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Abstract

In this paper we give a necessary and suffcient conditions for the
existence and uniqueness of periodic solutions of functional differential
equations with n delay d

dtx(t) = Ax(t) +
∑n

j=1Bx(t − rj) + f(t). The
conditions are obtained in terms of R-boundedness of operator valued
Fourier multipliers.
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1 Introduction

Let A and B be two closed linear operators defined on a Banach space X with
domains D(A) and D(B), respectively such that D(A) ⊂ D(B). In this paper
we show existence and uniqueness of solutions for the following differential
equation with n delay


d

dt
x(t) = Ax(t) +

n∑
j=1

Bx(t− rj) + f(t)

x(0) = x(2π).

(1)

where f ∈ Lp([−r2π, 0], X) for some 1 ≤ p < ∞, r2π = 2πN (N ∈ N) and
we suppose B is bounded. The theory of operator-valued Fourier multipliers
has attracted the attention of many papers in recent years. For example, this
theory was used in [1] to obtain results about equations dx(t)

dt
= Ax(t) + f(t),

and in [11] to obtain results about delay equation dx(t)
dt

= Ax(t) +F (xt) +f(t).
In [6], S.Bu studied Lp-Maximal Regularity of Degenerate delay Equations
with Periodic Conditions. We note that in the special case when B = 0,
maximal regularity of Eq. (1) has been studied by Arendt and Bu in Lp-spaces
case and Besov spaces case [[1], [2]], Bu and Kim in TriebelLizorkin spaces case
[8]. The corresponding integro-differential equations were treated by Keyantuo
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and Lizama [[17], [18]], Bu and Fang [7]. In this paper, we characterize the
existence and uniqueness for the n delay equation (1) under the condition that
X is a UMD space. Here the operator A is not necessarily the generator of
a C0-semigroup. We use the operator valued multiplier Fourier method. The
organisation of this work is as follows : In section 2, we present preliminary
results on UMD spaces and LP -multiplier. In section 3, we study the existence
of periodic strong solution for Eq.(1) with finite delay. In section 4, we give
the main abstract result ( theorem [4.2] ) of this work.
1) for every f ∈ Lp(T;X); 1 < p <∞, there exists a unique 2π-periodic strong
Lp-solution of Eq. (1).
2) (ikI − A −

∑n
j=1Bj,k) has bounded invertible for all k ∈ Z and {ik(ikI −

A−
∑n

j=1Bj,k)
−1}k∈Z is R-bounded.

2 Preliminary Notes

Let X be a Banach Space. Firstly, we denote By T the group defined as
the quotient R/2πZ. There is an identification between functions on T and
2π-periodic functions on R. We consider the interval [0, 2π) as a model for T.

Definition 2.1. A Banach space X is said to be UMD space if the Hilbert
transform is bounded on Lp(R, X) for all 1 < p <∞.

Example 2.2. : [9]
1.Any Hilbert space is an UMD space.
2. Lp(0.1) are UMD spaces for every 1 < p <∞.
3. Any closed subspace of a UMD space is a UMD space.

Definition 2.3. [1]
A family of operators T = (Tj)j∈N∗ ⊂ B(X, Y ) is called R-bounded ( Rademacher
bounded or randomized bounded), if there is a constant C > 0 and
p ∈ [1,∞) such that for each n ∈ N, Tj ∈T, xj ∈ X and for all indepen-
dent, symmetric, {−1, 1}-valued random variables rj on a probability space
(Ω,M, µ) the inequality∥∥∥∥∥

n∑
j=1

rjTjxj

∥∥∥∥∥
Lp(0,1;Y )

≤ C

∥∥∥∥∥
n∑
j=1

rjxj

∥∥∥∥∥
Lp(0,1;X)

is valid. The smallest C is called R-bounded of (Tj)j∈N∗ and it is denoted by
Rp(T ).

Definition 2.4. [11]
For 1 ≤ p <∞ , a sequence {Mk}k∈Z ⊂ B(X, Y ) is said to be an Lp-multiplier

if for each f ∈ Lp(T, X), there exists u ∈ Lp(T, Y ) such that û(k) = Mkf̂(k)
for all k ∈ Z.
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Proposition 2.5. [1, Proposition 1.11] Let X be a Banach space and {Mk}k∈Z
be an Lp-multiplier, where 1 ≤ p <∞. Then the set {Mk}k∈Z is R-bounded.

