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In this paper we give a necessary and suffcient conditions for the existence and uniqueness of periodic solutions of functional differential equations with n delay d dt x(t) = Ax(t) + n j=1 Bx(t -r j ) + f (t). The conditions are obtained in terms of R-boundedness of operator valued Fourier multipliers.

Introduction

Let A and B be two closed linear operators defined on a Banach space X with domains D(A) and D(B), respectively such that D(A) ⊂ D(B). In this paper we show existence and uniqueness of solutions for the following differential equation with n delay

         d dt x(t) = Ax(t) + n j=1
Bx(t -r j ) + f (t)

x(0) = x(2π).

(

) 1 
where f ∈ L p ([-r 2π , 0], X) for some 1 ≤ p < ∞, r 2π = 2πN (N ∈ N) and we suppose B is bounded. The theory of operator-valued Fourier multipliers has attracted the attention of many papers in recent years. For example, this theory was used in [START_REF] Arend | The operator-valued Marcinkiewicz multiplier theorem and maximal regularity[END_REF] to obtain results about equations dx(t) dt = Ax(t) + f (t), and in [START_REF] Lizama | Fourier multipliers and perodic solutions of delay equatons in Banach spaces[END_REF] to obtain results about delay equation dx (t) dt = Ax(t) + F (x t ) + f (t). In [START_REF] Bu | L p -Maximal regularity of degenerate delay equations with Periodic Conditions[END_REF], S.Bu studied L p -Maximal Regularity of Degenerate delay Equations with Periodic Conditions. We note that in the special case when B = 0, maximal regularity of Eq. ( 1) has been studied by Arendt and Bu in L p -spaces case and Besov spaces case [ [START_REF] Arend | The operator-valued Marcinkiewicz multiplier theorem and maximal regularity[END_REF], [START_REF] Arendt | Operator-valued Fourier multipliers on periodic Besov spaces and applications[END_REF]], Bu and Kim in TriebelLizorkin spaces case [START_REF] Bu | Operator-valued Fourier multipliers on peoriodic Triebel spaces[END_REF]. The corresponding integro-differential equations were treated by Keyantuo and Lizama [[17], [START_REF] Keyantuo | Mild well-posedness of abstract differential equations[END_REF]], Bu and Fang [START_REF] Bu | Maximal regularity for integro-differential equations on periodic Triebel-Lisorkin spaces[END_REF]. In this paper, we characterize the existence and uniqueness for the n delay equation (1) under the condition that X is a UMD space. Here the operator A is not necessarily the generator of a C 0 -semigroup. We use the operator valued multiplier Fourier method. The organisation of this work is as follows : In section 2, we present preliminary results on UMD spaces and L P -multiplier. In section 3, we study the existence of periodic strong solution for Eq.( 1) with finite delay. In section 4, we give the main abstract result ( theorem [4.2] ) of this work. 1) for every f ∈ L p (T; X); 1 < p < ∞, there exists a unique 2π-periodic strong L p -solution of Eq. (1).

2) (ikI -A -n j=1 B j,k ) has bounded invertible for all k ∈ Z and {ik(ikI -

A -n j=1 B j,k ) -1 } k∈Z is R-bounded.

Preliminary Notes

Let X be a Banach Space. Firstly, we denote By T the group defined as the quotient R/2πZ. There is an identification between functions on T and 2π-periodic functions on R. We consider the interval [0, 2π) as a model for T.

Definition 2.1. A Banach space X is said to be UMD space if the Hilbert transform is bounded on L p (R, X) for all 1 < p < ∞.

Example 2.2. : [START_REF] Bourgain | Some remarks on Banach spaces in which martingale differences sequences are unconditional[END_REF] 1.Any Hilbert space is an UMD space. 2. L p (0.1) are UMD spaces for every 1 < p < ∞. 3. Any closed subspace of a UMD space is a UMD space.

