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The aim of this work is to study the existence of a periodic solutions of neutral integrodifferential partial functional differential equations with two variable:

Our approach is based on the L p -multipliers of linear operators.

Introduction

Motivated by the fact that neutral functional differential equations (abbreviated, NFDE) with finite delay arise in many areas of applied mathematics, this type of equations has received much attention in recent years. In particular, the problem of existence of periodic solutions, has been considered by several authors. We refer the readers to papers [ [START_REF] Arend | The operator-valued Marcinkiewicz multiplier theorem and maximal regularity[END_REF], [START_REF] Arendt | Operator-valued Fourier multipliers on periodic Besov spaces and applications[END_REF], [START_REF] Bahloul | Periodic solutions of degenerate equations with finite delay in UMD space[END_REF], [START_REF] Ezzinbi | Periodic Solutions in UMD spaces for some neutral partial function differential equations[END_REF], [START_REF] Sylvain Koumla | mild solutions for some partial functional integrodifferential equations with finite delay in Frechet spaces[END_REF], [START_REF] Bu | Solutions of second order degenerate integro-differential equations in vector-valued function spaces[END_REF], [START_REF] Hernan | Prokopczyk Periodic Solutions of abstract neutral functional differential equations[END_REF], [START_REF] Lindenstrauss | Classical Banach Spaces II[END_REF], [START_REF] Lizama | Periodic solutions of fractional differential equations with delay[END_REF], [START_REF] Poblete | Maximal regularity of second-order equations with delay[END_REF]] and the references listed therein for information on this subject.

In this work, we study the existence of periodic solutions for the following neutral partial functional differential equations of the following form a(xs, y -ξ)u(s, ξ)dξds + f (x, y).

(1.1) Where (A, D(A)) and (B, D(B)) are a closed linear operators on a Banach spase X such that D(A) ⊂ D(B)), a ∈ L 1 (R + × R + ) and f : R × R → X is a locally p-integrable and 2π-periodic function for 1 ≤ p < ∞. In [START_REF] Bahloul | Periodic solutions of differential equations with two variable in vector-valued function space[END_REF], Bahloul established results on the existence of periodic solutions of Eq. ((1.1)) when a = 0, namely, for the following partial functional differential equation

∂ ∂x ∂ ∂y u(x, y) + Au(x, y) = f (x, y)
where (A, D(A)) is a linear operator.

In [START_REF] Bahloul | Periodic solutions of degenerate equations with finite delay in UMD space[END_REF], Bahloul et al established results on the existence for some degenerate differential equation. Resently in [START_REF] Ezzinbi | Periodic Solutions in UMD spaces for some neutral partial function differential equations[END_REF], Bahloul et al established the existence of periodic solution for the some functional differential equations in UMD space.

d dt (x(t) -L(x t )) = A(x(t) -L(x t )) + G(x t ) + f (t) for t ∈ R,
In [START_REF] Sylvain Koumla | mild solutions for some partial functional integrodifferential equations with finite delay in Frechet spaces[END_REF], Sylvain Koumla, Khalil Ezzinbi and Rachid Bahloul, studied the existence of mild solutions for some partial functional integrodifferential equations with finite delay in Frechet spaces described in the following form:

x ′ (t) = Ax(t) + t 0 B(t -s)x(s)ds + f (t, x t ) + h(t, x t ) for t ≥ 0
where A : D(A) → X is the infinitesimal generator of a C 0 -semigroup (T (t)) t≥0 on a Banach space X, B(t) is a closed linear operator with domain D(B) such that D(A) ⊂ D(B).

In [START_REF] Lizama | Fourier multipliers and periodic solutions of delay equations in Banach spaces[END_REF], Lizama gave necessary and sufficient conditions for the existence of periodic solutions of the following equation.

d dt x(t) = Ax(t) + L(x t ) + f (t) for t ∈ R,
where A is a closed linear operator on an UMD-space Y . We note that, starting with the work [START_REF] Lizama | Fourier multipliers and periodic solutions of delay equations in Banach spaces[END_REF], the problem of characterization of maximal regularity for avolution equations with periodic initial conditions have been studied intensively in the last years. See e.g [START_REF] Bu | L p -Maximal Regularity of Degenerate delay Equations with Periodic Conditions[END_REF], [START_REF] Keyantuo | Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces[END_REF] and [START_REF] Lizama | Maximal regularity of delay equations in Banach spaces[END_REF], see alsoo [START_REF] Favini | Degenerate Differential Equations in Banach Spaces[END_REF], [START_REF] Keyantuo | Fourier multipliers and integro-differential equations in Banach spaces[END_REF], [START_REF] Hino | Almost periodic solution of Differential Equations in Banach Spaces[END_REF] and [START_REF] Hale | Theory of Functional Differential Equations[END_REF] and references therien. the main novelty in this paper relies in the presence of two variable. This work can be considered as a progress on the treatment of such kind of problems. This work is organized as follows : After a creterion in the second section, we are able to characterize in section 3 the existence and uniqueness of strong L p -solution for the problem ((1.1)) solely in terms of a property of L p -multiplier for the sequence of operators -kz(-kzI + kzB kz + A -L k,z ) -1 . We optain that the following assertion are equivalent in general Banach spaces:

