xi \mathbf{d s}+\mathbf{f}(\mathbf{x}, \mathbf{y}), \mathbf{x}, \mathbf{y} \in[\mathbf{0}, \mathbf{2} \pi]$. Our approach is based on the L^{p}-multipliers of linear operators.

Keywords: neutral integro-differential equations, L^{p}-multipliers, vector-valued function space.

1 Introduction

Motivated by the fact that neutral functional differential equations (abbreviated, NFDE) with finite delay arise in many areas of applied mathematics, this type of equations has received much attention in recent years. In particular, the problem of existence of periodic solutions, has been considered by several authors. We refer the readers to papers [[1], [2], $[3],[5],[6],[7],[9],[13],[15],[19]]$ and the references listed therein for information on this subject.
In this work, we study the existence of periodic solutions for the following neutral partial functional differential equations of the following form

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{x}} \frac{\partial}{\partial \mathbf{y}}(\mathbf{u}(\mathbf{x}, \mathbf{y})-\mathbf{B u}(\mathbf{x}-\mathbf{r}, \mathbf{y}-\mathbf{r}))+\mathbf{A} \mathbf{u}(\mathbf{x}, \mathbf{y})=\int_{-\infty}^{\mathbf{x}} \int_{-\infty}^{\mathbf{y}} \mathbf{a}(\mathbf{x}-\mathbf{s}, \mathbf{y}-\xi) \mathbf{u}(\mathbf{s}, \xi) \mathbf{d} \xi \mathbf{d s}+\mathbf{f}(\mathbf{x}, \mathbf{y}) \tag{1.1}
\end{equation*}
$$

Where $(A, D(A))$ and $(B, D(B))$ are a closed linear operators on a Banach spase X such that $D(A) \subset D(B)), a \in L^{1}\left(\mathbb{R}_{+} \times \mathbb{R}_{+}\right)$and $f: \mathbb{R} \times \mathbb{R} \rightarrow X$ is a locally p-integrable and 2π-periodic function for $1 \leq p<\infty$.
In [4], Bahloul established results on the existence of periodic solutions of Eq. ((1.1)) when $a=0$, namely, for the following partial functional differential equation

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial y} u(x, y)+A u(x, y)=f(x, y)
$$

where $(A, D(A))$ is a linear operator.
In $[\mathbf{3}]$, Bahloul et al established results on the existence for some degenerate differential equation. Resently in [5], Bahloul et al established the existence of periodic solution for the some functional differential equations in UMD space.

$$
\frac{d}{d t}\left(x(t)-L\left(x_{t}\right)\right)=A\left(x(t)-L\left(x_{t}\right)\right)+G\left(x_{t}\right)+f(t) \text { for } t \in \mathbb{R}
$$

In [6], Sylvain Koumla, Khalil Ezzinbi and Rachid Bahloul, studied the existence of mild solutions for some partial functional integrodifferential equations with finite delay in Frechet spaces described in the following form:

$$
x^{\prime}(t)=A x(t)+\int_{0}^{t} B(t-s) x(s) d s+f\left(t, x_{t}\right)+h\left(t, x_{t}\right) \quad \text { for } t \geq 0
$$

where $A: D(A) \rightarrow X$ is the infinitesimal generator of a C_{0}-semigroup $(T(t))_{t \geq 0}$ on a Banach space $\mathrm{X}, B(t)$ is a closed linear operator with domain $\mathrm{D}(\mathrm{B})$ such that $D(A) \subset D(B)$.
In [14], Lizama gave necessary and sufficient conditions for the existence of periodic solutions of the following equation.