Definition 2.3. [1]

A family of operators T = (T j ) j∈N * ⊂ B(X, Y ) is called R-bounded ( Rademacher bounded or randomized bounded), if there is a constant C > 0 and p ∈ [1, ∞) such that for each n ∈ N, T j ∈T, x j ∈ X and for all independent, symmetric, {-1, 1}-valued random variables r j on a probability space (Ω, M, µ) the inequality

n j=1 r j T j x j L p (0,1;Y ) ≤ C n j=1 r j x j L p (0,1;X) is valid. The smallest C is called R-bounded of (T j ) j∈N * and it is denoted by R p (T ). Definition 2.4. [11] For 1 ≤ p < ∞ , a sequence {M k } k∈Z ⊂ B(X, Y ) is said to be an L p -multiplier if for each f ∈ L p (T, X), there exists u ∈ L p (T, Y ) such that û(k) = M k f (k) for all k ∈ Z.
Proposition 2.5. [1, Proposition 1.11] Let X be a Banach space and {M k } k∈Z be an L p -multiplier, where 1 ≤ p < ∞. Then the set {M k } k∈Z is R-bounded.

Theorem 2.6. (Marcinkiewicz operator-valud multiplier Theorem). Let X, Y be UMD spaces and

{M k } k∈Z ⊂ B(X, Y ). If the sets {M k } k∈Z and {k(M k+1 -M k )} k∈Z are R-bounded, then {M k } k∈Z is an L p -multiplier for 1 < p < ∞.
We observe that the condition of R-boundedness for (M k ) k∈Z is necessary.

Remark 2.7. [13] Let f ∈ L 1 (T; X). If g(t) = t 0 f (s)ds and k ∈ Z, k = 0, then ĝ(k) = i k f (0) -i k f (k) 3 A criterion for periodic solutions Notation 3.1. Let k ∈ Z. Denote by B j,k := e -ikr j B, ∆ k = (ikI -A -n j=1 B j,k ) and σ Z (∆) := {k ∈ Z : ∆ k is not bijective} H 1,p (T; X) = {u ∈ L p (T, X) : ∃v ∈ L p (T, X), v(k) = ikû(k)f or all k ∈ Z} Definition 3.2. Let f ∈ L p (T; X). A function x ∈ H 1,p ( 
T; X) is said to be a 2π-periodic strong L p -solution of Eq. (1) if x(t) ∈ D(A) for all t ≥ 0 and Eq. ( 1) holds almost every where.

Lemma 3.3. [1, Lemme 2.1] Let 1 ≤ p < ∞ and u, v ∈ L p (T; X).
Then the following assertions are equivalent:

(i) 2π 0 v(s)ds = 0 and there exists x ∈ X such that u(t) = x + t 0 v(s)ds. (ii) v(k) = ikû(k) for any k ∈ Z. Definition 3.4. For 1 ≤ p < ∞, we say that a sequence {M k } k∈Z ⊂ B(X, Y ) is an (L p , H 1,p )-multiplier, if for each f ∈ L p (T, X) there exists u ∈ H 1,p (T, Y ) such that û(k) = M k f (k) for all k ∈ Z. Lemma 3.5. Let 1 ≤ p < ∞ and (M k ) k∈Z ⊂ B(X) (B(X)
is the set of all bounded linear operators from X to X). Then the following assertions are equivalent:

(i) (M k ) k∈Z is an (L p , H 1,p )-multiplier. (ii) (ikM k ) k∈Z is an (L p , L p )-multiplier.
Proposition 3.6. Let A be a closed linear operator defined on an UMD space X. Suppose that σ Z (∆) = φ .Then the following assertions are equivalent