(1) (-kzI+kzB kz +A-ã(k, z)) is invertible and {-kz(-kzI+kzB kz +A-ã(k, z)) -1 , (k, z) ∈ Z × Z} is an L p -muliplier.
(2) For every f ∈ L p (T × T; X) there exist a unique function u ∈ H 1,p (T × T; X) such that u ∈ D(A) and equation ((1.1)) holds for a.e (x, y)

∈ [0, 2π] × [0, 2π].
In section 4, we give the main abstract result ( theorem ((4.1))) of this work.

A creterion for periodic solutions

Let X be a Banach Space. Firstly, we denote By T the group defined as the quotient R/2πZ. There is an identification between functions on T and 2π-periodic functions on R. We consider the interval [0; 2π) as a model for T. Given 1 ≤ p < ∞, we denote by L p (T × T; X) the space of 2π-periodic locally p-integrable functions from R × R into X, with the norm:

f p := ( 2π 0 2π 0 f (x, y) p dxdy) 1/p For f ∈ L p (T × T; X), we denote by f (k, z), (k, z) ∈ Z the (k, z)-th Fourier coefficient of f that is defined by: f (k, z) = ( 1 2π ) 2 2π 0 2π 0 e -i(kx+zt) f (x, t)dxdt. for (k, z) ∈ Z × Z and (x, y) ∈ R × R. Remark 2.1. [4]
For all (k, z) ∈ Z × Z and (x, y) ∈ T × T, we have

(1) f (0, 0) = ( 1 2π ) 2 2π 0 2π 0 f (x, y)dxdy.
(2) f (k, 0) = ( 1 2π ) 2 2π 0 2π 0 e -ikx f (x, y)dxdy.

(

) f (0, z) = ( 1 2π ) 2 2π 0 2π 0 e -izt f (x, y)dxdy. (4) f (k, y) = 1 2π 2π 0 e -ikx f (x, y)dx. (5) f (x, z) = 1 2π 2π 0 e -izy f (x, y)dy. Notation 2.1. : Let (k, z) ∈ Z × Z and 1 ≤ p < ∞. Denote by H 1,p (T × T; X) = u ∈ L p (T × T; X) : ∃v ∈ L p (T × T; X), v(k, z) = -kz u(k, z) 3 
. and

B kz = e -(ikx+izy) B Remark 2.2. [9] Let f ∈ L 1 (T; X). If g(t) = t 0 f (s)ds and k ∈ Z, k = 0, then ĝ(k) = i k f (0) -i k f (k) Lemma 2.2. [4] Let f ∈ L 1 (T × T; X). If w(x, y) = x 0 y 0 f (s, ξ)dξds and (k, z) ∈ Z × Z -{(0, 0)} then w(k, z) = -1 kz f (0, 0) + 1 kz f (0, z) + 1 kz f (k, 0) -1 kz f (k, z) Lemma 2.3. [4] ((2.2)) Let 1 ≤ p < ∞ and let f, g ∈ L 1 (T × T; X).
The following are equivalent:

(1) v(0, 0) = v(k, 0) = v(0, z) = 0 and there exists a ∈ X such that u(x, y) = a + x 0 y 0 v(s, ξ)dξds, (x, y) ∈ T × T (2) v(k, z) = -kz u(k, z), ((k, z) ∈ Z × Z) Remark 2.3. By Lemma ((2.
3)) we have u ∈ H 1,p (T×T; X) ⇔ there exists v ∈ L p (T×T; X) such that v(0, 0) = v(k, 0) = v(0, z) = 0 and there exists a ∈ X such that u(x, y) = a + x 0 y 0 v(s, ξ)dξds, (x, y) ∈ T × T Now we can formulate the following multiplier definition.

Definition 2.1. For 1 ≤ p < ∞, a sequence {M k,z } (k,z)∈Z×Z is said to be an L p -multiplier (or (L p , L p )-multiplier) if for each f ∈ L p (T × T, X), there exists u ∈ L p (T × T, Y ) such that g(k, z) = M k,z f (k, z) for all (k, z) ∈ Z × Z. Definition 2.2. : For 1 ≤ p < ∞ , a sequence {M k,z } (k,z)∈Z×Z is said to be an (L p , H 1,p )- multiplier if for each f ∈ L p (T × T, X), there exists u ∈ H 1,p (T × T, Y ) such that g(k, z) = M k,z f (k, z) for all (k, z) ∈ Z × Z.
We recall the following results

Lemma 2.4. [4] Let f, g ∈ L p ([0, 2π] × [0, 2π]; X)
, where 1 ≤ p < ∞. Then the following are equivalent.