$$
\frac{d}{d t} x(t)=A x(t)+L\left(x_{t}\right)+f(t) \text { for } t \in \mathbb{R}
$$

where A is a closed linear operator on an UMD-space Y. We note that, starting with the work [14], the problem of characterization of maximal regularity for avolution equations with periodic initial conditions have been studied intensively in the last years. See e.g [8], $[\mathbf{1 2}]$ and $[\mathbf{1 6}]$, see alsoo $[\mathbf{1 0}],[\mathbf{1 1}],[\mathbf{1 7}]$ and $[\mathbf{1 8}]$ and references therien. the main novelty in this paper relies in the presence of two variable. This work can be considered as a progress on the treatment of such kind of problems.
This work is organized as follows : After a creterion in the second section, we are able to characterize in section 3 the existence and uniqueness of strong L^{p}-solution for the problem ((1.1)) solely in terms of a property of L^{p}-multiplier for the sequence of operators $-k z\left(-k z I+k z B_{k z}+A-L_{k, z}\right)^{-1}$. We optain that the following assertion are equivalent in general Banach spaces:
(1) $\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(k, z)\right)$ is invertible and $\left\{-k z\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(k, z)\right)^{-1},(k, z) \in\right.$ $\mathbb{Z} \times \mathbb{Z}\}$ is an L^{p}-muliplier.
(2) For every $f \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$ there exist a unique function $u \in H^{1, p}(\mathbb{T} \times \mathbb{T} ; X)$ such that $u \in D(A)$ and equation $((\mathbf{1 . 1}))$ holds for a.e $(x, y) \in[0,2 \pi] \times[0,2 \pi]$.
In section 4, we give the main abstract result (theorem ((4.1))) of this work.

2 A creterion for periodic solutions

Let X be a Banach Space. Firstly, we denote By \mathbb{T} the group defined as the quotient $\mathbb{R} / 2 \pi \mathbb{Z}$. There is an identification between functions on T and 2π-periodic functions on \mathbb{R}. We consider the interval $[0 ; 2 \pi)$ as a model for \mathbb{T}. Given $1 \leq p<\infty$, we denote by $L^{p}(\mathbb{T} \times \mathbb{T} ; X)$ the space of 2π-periodic locally p-integrable functions from $\mathbb{R} \times \mathbb{R}$ into X, with the norm:

$$
\|f\|_{p}:=\left(\int_{0}^{2 \pi} \int_{0}^{2 \pi}\|f(x, y)\|^{p} d x d y\right)^{1 / p}
$$

For $f \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$, we denote by $\hat{f}(k, z),(k, z) \in \mathbb{Z}$ the (k, z)-th Fourier coefficient of f that is defined by:

$$
\widehat{\widehat{f}}(k, z)=\left(\frac{1}{2 \pi}\right)^{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi} e^{-i(k x+z t)} f(x, t) d x d t
$$

for $(k, z) \in \mathbb{Z} \times \mathbb{Z} \quad$ and $\quad(x, y) \in \mathbb{R} \times \mathbb{R}$.
Remark 2.1. [4]
For all $(k, z) \in \mathbb{Z} \times \mathbb{Z}$ and $(x, y) \in \mathbb{T} \times \mathbb{T}$, we have
(1) $\widehat{\hat{f}}(0,0)=\left(\frac{1}{2 \pi}\right)^{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi} f(x, y) d x d y$.
(2) $\widehat{\hat{f}}(k, 0)=\left(\frac{1}{2 \pi}\right)^{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi} e^{-i k x} f(x, y) d x d y$.
(3) $\widehat{\hat{f}}(0, z)=\left(\frac{1}{2 \pi}\right)^{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi} e^{-i z t} f(x, y) d x d y$.
(4) $\widehat{f}(k, y)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k x} f(x, y) d x$.
(5) $\widehat{f}(x, z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i z y} f(x, y) d y$.

Notation 2.1. : Let $(k, z) \in \mathbb{Z} \times \mathbb{Z}$ and $1 \leq p<\infty$. Denote by
$H^{1, p}(\mathbb{T} \times \mathbb{T} ; X)=\left\{u \in L^{p}(\mathbb{T} \times \mathbb{T} ; X): \exists v \in L^{p}(\mathbb{T} \times \mathbb{T} ; X), \widehat{\widehat{v}}(k, z)=-k z \widehat{\widehat{u}}(k, z)\right\}$. and
$B^{-(i k x+i z y)} B$ $B_{k z}=e^{-(i k x+i z y)} B$