Theorem 2.6. (Marcinkiewicz operator-valud multiplier Theorem).
Let X, Y be UMD spaces and {Mk}k∈Z ⊂ B(X, Y ). If the sets {Mk}k∈Z and
{k(Mk+1 −Mk)}k∈Z are
R-bounded, then {Mk}k∈Z is an Lp-multiplier for 1 < p <∞.

We observe that the condition of R-boundedness for (Mk)k∈Z is necessary.

Remark 2.7. [13]
Let f ∈ L1(T;X). If g(t) =

∫ t
0
f(s)ds and k ∈ Z, k 6= 0, then

ĝ(k) = i
k
f̂(0)− i

k
f̂(k)

3 A criterion for periodic solutions

Notation 3.1. Let k ∈ Z. Denote by Bj,k := e−ikrjB,
∆k = (ikI − A−

∑n
j=1Bj,k) and σZ(∆) := {k ∈ Z : ∆kis not bijective}

H1,p(T;X) = {u ∈ Lp(T, X) : ∃v ∈ Lp(T, X), v̂(k) = ikû(k)for all k ∈ Z}

Definition 3.2. Let f ∈ Lp(T;X). A function x ∈ H1,p(T;X) is said to be
a 2π-periodic strong Lp-solution of Eq. (1) if x(t) ∈ D(A) for all t ≥ 0 and
Eq. (1) holds almost every where.

Lemma 3.3. [1, Lemme 2.1] Let 1 ≤ p < ∞ and u, v ∈ Lp(T;X). Then
the following assertions are equivalent:

(i)

∫ 2π

0

v(s)ds = 0 and there exists x ∈ X such that u(t) = x+
∫ t
0
v(s)ds.

(ii) v̂(k) = ikû(k) for any k ∈ Z.

Definition 3.4. For 1 ≤ p < ∞, we say that a sequence {Mk}k∈Z ⊂
B(X, Y ) is an (Lp, H1,p)-multiplier, if for each f ∈ Lp(T, X) there exists
u ∈ H1,p(T, Y ) such that û(k) = Mkf̂(k) for all k ∈ Z.

Lemma 3.5. Let 1 ≤ p < ∞ and (Mk)k∈Z ⊂ B(X) (B(X) is the set of
all bounded linear operators from X to X). Then the following assertions are
equivalent:
(i) (Mk)k∈Z is an (Lp, H1,p)-multiplier.
(ii) (ikMk)k∈Z is an (Lp, Lp)-multiplier.

Proposition 3.6. Let A be a closed linear operator defined on an UMD
space X. Suppose that σZ(∆) = φ .Then the following assertions are equivalent
:
(i) {ik(ikI − A−

∑n
j=1Bj,k)

−1}k∈Z is an Lp-multiplier for 1 < p <∞
(ii) {ik(ikI − A−

∑n
j=1Bj,k)

−1}k∈Z is R-bounded.
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Proof. By [1, Proposition 1.11] it follows that (i) implies (ii). Conversely,
define Mk = ik(Ck − A)−1, where Ck = ikI −

∑n
j=1Bj,k, By Theorem 2.6 is

sufficient to prove that the set (k(Mk+1 −Mk))k∈Z is R-bounded. We claim
first that the set (

∑n
j=1Bj,k)k∈Z is R-bounded.

since given xj ∈ D(A) we have :∥∥∥∥∥
m∑
l=1

rl(
n∑
j=1

Bj,l)xl

∥∥∥∥∥
p

Lp(0,1;X)

=

∫ 1

0

∥∥∥∥∥
m∑
l=1

rl(t)B(
n∑
j=1

e−ilrjxl)

∥∥∥∥∥
p

X

dt

=

∫ 1

0

∥∥∥∥∥B(
m∑
l=1

rl(t)
n∑
j=1

e−ilrjxl)

∥∥∥∥∥
p

X

dt

≤ ||B||p
∫ 1

0

∥∥∥∥∥
m∑
l=1

rl(t)
n∑
j=1

e−ilrjxl

∥∥∥∥∥
p

X

dt

By (Lemma 1.7, [1]) we obtain that∥∥∥∑m
l=1 rl(

∑n
j=1Bj,l)xl

∥∥∥p
Lp(0,1;X)

≤ 2np||B||p
∫ 1

0

∥∥∥∥∥
m∑
l=1

rl(t)xl

∥∥∥∥∥
p

X

dt

We conclude that ∥∥∥∥∥
m∑
l=1

rl(
n∑
j=1

Bj,l)xl

∥∥∥∥∥
Lp(0,1;X)

≤ 21/pn||B||.

and the claim is proved. Next. We note the following identities

k [Mk+1 −Mk] = k
[
i(k + 1)(Ck+1 − AD)−1 − ik(Ck − AD)−1

]
= k(Ck+1 − AD)−1[i(k + 1)(Ck − AD)− ik(Ck+1 − AD)](Ck − AD)−1

= k(Ck+1 − AD)−1[ik(Ck − Ck+1) + i(Ck − A)](Ck − AD)−1

= k(Ck+1 − AD)−1[ik(Ck − Ck+1)(Ck − AD)−1 + iI]

=
−ik
k + 1

Mk+1(Ck − Ck+1)Mk +
k

k + 1
Mk+1.