(i) f (x, y) ∈ D(A) and Af (x, y) = g(x, y),

(ii) f (k, z) ∈ D(A) and A f (k, z) = g(k, z) for all (k, z) ∈ Z × Z
Next we give some preliminaries. Given a ∈ L 1 (R + × R + ) and u : [0, 2π] × [0, 2π] → X (extended by periodicity to R), we define

F (x, y) = x -∞ y -∞ a(x -s, y -ξ)u(s, ξ)dsdξ (2.1) Let ã(λ, µ) = +∞ 0
+∞ 0 e -(λx+µy) a(x, y)dxdy, λ, µ ∈ C, be the Laplace transform of a. An easy computation shows that:

F (k, z) = ã(ik, iz) u(k, z), four k, z ∈ Z (2.2) Remark 2.4. For all (λ, µ) ∈ C × C and (x, t) ∈ R × R, we have (1) f (0, 0) = +∞ 0 +∞ 0 f (x, y)dxdy. (2) f (λ, 0) = +∞ 0
+∞ 0 e -iλx f (x, y)dxdy. (2) -kz(-kzI

+ kzB kz + A -ã(ik, iz)) -1 (k,z)∈Z×Z is an L p -multiplier.
Proof. 1. Let k, z ∈ Z and w ∈ X. Then for f (x, y) = e i(kx+zy) w , there exists x ∈ H 1,p (T × T; X) such that:

∂ ∂x ∂ ∂y (u(x, y) -Bu(x -r, y -r)) + Au(x, y) = x -∞ y -∞ a(x -s, y -ξ)u(s, ξ)dξds + f (x, y) Taking Fourier transform. Then we obtain (-kzI + kzB kz + A -ã(ik, iz)) u(k, z) = f (k, z) = w ⇒ (-kzI + kzB kz + A -ã(ik, iz)) is surjective. if (-kzI + kzB kz + A -ã(ik, iz))(v) = 0, then, u(x, y) = e i(kx+zy) v is a 2π-periodic strong L p -solution of Eq. ((1.1)) corresponding to the function f = 0 Hence u(x, y) = 0 and v = 0 then (-kzI + kzB kz + A -ã(ik, iz)) is injective. 2) Let f ∈ L p (T × T; X)
. By hypothesis, there exists a unique u ∈ H 1,p (T × T, X) such that the Eq.((1.1)) is valid. Taking Fourier transforms, we deduce that u(k, z) = (-kzI + kzB kz +A-ã(ik, iz)) -1 f (k, z) for all k, z ∈ Z, then (-kzI + kzB kz + A -ã(ik, iz)) -1 (k,z)∈Z×Z is an L p -multiplier. Hence -kz u(k, z) = -kz(-kzI + kzB kz + A -ã(ik, iz)) -1 f (k, z) for all k, z ∈ Z. On the other hand, since u ∈ H 1,p (T × T; X) , there exists w ∈ L p (T × T; X) such that w(k, z) = -kz u(k, z) = -kz(-kzI

+ kzB kz + A -ã(ik, iz)) -1 f (k, z) i.e -kz(-kzI + kzB kz + A -ã(ik, iz)) -1 (k,z)∈Z×Z is an L p -multiplier.

Main result

The next Theorem is the main result of this section.

Theorem 4.1. Let A be a closed linear operator and

1 ≤ p < ∞. If (1) for every (k, z) ∈ Z × Z the operator M k,z = (-kzI + kzB kz + A -ã(ik, iz)) has invertible.
(2) -kz(-kzI

+ kzB kz + A -ã(ik, iz)) -1 (k,z)
∈Z×Z is an L p -multiplier. Then for every f ∈ L p (T × T; X) there exists a unique 2π-periodic strong L p -solution of Eq. ((1.1)). Lemma 4.2. [4] Let 1 ≤ p < ∞ and X be a Banach space. The following assertions are equivalent (1) {M k,z } (k,z)∈Z×Z is an (L p , H p )-multiplier.

(2) {-kzM k,z } (k,z)∈Z×Z is an L p -multiplier.