Remark 2.2. [9]
Let $f \in L^{1}(\mathbb{T} ; X)$. If $g(t)=\int_{0}^{t} f(s) d s$ and $k \in \mathbb{Z}, k \neq 0$, then

$$
\hat{g}(k)=\frac{i}{k} \hat{f}(0)-\frac{i}{k} \hat{f}(k)
$$

Lemma 2.2. [4]
Let $f \in L^{1}(\mathbb{T} \times \mathbb{T} ; X)$.
If $w(x, y)=\int_{0}^{x} \int_{0}^{y} f(s, \xi) d \xi d s$ and $(k, z) \in \mathbb{Z} \times \mathbb{Z}-\{(0,0)\}$ then

$$
\widehat{\widehat{w}}(k, z)=-\frac{1}{k z} \widehat{\hat{f}}(0,0)+\frac{1}{k z} \widehat{\hat{f}}(0, z)+\frac{1}{k z} \widehat{\hat{f}}(k, 0)-\frac{1}{k z} \widehat{\hat{f}}(k, z)
$$

Lemma 2.3. [4] ((2.2))
Let $1 \leq p<\infty$ and let $f, g \in L^{1}(\mathbb{T} \times \mathbb{T} ; X)$. The following are equivalent:
(1) $\widehat{\widehat{v}}(0,0)=\widehat{\widehat{v}}(k, 0)=\widehat{\widehat{v}}(0, z)=0$ and there exists $a \in X$ such that

$$
u(x, y)=a+\int_{0}^{x} \int_{0}^{y} v(s, \xi) d \xi d s,(x, y) \in \mathbb{T} \times \mathbb{T}
$$

(2) $\widehat{\widehat{v}}(k, z)=-k z \widehat{\widehat{u}}(k, z),((k, z) \in \mathbb{Z} \times \mathbb{Z})$

Remark 2.3. By Lemma ((2.3)) we have $u \in H^{1, p}(\mathbb{T} \times \mathbb{T} ; X) \Leftrightarrow$ there exists $v \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$ such that $\widehat{\hat{v}}(0,0)=\widehat{\widehat{v}}(k, 0)=\widehat{\widehat{v}}(0, z)=0$ and there exists $a \in X$ such that $u(x, y)=a+\int_{0}^{x} \int_{0}^{y} v(s, \xi) d \xi d s,(x, y) \in \mathbb{T} \times \mathbb{T}$

Now we can formulate the following multiplier definition.
Definition 2.1. For $1 \leq p<\infty$, a sequence $\left\{M_{k, z}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is said to be an L^{p}-multiplier (or $\left(L^{p}, L^{p}\right)$-multiplier) if for each $f \in L^{p}(\mathbb{T} \times \mathbb{T}, X)$, there exists $u \in L^{p}(\mathbb{T} \times \mathbb{T}, Y)$ such that $\widehat{\widehat{g}}(k, z)=M_{k, z} \widehat{\widehat{f}}(k, z)$ for all $(k, z) \in \mathbb{Z} \times \mathbb{Z}$.
Definition 2.2. : For $1 \leq p<\infty$, a sequence $\left\{M_{k, z}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is said to be an $\left(L^{p}, H^{1, p}\right)$ multiplier if for each $f \in L^{p}(\mathbb{T} \times \mathbb{T}, X)$, there exists $u \in H^{1, p}(\mathbb{T} \times \mathbb{T}, Y)$ such that $\widehat{\widehat{g}}(k, z)=$ $M_{k, z} \widehat{\widehat{f}}(k, z)$ for all $(k, z) \in \mathbb{Z} \times \mathbb{Z}$.

We recall the following results
Lemma 2.4. [4] Let $f, g \in L^{p}([0,2 \pi] \times[0,2 \pi] ; X)$, where $1 \leq p<\infty$. Then the following are equivalent.
(i) $f(x, y) \in D(A)$ and $A f(x, y)=g(x, y)$,
(ii) $\widehat{\hat{f}}(k, z) \in D(A)$ and $A \widehat{\widehat{f}}(k, z)=\widehat{\widehat{g}}(k, z)$ for all $(k, z) \in \mathbb{Z} \times \mathbb{Z}$