: (i) {ik(ikI -A -n j=1 B j,k ) -1 } k∈Z is an L p -multiplier for 1 < p < ∞ (ii) {ik(ikI -A -n j=1 B j,k ) -1 } k∈Z is R-bounded. Proof. By [1, Proposition 1.11] it follows that (i) implies (ii). Conversely, define M k = ik(C k -A) -1 , where C k = ikI -n j=1 B j,k , By Theorem 2.6 is sufficient to prove that the set (k(M k+1 -M k )) k∈Z is R-bounded. We claim first that the set ( n j=1 B j,k ) k∈Z is R-bounded. since given x j ∈ D(A) we have : m l=1 r l ( n j=1 B j,l )x l p L p (0,1;X) = 1 0 m l=1 r l (t)B( n j=1 e -ilr j x l ) p X dt = 1 0 B( m l=1 r l (t) n j=1 e -ilr j x l ) p X dt ≤ ||B|| p 1 0 m l=1 r l (t) n j=1 e -ilr j x l p X dt By (Lemma 1.7, [1]) we obtain that m l=1 r l ( n j=1 B j,l )x l p L p (0,1;X) ≤ 2n p ||B|| p 1 0 m l=1 r l (t)x l p X dt We conclude that m l=1 r l ( n j=1 B j,l )x l L p (0,1;X) ≤ 2 1/p n||B||.
and the claim is proved. Next. We note the following identities

k [M k+1 -M k ] = k i(k + 1)(C k+1 -AD) -1 -ik(C k -AD) -1 = k(C k+1 -AD) -1 [i(k + 1)(C k -AD) -ik(C k+1 -AD)](C k -AD) -1 = k(C k+1 -AD) -1 [ik(C k -C k+1 ) + i(C k -A)](C k -AD) -1 = k(C k+1 -AD) -1 [ik(C k -C k+1 )(C k -AD) -1 + iI] = -ik k + 1 M k+1 (C k -C k+1 )M k + k k + 1 M k+1 .
We have

C k -C k+1 = -iI + n j=1
Be -ikr j (1 -e -ir j ).

Since products and sums of R-bounded sequences is R-bounded [11, Remark 2.2]. Then {k(M k+1 -M k )} k∈Z is R-bounded and by theorem 2.6, {M k } k∈Z is an L p -multiplier.

Theorem 3.7. Let X be a Banach space. Suppose that for every f ∈ L p (T; X) there exists a unique strong solution of Eq. ( 1) for 1 ≤ p < ∞. Then 1. for every k ∈ Z the operator

∆ k = (ikI -A -n j=1 B j,k ) has bounded inverse 2. ik∆ -1 k k∈Z is R-bounded.
Before to give the proof of Theorem (3.7), we need the following Lemma.

Lemma 3.8. if (ikI -A-n j=1 B j,k (x)) = 0 for all k ∈ Z, then u(t) = e ikt
x is a 2π-periodic strong L p -solution of the following equation ( 1) corresponing to the function f = 0.

Proof. (ikI -A -n j=1 B j,k (x)) = 0 ⇒ ikx = Ax + n j=1 B j,k x. We have u(t) = e ikt x then u (t) = ike ikt x = e ikt (ikx) = e ikt [Ax + n j=1 B j,k x] = Au(t) + n j=1 Bu(t -r j ).
Proof of Theorem 3.7 1) Let k ∈ Z and y ∈ X. Then for f (t) = e ikt y , there exists x ∈ H 1,p (T; X) such that:

d dt x(t) = Ax(t) + n j=1 Bx(t -r j ) + f (t)
Taking Fourier transform, by Lemma 3.3 we have :

x (k) = ikx(k) = Ax(k) + n j=1 B j,k x(k) + f (k).
Then we obtain :

(ikI-A-n j=1 B j,k )x(k) = f (k) = y ⇒ (ikI-A-n j=1 B j,k ) is surjective. If (ikI -A -n j=1 B j,k
)u = 0, then by Lemma 3.8 x(t) = e ikt u is a 2π-periodic strong L p -solution of Eq. ( 1) corresponing to the function f = 0 Hence x(t) = 0 and u = 0 then (ikI -A -n j=1 B j,k ) is injective. 2) Let f ∈ L p (T, X). By hypothesis, there exists a unique x ∈ H 1;p (T, X) such that the Eq. ( 1) is valid. Taking Fourier transforms, we deduce that

x(k) = (ikI -A -n j=1 B j,k ) -1 f (k) for all k ∈ Z. Hence ikx(k) = ik(ikI -A - n j=1 B j,k ) -1 f (k)
On the other hand, since x ∈ H 1;p (T, X), there exists

v ∈ L p (T, X) such that v(k) = ikx(k) = ik(ikI -A -n j=1 B j,k ) -1 f (k) i.e {ik∆ -1 k } k∈Z is an L p -multiplier. Then {ik∆ -1 k } k∈Z is R-bounded.
4 Existence of mild solutions of Eq. ( 1)

It is well known that in many important applications the operator A is the infinitesimal generator of C 0 -semigroup (T (t)) t≥0 on the space X. Let A be a generator of a C 0 -semigroup (T (t)) t≥0 .