We have

Ck − Ck+1 = −iI +
n∑
j=1

Be−ikrj(1− e−irj).

Since products and sums of R-bounded sequences is R-bounded [11, Remark
2.2]. Then {k(Mk+1 −Mk)}k∈Z is R-bounded and by theorem 2.6, {Mk}k∈Z is
an Lp-multiplier.

Theorem 3.7. Let X be a Banach space. Suppose that for every f ∈
Lp(T;X) there exists a unique strong solution of Eq. (1) for 1 ≤ p < ∞.
Then
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1. for every k ∈ Z the operator ∆k = (ikI − A −
∑n

j=1Bj,k) has bounded
inverse

2.
{
ik∆−1k

}
k∈Z is R-bounded.

Before to give the proof of Theorem (3.7), we need the following Lemma.

Lemma 3.8. if (ikI−A−
∑n

j=1Bj,k(x)) = 0 for all k ∈ Z, then u(t) = eiktx
is a 2π-periodic strong Lp-solution of the following equation (1) corresponing
to the function f = 0.

Proof. (ikI − A−
∑n

j=1Bj,k(x)) = 0⇒ ikx = Ax+
∑n

j=1Bj,kx.

We have u(t) = eiktx then

u′(t) = ikeiktx = eikt(ikx) = eikt[Ax+
n∑
j=1

Bj,kx] = Au(t) +
n∑
j=1

Bu(t− rj).

Proof of Theorem 3.7 1) Let k ∈ Z and y ∈ X. Then for f(t) = eikty ,
there exists x ∈ H1,p(T;X) such that:

d

dt
x(t) = Ax(t) +

n∑
j=1

Bx(t− rj) + f(t)

Taking Fourier transform, by Lemma 3.3 we have :

x̂′(k) = ikx̂(k) = Ax̂(k) +
n∑
j=1

Bj,kx̂(k) + f̂(k).

Then we obtain : (ikI−A−
∑n

j=1Bj,k)x̂(k) = f̂(k) = y ⇒ (ikI−A−
∑n

j=1Bj,k)
is surjective.
If (ikI−A−

∑n
j=1Bj,k)u = 0, then by Lemma 3.8 x(t) = eiktu is a 2π-periodic

strong Lp-solution of Eq. (1) corresponing to the function f = 0 Hence x(t) = 0
and u = 0 then (ikI − A−

∑n
j=1Bj,k) is injective.

2) Let f ∈ Lp(T, X). By hypothesis, there exists a unique x ∈ H1;p(T, X)
such that the Eq. (1) is valid. Taking Fourier transforms, we deduce that
x̂(k) = (ikI − A−

∑n
j=1Bj,k)

−1f̂(k) for all k ∈ Z. Hence

ikx̂(k) = ik(ikI − A−
n∑
j=1

Bj,k)
−1f̂(k)

On the other hand, since x ∈ H1;p(T, X), there exists v ∈ Lp(T, X) such
that v̂(k) = ikx̂(k) = ik(ikI − A −

∑n
j=1Bj,k)

−1f̂(k) i.e {ik∆−1k }k∈Z is an

Lp-multiplier. Then {ik∆−1k }k∈Z is R-bounded.



6 Bahloul et al

4 Existence of mild solutions of Eq. (1)

It is well known that in many important applications the operator A is the
infinitesimal generator of C0-semigroup (T (t))t≥0 on the space X. Let A be a
generator of a C0-semigroup (T (t))t≥0.

Definition 4.1. Assume that A generates a C0-semigroup (T (t))t≥0 on X.
A function x is called a mild solution of Eq. (1) if :

x(t) = T (t)ϕ+

∫ t

0

T (t− s)(
n∑
j=1

Bx(s− rj) + f(s))ds for 0 ≤ t ≤ 2π.