Next we give some preliminaries. Given $a \in L^{1}\left(\mathbb{R}_{+} \times \mathbb{R}_{+}\right)$and $u:[0,2 \pi] \times[0,2 \pi] \rightarrow X$ (extended by periodicity to \mathbb{R}), we define

$$
\begin{equation*}
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} a(x-s, y-\xi) u(s, \xi) d s d \xi \tag{2.1}
\end{equation*}
$$

Let $\tilde{\tilde{a}}(\lambda, \mu)=\int_{0}^{+\infty} \int_{0}^{+\infty} e^{-(\lambda x+\mu y)} a(x, y) d x d y, \lambda, \mu \in \mathbb{C}$, be the Laplace transform of a. An easy computation shows that:

$$
\begin{equation*}
\widehat{\widehat{F}}(k, z)=\tilde{\tilde{a}}(i k, i z) \widehat{\widehat{u}}(k, z) \text {, four } k, z \in \mathbb{Z} \tag{2.2}
\end{equation*}
$$

Remark 2.4. For all $(\lambda, \mu) \in \mathbb{C} \times \mathbb{C}$ and $(x, t) \in \mathbb{R} \times \mathbb{R}$, we have
(1) $\tilde{\tilde{f}}(0,0)=\int_{0}^{+\infty} \int_{0}^{+\infty} f(x, y) d x d y$.
(2) $\tilde{\tilde{f}}(\lambda, 0)=\int_{0}^{+\infty} \int_{0}^{+\infty} e^{-i \lambda x} f(x, y) d x d y$.
(3) $\tilde{\tilde{f}}(0, \mu)=\int_{0}^{+\infty} \int_{0}^{+\infty} e^{-i \mu y} f(x, y) d x d y$.
(4) $\tilde{f}(\lambda, y)=\int_{0}^{+\infty} e^{-i \lambda x} f(x, y) d x$.
(5) $\tilde{f}(x, \mu)=\int_{0}^{+\infty} e^{-i \mu y} f(x, y) d y$.

3 A caracterization of stong L^{p}-solution

Definition 3.1. : Let $f \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$. A function $u \in H^{1, p}(\mathbb{T} \times \mathbb{T} ; X)$ is said to be a 2π periodic strong L^{p}-solution of Eq. ((1.1)) if $u \in D(A), u(0, y)=u(2 \pi, y), u(x, 0)=u(x, 2 \pi)$ for all $(x, y) \in \mathbb{T} \times \mathbb{T}$ and Eq. $((\mathbf{1 . 1}))$ holds almost every where.

Proposition 3.1. Let X be a Banach space. Suppose that for every $f \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$ there exists a unique strong solution of Eq. ((1.1)) for $1 \leq p<\infty$. Then
(1) for every $(k, z) \in \mathbb{Z} \times \mathbb{Z}$ the operator $\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)$ has invertible.
(2) $\left\{-k z\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)^{-1}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is an L^{p}-multiplier.

Proof. 1. Let $k, z \in \mathbb{Z}$ and $w \in X$. Then for $f(x, y)=e^{i(k x+z y)} w$, there exists $x \in$ $H^{1, p}(\mathbb{T} \times \mathbb{T} ; X)$ such that:
$\frac{\partial}{\partial x} \frac{\partial}{\partial y}(u(x, y)-B u(x-r, y-r))+A u(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} a(x-s, y-\xi) u(s, \xi) d \xi d s+f(x, y)$
Taking Fourier transform. Then we obtain
$\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right) \widehat{\widehat{u}}(k, z)=\widehat{\widehat{f}}(k, z)=w \Rightarrow\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)$ is surjective.
if $\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)(v)=0$, then, $u(x, y)=e^{i(k x+z y)} v$ is a 2π-periodic strong L^{p}-solution of Eq. ((1.1)) corresponding to the function $f=0$ Hence $u(x, y)=0$ and $v=0$ then $\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)$ is injective.
2) Let $f \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$. By hypothesis, there exists a unique $u \in H^{1, p}(\mathbb{T} \times \mathbb{T}, X)$ such that the Eq. $((\mathbf{1 . 1}))$ is valid. Taking Fourier transforms, we deduce that $\widehat{\widehat{u}}(k, z)=(-k z I+$ $\left.k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)^{-1} \widehat{\widehat{f}}(k, z)$ for all $k, z \in \mathbb{Z}$, then $\left\{\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)^{-1}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is an L^{p}-multiplier. Hence $-k z \widehat{\widehat{u}}(k, z)=-k z\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)^{-1} \widehat{\widehat{f}}(k, z)$ for all $k, z \in \mathbb{Z}$. On the other hand, since $u \in H^{1, p}(\mathbb{T} \times \mathbb{T} ; X)$, there exists $w \in L^{p}(\mathbb{T} \times$ $\mathbb{T} ; X)$ such that $\widehat{\widehat{w}}(k, z)=-k z \widehat{\widehat{u}}(k, z)=-k z\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)^{-1} \widehat{\widehat{f}}(k, z)$ i.e $\left\{-k z\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)^{-1}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is an L^{p}-multiplier.