Definition 4.1. Assume that A generates a C 0 -semigroup (T (t)) t≥0 on X. A function x is called a mild solution of Eq. ( 1) if :

x(t) = T (t)ϕ + t 0 T (t -s)( n j=1 Bx(s -r j ) + f (s))ds for 0 ≤ t ≤ 2π. Remark 4.2. [14, Remark 4.2] Let (T (t)) t≥0 be the C 0 -semigroup generated by A. If g : [0, a] → X is a continuous function, then t 0 s 0 T (t -ξ)g(ξ)dξds ∈ D(A) and A t 0 s 0 T (t -ξ)g(ξ)dξds = t 0 (T (t -s) -I)g(s)ds for all 0 ≤ t ≤ a.

Lemma 4.3. [10]

Assume that A generates a C 0 -semigroup (T (t)) t≥0 on X, if x is a mild solution of Eq. (1) then

x(t) = ϕ + A t 0 x(s)ds + t 0 ( n j=1 Bx(s -r j ) + f (s))ds for 0 ≤ t ≤ 2π.
Theorem 4.4. Assume that A generates a C 0 -semigroup (T (t)) t≥0 on X and f ∈ L p (T, X) for some 1 ≤ p < ∞, if x is a mild solution of Eq. [START_REF] Arend | The operator-valued Marcinkiewicz multiplier theorem and maximal regularity[END_REF]. Then

(ikI -A - n j=1 B j,k )x(k) = f (k) for all k ∈ Z.
Proof. Let x be a mild solution of Eq. (1). Then by Lemma 4.3, we have

x(t) = ϕ + A t 0 x(s)ds + t 0 ( n j=1 Bx(s -r j ) + f (s))ds
For t = 2π, we have

x(2π) = ϕ + A 2π 0 x(s)ds + 2π 0 ( n j=1 Bx(s -r j ) + f (s))ds; Since: x(2π) = ϕ, then A 2π 0 x(s)ds + 2π 0 ( n j=1 Bx(s -r j ) + f (s))ds = 0 ⇒ 1 2π A 2π 0 x(s)ds + 1 2π 2π 0 ( n j=1 Bx(s -r j ) + f (s))ds = 0 ⇒ 1 2π A 2π 0 x(s)ds + 1 2π 2π 0 n j=1 Bx(s -r j )ds + 1 2π 2π 0 f (s))ds = 0 ⇒ 1 2π A 2π 0 e -i0s x(s)ds + 1 2π 2π 0 e -i0s n j=1 Bx(s -r j )ds + 1 2π 2π 0 e -i0s f (s))ds = 0 ⇒ (0 -A - n j=1 B j,0 )x(0) = f (0),
which shows that the assertion holds for k = 0. Now, define

v(t) = t 0 x(s)ds and 
g(t) = x(t) -ϕ - t 0 ( n j=1
Bx(s -r j ) + f (s))ds by Remark 2.7 We have:

v(k) = i k x(0) - i k x(k) Av(k) = i k Ax(0) - i k Ax(k) and ĝ(k) = x(k) -[ i k G 0 x(0) - i k G k x(k)] -[ i k f (0) - i k f (k)] = x(k) - i k G 0 x(0) + i k G k x(k) - i k f (0) + i k f (k)
Corollary 4.5. Assume that A generates a C 0 -semigroup (T (t)) t≥0 on X and let f ∈ L p (T, X) : 1 ≤ p < ∞ and x be a mild solution of Eq. (1). If (ikI -A -n j=1 B j,k ) has a bounded inverse. Then (ikI -A -n j=1 B j,k ) is an L p -multiplier.