Remark 4.2. [14, Remark 4.2]
Let (T (t))t≥0 be the C0-semigroup generated by A. If g : [0, a] → X is a

continuous function, then

∫ t

0

∫ s

0

T (t− ξ)g(ξ)dξds ∈ D(A) and

A

∫ t

0

∫ s

0

T (t− ξ)g(ξ)dξds =

∫ t

0

(T (t− s)− I)g(s)ds for all 0 ≤ t ≤ a.

Lemma 4.3. [10]
Assume that A generates a C0-semigroup (T (t))t≥0 on X, if x is a mild solution
of Eq. (1) then

x(t) = ϕ+ A

∫ t

0

x(s)ds+

∫ t

0

(
n∑
j=1

Bx(s− rj) + f(s))ds for 0 ≤ t ≤ 2π.

Theorem 4.4. Assume that A generates a C0-semigroup (T (t))t≥0 on X
and f ∈ Lp(T, X) for some 1 ≤ p < ∞, if x is a mild solution of Eq. (1).
Then

(ikI − A−
n∑
j=1

Bj,k)x̂(k) = f̂(k) for all k ∈ Z.

Proof. Let x be a mild solution of Eq. (1). Then by Lemma 4.3, we have

x(t) = ϕ+ A

∫ t

0

x(s)ds+

∫ t

0

(
n∑
j=1

Bx(s− rj) + f(s))ds

For t = 2π, we have

x(2π) = ϕ+ A

∫ 2π

0

x(s)ds+

∫ 2π

0

(
n∑
j=1

Bx(s− rj) + f(s))ds;
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Since: x(2π) = ϕ, then

A

∫ 2π

0

x(s)ds+

∫ 2π

0

(
n∑
j=1

Bx(s− rj) + f(s))ds = 0

⇒ 1

2π
A

∫ 2π

0

x(s)ds+
1

2π

∫ 2π

0

(
n∑
j=1

Bx(s− rj) + f(s))ds = 0

⇒ 1

2π
A

∫ 2π

0

x(s)ds+
1

2π

∫ 2π

0

n∑
j=1

Bx(s− rj)ds+
1

2π

∫ 2π

0

f(s))ds = 0

⇒ 1

2π
A

∫ 2π

0

e−i0sx(s)ds+
1

2π

∫ 2π

0

e−i0s
n∑
j=1

Bx(s− rj)ds+
1

2π

∫ 2π

0

e−i0sf(s))ds = 0

⇒ (0− A−
n∑
j=1

Bj,0)x̂(0) = f̂(0),

which shows that the assertion holds for k = 0.
Now, define

v(t) =

∫ t

0

x(s)ds

and

g(t) = x(t)− ϕ−
∫ t

0

(
n∑
j=1

Bx(s− rj) + f(s))ds

by Remark 2.7 We have:

v̂(k) =
i

k
x̂(0)− i

k
x̂(k)

Av̂(k) =
i

k
Ax̂(0)− i

k
Ax̂(k)

and

ĝ(k) = x̂(k)− [
i

k
G0x̂(0)− i

k
Gkx̂(k)]− [

i

k
f̂(0)− i

k
f̂(k)]

= x̂(k)− i

k
G0x̂(0) +

i

k
Gkx̂(k)− i

k
f̂(0) +

i

k
f̂(k)

Corollary 4.5. Assume that A generates a C0-semigroup (T (t))t≥0 on X
and let f ∈ Lp(T, X) : 1 ≤ p < ∞ and x be a mild solution of Eq. (1). If
(ikI − A−

∑n
j=1Bj,k) has a bounded inverse. Then (ikI − A−

∑n
j=1Bj,k) is

an Lp-multiplier.

Proof. Let f ∈ Lp(T, X) then from Theorem (4.4) we have:
x̂(k) = (ikDk − ADk −Gk)

−1f̂(k) for all f ∈ Lp(T;X), then
(ikI − A−

∑n
j=1Bj,k)

−1 is an Lp-multiplier.



8 Bahloul et al

5 Main Result

Our main result in this work is to establish that the converse of theorem (3.7)
and corollary (4.5) is true, provided X is an UMD space.

Theorem 5.1. (Fejer Theorem) : Let f ∈ Lp(T, X). Then

f = lim
n→+∞

σn(f)

where σn(f) = 1
n+1

∑n
m=0

∑m
k=−m ekf̂(k), with ek(t) = eikt.