4 Main result

The next Theorem is the main result of this section.
Theorem 4.1. Let A be a closed linear operator and $1 \leq p<\infty$. If
(1) for every $(k, z) \in \mathbb{Z} \times \mathbb{Z}$ the operator $M_{k, z}=\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)$ has invertible.
(2) $\left\{-k z\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)^{-1}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is an L^{p}-multiplier.

Then for every $f \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$ there exists a unique 2π-periodic strong L^{p}-solution of $E q$. ((1.1)).

Lemma 4.2. [4] Let $1 \leq p<\infty$ and X be a Banach space. The following assertions are equivalent
(1) $\left\{M_{k, z}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is an $\left(L^{p}, H^{p}\right)$-multiplier.
(2) $\left\{-k z M_{k, z}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is an L^{p}-multiplier.

Proof. $1 \Rightarrow 2$. Let $f \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$, then there exists $g \in H^{1, p}(\mathbb{T} \times \mathbb{T} ; X)$ (in particular $\left.g \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)\right)$ such that $\widehat{\widehat{g}}(k, z)=-k z M_{k, z} \widehat{\widehat{f}}(k, z)$, then $\left\{-k z M_{k, z}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is an $L^{p}{ }_{-}$ multiplier.
$2 \Rightarrow 1$. Let $f \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$, by hypothesis $\exists v \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$ such that $\widehat{\widehat{v}}(k, z)=$ $-k z M_{k, z} \widehat{\widehat{f}}(k, z)$. In particular $\widehat{\widehat{v}}(0,0)=\widehat{\widehat{v}}(0, z)=\widehat{\widehat{v}}(k, 0)=0$.
Let $w(x, y)=\int_{0}^{x} \int_{0}^{y} v(s, \xi) d \xi d s$, then we have
$\widehat{w}(x, z)=\int_{0}^{x}\left(\frac{i}{z} \widehat{v}(x, 0)-\frac{i}{z} \widehat{v}(x, z)\right) d s$, for all $z \neq 0$
$\left.\left.\widehat{\widehat{w}}(k, z)=\frac{i}{k}\left[\frac{i}{z} \widehat{\widehat{v}}(0,0)-\frac{i}{z} \widehat{\widehat{v}}(0, z)\right)\right]-\frac{i}{k}\left[\frac{i}{z} \widehat{\widehat{v}}(k, 0)-\frac{i}{z} \widehat{\widehat{v}}(K, z)\right)\right]$, for all $k \neq 0$
$\widehat{\widehat{w}}(k, z)=\frac{i}{k} \frac{i}{z} \widehat{\widehat{v}}(k, z)=\frac{-1}{k z} \widehat{\widehat{v}}(k, z)=M_{k, z} \widehat{\widehat{f}}(k, z)$, for all $k \neq 0$ and $z \neq 0$
Let $u(x, y)=w(x, y)+M_{0,0} \widehat{\widehat{f}}(0,0)-\widehat{\widehat{w}}(0,0)$ i.e
$u(x, y)=a+\int_{0}^{x} \int_{0}^{y} v(s, \xi) d \xi d s, a=M_{0,0} \widehat{\hat{f}}(0,0)-\widehat{\widehat{w}}(0,0)$. Then by Remark $((\mathbf{2 . 2}))$ we have $u \in H^{1, p}(\mathbb{T} \times \mathbb{T} ; X)$.
$\widehat{\widehat{u}}(k, z)=\widehat{\widehat{w}}(k, z)+0=\widehat{\widehat{w}}(k, z)=M_{k, z} \widehat{\widehat{f}}(k, z)$, for all $(k, z) \neq(0,0)$,
Proof of theorem ((4.1)). Let $f \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$. Define $M_{k, z}=\left(-k z I+k z B_{k z}+A-\right.$ $\tilde{\tilde{a}}(i k, i z))^{-1}$ by theorem $((\mathbf{4 . 1}))$, the family $\left\{-k z\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)^{-1}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is an L^{p}-multiplier and by Lemma $((4.2))$, it is equivalent to the fact that the family $\left\{M_{k, z}\right\}_{(k, z) \in \mathbb{Z} \times \mathbb{Z}}$ is an $\left(L^{p}, H^{p}\right)$-multiplier, i.e, there exists $u \in H^{1, p}(\mathbb{T} \times \mathbb{T} ; X)$ such that