Proof. 1 ⇒ 2. Let f ∈ L p (T × T; X), then there exists g ∈ H 1,p (T × T; X) ( in particular

g ∈ L p (T × T; X)) such that g(k, z) = -kzM k,z f (k, z), then {-kzM k,z } (k,z)∈Z×Z is an L p - multiplier. 2 ⇒ 1. Let f ∈ L p (T × T; X), by hypothesis ∃v ∈ L p (T × T; X) such that v(k, z) = -kzM k,z f (k, z). In particular v(0, 0) = v(0, z) = v(k, 0) = 0. Let w(x, y) = x 0 y 0 v(s, ξ)dξds, then we have w(x, z) = x 0 ( i z v(x, 0) -i z v(x, z))ds, for all z = 0 w(k, z) = i k [ i z v(0, 0) -i z v(0, z))] -i k [ i z v(k, 0) -i z v(K, z))], for all k = 0 w(k, z) = i k i z v(k, z) = -1 kz v(k, z) = M k,z f (k, z)
, for all k = 0 and z = 0 Let u(x, y) = w(x, y) + M 0,0 f (0, 0) -w(0, 0) i.e u(x, y) = a + x 0 y 0 v(s, ξ)dξds, a = M 0,0 f (0, 0) -w(0, 0). Then by Remark ((2.2)) we have

u ∈ H 1,p (T × T; X). u(k, z) = w(k, z) + 0 = w(k, z) = M k,z f (k, z), for all (k, z) = (0, 0), Proof of theorem ((4.1)). Let f ∈ L p (T × T; X). Define M k,z = (-kzI + kzB kz + A - ã(ik, iz)) -1 by theorem ((4.1)), the family -kz(-kzI + kzB kz + A -ã(ik, iz)) -1 (k,z)∈Z×Z
is an L p -multiplier and by Lemma ((4.2)), it is equivalent to the fact that the family {M k,z } (k,z)∈Z×Z is an (L p , H p )-multiplier, i.e, there exists u ∈ H 1,p (T × T; X) such that

u(k, z) = M k,z f (k, z) = (-kzI + kzB kz + A -ã(ik, iz)) -1 f (k, z) (4.1) 
In particuler, u ∈ L p (T × T; X) and there exists v ∈ L p (T × T; X) such that 

v(k, z) = -kz u(k, z) (4.2) Moreover, ∂ ∂x ∂ ∂t u(k, z) = -kz v(k, z). By Fejer's theorem one has in L p (T × T; X) u(k, z) = lim n→∞ lim m→∞ σ n,m (u)(x, y) such that σ n,m (u)(x, y) = 1
-kz u(k, z) + kzB kz u(k, z) + A u(k, z) = ã(ik, iz) f (k, z) + f (k, z) i.e -kz u(k, z) -(-kz)B kz u(k, z) + A u(k, z) = F (k, z) + f (k, z)
For all (k, z) ∈ Z × Z. Then using that A and B are closed, we conclude that u ∈ D(A) and Suppose (1) has two strong L p -solution u 1 and u 2 , then u = u 1 -u 2 is a solution of Eq. ((1.1)) corresponding to the fonction f = 0. Taking Fourier transform on both sides of this equality we get (-kzI + kzB kz + A -ã(ik, iz)) u(k, z), which implies that u(k, z) = 0 for all (k, z) ∈ Z × Z, consequently, u = 0. Then u 1 = u 2 .

Conclusion

For every function f ∈ L p (T×T; X), this paper deals with the existence of periodic solutions of neutral integro-differential equation with two variable ∂ ∂x ∂ ∂y (u(x, y) -Bu(xr, yr)) + Au(x, y) =

x -∞ y -∞ a(xs, y -ξ)u(s, ξ)dξds + f (x, y). Using the method of Fourier transform of equation ((1.1)) and L p -multipliers of linear operators. the results obtained in this paper generalizes the result of Bahloul [START_REF] Bahloul | Periodic solutions of differential equations with two variable in vector-valued function space[END_REF].

  x, y) -Bu(xr, yr)) + Au(x, y)

e

  -iµy f (x, y)dxdy.

( 4 )

 4 f (λ, y) = +∞ 0 e -iλx f (x, y)dx.

( 5 )

 5 f (x, µ) = +∞ 0e -iµy f (x, y)dy.

3 AProposition 3 . 1 .

 331 caracterization of stong L p -solution Definition 3.1. : Let f ∈ L p (T × T; X). A function u ∈ H 1,p (T × T; X) is said to be a 2πperiodic strong L p -solution of Eq. ((1.1)) if u ∈ D(A), u(0, y) = u(2π, y), u(x, 0) = u(x, 2π) for all (x, y) ∈ T × T and Eq.((1.1)) holds almost every where. Let X be a Banach space. Suppose that for every f ∈ L p (T × T; X) there exists a unique strong solution of Eq. ((1.1)) for 1 ≤ p < ∞. Then (1) for every (k, z) ∈ Z × Z the operator (-kzI + kzB kz + A -ã(ik, iz)) has invertible.

  e i(kx+zt) u(k, z). By ((4.1)) and ((4.2)) we have

  x, y) -Bu(x -r, y -r)) + Au(x, y) -s, y -ξ)u(s, ξ)dξds + f (x, y)
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