Theorem 5.2. Let X be an UMD space and A : D(A) ⊂ X → X be a closed
linear operator. Then the following assertions are equivalent for 1 < p <∞.
1) for every f ∈ Lp(T, X) there exists a unique strong Lp-solution of Eq.(1).
2) σZ(∆) = φ and {ik∆−1k }k∈Z is R-bounded.

Proof. 1⇒ 2) see Theorem 3.7.
1⇐ 2) Let f ∈ Lp(T;X) . Define ∆k = (ikI − A−

∑n
j=1Bj,k) ,

By Proposition 3.6, the family
{
ik∆−1k

}
k∈Z is an Lp-multiplier it is equivalent

to
the family

{
∆−1k

}
k∈Z is an Lp-multiplier that maps Lp(T;X) into H1,p(T;X),

namely there exists x ∈ H1,p(T, X) such that

x̂(k) = ∆−1k f̂(k) = (ikI − A−
n∑
j=1

Bj,k)
−1f̂(k) (2)

In particular, x ∈ Lp(T;X) and there exists v ∈ Lp(T;X) such
that v̂(k) = ikx̂(k)

x̂′(k) := v̂(k) = ikx̂(k) (3)

By Theorem 5.1 we have for j ∈ {1...n}

x(t− rj) = lim
l→+∞

1

l + 1

l∑
m=0

m∑
k=−m

eikte−ikrj x̂(k)

Then, since B is bounded linear

n∑
j=1

Bx(t− rj) = lim
l→+∞

1

l + 1

l∑
m=0

m∑
k=−m

eikt(
n∑
j=1

Bj,kx̂(k))

By (2) and (3) we have:

x̂′(k) = ikx̂(k) = Ax̂(k) +
n∑
j=1

Bj,kx̂(k) + f̂(k), for all k ∈ Z
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Then using that A and B are closed we conclude that x(t) ∈ D(A) [[1], Lemma
3.1] and from the uniqueness theorem of Fourier coefficients that

x′(t) = Ax(t) +
n∑
j=1

Bx(t− rj) + f(t).

We have x ∈ H1,p(T, X) then by lemma 3.3, x(0) = x(2π), then the Eq. (1)
has a unique 2π-periodic strong Lp-solution.

Theorem 5.3. Let 1 ≤ p < ∞. Assume that A generates a C0-semigroup
(T (t))t≥0 on X. If σZ(∆) = ∅ and (ikI−A−

∑n
j=1Bj,k)

−1 is an Lp-multiplier
Then there exists a unique mild solution periodic of Eq. (1).

Proof. For f ∈ Lp(T;X) we define

fl(t) =
1

l + 1

l∑
m=0

m∑
k=−m

eiktf̂(k)

By the Fejér Theorem we can assert that fl → f as l → ∞ for the norm in
Lp(T;X). We have (ikI − A −

∑n
j=1Bj,k)

−1 is an Lp-multiplier then there

exists x ∈ Lp(T;X) such that x̂(k) = (ikI − A−
∑n

j=1Bj,k)
−1f̂(k)

put

xl(t) =
1

l + 1

l∑
m=0

m∑
k=−m

eikt(ikI − A−
n∑
j=1

Bj,k)
−1f̂(k)

Using again the Fejér Theorem we obtain that xn(t) → x(t) (as n → ∞) and
xn(t) is strong Lp-solution of Eq. (1) and xn(t) verified

xl(t) = T (t)ϕl +

∫ t

0

T (t− s)(
n∑
j=1

Bxl(s− rj) + fl(s))ds (4)

With t = 2π we obtain

xl(2π) = T (2π)ϕl +

∫ 2π

0

T (2π − s)(
n∑
j=1

Bxl(s− rj) + fl(s))ds.

from which we infer that the sequence (ϕl)n is convergent to some element ϕ
as l→∞( ϕl = xl(0) = xl(2π)). Moreover, ϕ satisfies the condition

ϕ = T (2π)ϕ+

∫ 2π

0

T (2π − s)(
n∑
j=1

Bx(s− rj) + f(s))ds. (5)
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Taking the limit as l goes to infinity in (4), we can write

x(t) = T (t)ϕ+

∫ t

0

T (t− s)(
n∑
j=1

Bx(s− rj) + f(s))ds := g(t)

g(2π) = T (2π)y +
∫ 2π

0
T (2π − s)(

∑n
j=1Bx(s− rj) + f(s))ds

(5)︷︸︸︷
= ϕ = g(0)

Then x(2π) = ϕ ⇒ x(2π) = x(0), we conclude that x is a 2π- periodic mild
solution of Eq. (1).

Acknowledgements. This is a text of acknowledgements.
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