$$
\begin{equation*}
\widehat{\widehat{u}}(k, z)=M_{k, z} \widehat{\hat{f}}(k, z)=\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right)^{-1} \widehat{\widehat{f}}(k, z) \tag{4.1}
\end{equation*}
$$

In particuler, $u \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$ and there exists $v \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$ such that

$$
\begin{equation*}
\widehat{\widehat{v}}(k, z)=-k z \widehat{\widehat{u}}(k, z) \tag{4.2}
\end{equation*}
$$

Moreover, $\left.\widehat{\frac{\partial}{\partial x} \frac{\partial}{\partial t} u} u, z\right)=-k z \widehat{\hat{v}}(k, z)$.
By Fejer's theorem one has in $L^{p}(\mathbb{T} \times \mathbb{T} ; X)$

$$
\widehat{\widehat{u}}(k, z)=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \sigma_{n, m}(u)(x, y)
$$

such that $\sigma_{n, m}(u)(x, y)=\frac{1}{n+1} \frac{1}{m+1} \sum_{p=0}^{n} \sum_{k=-p}^{p} \sum_{l=0}^{m} \sum_{z=-l}^{l} e^{i(k x+z t)} \widehat{\widehat{u}}(k, z)$.
By ((4.1)) and ((4.2)) we have

$$
-k z \widehat{\widehat{u}}(k, z)+k z B_{k z} \widehat{\widehat{u}}(k, z)+A \widehat{\widehat{u}}(k, z)=\tilde{\tilde{a}}(i k, i z) \widehat{\hat{f}}(k, z)+\widehat{\widehat{f}}(k, z)
$$

i.e

$$
-k z \widehat{\widehat{u}}(k, z)-(-k z) B_{k z} \widehat{\widehat{u}}(k, z)+A \widehat{\widehat{u}}(k, z)=\widehat{\widehat{F}}(k, z)+\widehat{\widehat{f}}(k, z)
$$

For all $(k, z) \in \mathbb{Z} \times \mathbb{Z}$. Then using that A and B are closed, we conclude that $u \in D(A)$ and $\frac{\partial}{\partial x} \frac{\partial}{\partial y}(u(x, y)-B u(x-r, y-r))+A u(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} a(x-s, y-\xi) u(s, \xi) d \xi d s+f(x, y)$

Suppose (1) has two strong L^{p}-solution u_{1} and u_{2}, then $u=u_{1}-u_{2}$ is a solution of Eq. ((1.1)) corresponding to the fonction $f=0$. Taking Fourier transform on both sides of this equality we get $\left(-k z I+k z B_{k z}+A-\tilde{\tilde{a}}(i k, i z)\right) \widehat{\widehat{u}}(k, z)$, which implies that $\widehat{\widehat{u}}(k, z)=0$ for all $(k, z) \in \mathbb{Z} \times \mathbb{Z}$, consequently, $u=0$. Then $u_{1}=u_{2}$.

5 Conclusion

For every function $f \in L^{p}(\mathbb{T} \times \mathbb{T} ; X)$, this paper deals with the existence of periodic solutions of neutral integro-differential equation with two variable $\frac{\partial}{\partial \mathbf{x}} \frac{\partial}{\partial \mathbf{y}}(\mathbf{u}(\mathbf{x}, \mathbf{y})-\mathbf{B u}(\mathbf{x}-\mathbf{r}, \mathbf{y}-\mathbf{r}))+$ $\mathbf{A u}(\mathbf{x}, \mathbf{y})=\int_{-\infty}^{\mathbf{x}} \int_{-\infty}^{\mathbf{y}} \mathbf{a}(\mathbf{x}-\mathbf{s}, \mathbf{y}-\xi) \mathbf{u}(\mathbf{s}, \xi) \mathbf{d} \xi \mathbf{d} \mathbf{s}+\mathbf{f}(\mathbf{x}, \mathbf{y})$. Using the method of Fourier transform of equation ((1.1)) and L^{p}-multipliers of linear operators. the results obtained in this paper generalizes the result of Bahloul [4].

Competing Interests

The author declare that no competing interests exist.

References

[1] W.Arend and S.Bu, The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math.Z. 240, (2002), 311-343.
[2] W. Arendt, S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proc. Edinburgh Math. Soc. 47, (1), (2004), 15-33.
[3] R.Bahloul, M.Bahaj and O.Sidki,Periodic solutions of degenerate equations with finite delay in UMD space, journal of Advances in Dynamical Systems and Application. ISSN 0973-5321, Volume 10, Number 1, (2015) pp. 23-31.
[4] R.Bahloul, Periodic solutions of differential equations with two variable in vector-valued function space, Asian Journal of Mathematics and Computer Research,12(1): 44-53, 2016 ISSN: 2395-4205 (P), ISSN: 2395-4213 (O).[L ((2.2)) L ((2.3)) L ((2.4)) L((4.2))]
[5] K. Ezzinbi, R.Bahloul et O.Sidki, Periodic Solutions in UMD spaces for some neutral partial function differential equations, Advances in Pure Mathematics, (2016), 6, 713-726, http: dx.doi.org/10.4236/apm.2016.610058.
[6] Sylvain Koumla, Khalil Ezzinbi and Rachid Bahloul, mild solutions for some partial functional integrodifferential equations with finite delay in Frechet spaces. SeMA (2016), P 1-13. DOI 10.1007/s40324-016-0096-7
[7] S.Bu and G.Cai, Solutions of second order degenerate integro-differential equations in vector-valued function spaces, Science China Mathematics. May 2013 Vol. 56 No. 5: 10591072.
[8] S.Bu, L^{p}-Maximal Regularity of Degenerate delay Equations with Periodic Conditions, Banach J.Math.Anal. 8(2014), no. 2, 49-59
[9] Hernan R.Henriquez, Michelle Pierri and Andrea Prokopczyk Periodic Solutions of abstract neutral functional differential equations, J. Math. Ana. Appl. 385, (2012), 608 621. $[\mathbf{R}((\mathbf{2 . 2}))]$
[10] A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Pure and Appl.Math., 215, Dekker, New York, Basel, Hong Kong, 1999.
[11] V. Keyantuo and C. Lizama, Fourier multipliers and integro-differential equations in Banach spaces, J. London Math. Soc. 69 (2004), 737750.
[12] V. Keyantuo and C. Lizama, Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Math. 168 (2005), 2550.
[13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Spinger, Berlin, 1996.
[14] C. Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces,J. Math. Anal. Appl. 324 (2006), 921933.
[15] C. Lizama and V. Poblete, Periodic solutions of fractional differential equations with delay,J. Evol. Equ. 11 (2011), no. 1, 5770.
[16] C. Lizama and V. Poblete, Maximal regularity of delay equations in Banach spaces, Studia Math. 175 (2006), 91102.
[17] Y.Hino, T.Naito,N. Van Minh and J.S.Shin, Almost periodic solution of Differential Equations in Banach Spaces, Taylor and Francis, London,2002.
[18] Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977
[19] V.Poblete, Maximal regularity of second-order equations with delay, J. Differential Equations 246 (2009) 261276.