Proof. Let f ∈ L p (T, X) then from Theorem (4.4) we have:

x(k) = (ikD k -AD k -G k ) -1 f (k) for all f ∈ L p (T; X), then (ikI -A -n j=1 B j,k ) -1 is an L p -multiplier.

Main Result

Our main result in this work is to establish that the converse of theorem (3.7) and corollary (4.5) is true, provided X is an UMD space. , with e k (t) = e ikt . Theorem 5.2. Let X be an UMD space and A : D(A) ⊂ X → X be a closed linear operator. Then the following assertions are equivalent for 1 < p < ∞. 1) for every f ∈ L p (T, X) there exists a unique strong L p -solution of Eq.( 1).

2) σ Z (∆) = φ and {ik∆ -1 k } k∈Z is R-bounded. Proof. 1 ⇒ 2) see Theorem 3.7. 1 ⇐ 2) Let f ∈ L p (T; X) . Define ∆ k = (ikI -A -n j=1 B j,k
) , By Proposition 3.6, the family ik∆ -1 k k∈Z is an L p -multiplier it is equivalent to the family ∆ -1 k k∈Z is an L p -multiplier that maps L p (T; X) into H 1,p (T; X), namely there exists x ∈ H 1,p (T, X) such that

x(k) = ∆ -1 k f (k) = (ikI -A - n j=1 B j,k ) -1 f (k) (2) 
In particular, x ∈ L p (T; X) and there exists

v ∈ L p (T; X) such that v(k) = ikx(k) x (k) := v(k) = ikx(k) (3) 
By Theorem 5.1 we have for j ∈ {1...n}

x(t -r j ) = lim l→+∞ 1 l + 1 l m=0 m k=-m e ikt e -ikr j x(k) Then, since B is bounded linear n j=1 Bx(t -r j ) = lim l→+∞ 1 l + 1 l m=0 m k=-m e ikt ( n j=1 B j,k x(k))
By ( 2) and (3) we have:

x (k) = ikx(k) = Ax(k) + n j=1 B j,k x(k) + f (k), for all k ∈ Z
Then using that A and B are closed we conclude that x(t) ∈ D(A) [[1], Lemma 3.1] and from the uniqueness theorem of Fourier coefficients that

x (t) = Ax(t) + n j=1 Bx(t -r j ) + f (t).
We have x ∈ H 1,p (T, X) then by lemma 3.3, x(0) = x(2π), then the Eq. ( 1) has a unique 2π-periodic strong L p -solution.

Theorem 5.3. Let 1 ≤ p < ∞. Assume that A generates a C 0 -semigroup (T (t)) t≥0 on X. If σ Z (∆) = ∅ and (ikI -A -n j=1 B j,k
) -1 is an L p -multiplier Then there exists a unique mild solution periodic of Eq. (1).

Proof. For f ∈ L p (T; X) we define

f l (t) = 1 l + 1 l m=0 m k=-m e ikt f (k)
By the Fejér Theorem we can assert that f l → f as l → ∞ for the norm in L p (T; X). We have (ikI -A -n j=1 B j,k ) -1 is an L p -multiplier then there exists x ∈ L p (T; X) such that x(k) = (ikI -A -n j=1 B j,k ) -1 f (k) put Bx(s -r j ) + f (s))ds. (

Taking the limit as l goes to infinity in (4), we can write

x(t) = T (t)ϕ + t 0 T (t -s)( n j=1
Bx(s -r j ) + f (s))ds := g(t)

g(2π) = T (2π)y + 2π 0 T (2π -s)( n j=1 Bx(s -r j ) + f (s))ds

= ϕ = g(0) Then x(2π) = ϕ ⇒ x(2π) = x(0), we conclude that x is a 2π-periodic mild solution of Eq. ( 1).

Theorem 5 . 1 .

 51 (Fejer Theorem) : Let f ∈ L p (T, X). Then e k f (k)

0 T 4 ) 0 T 0 T

 0400 e ikt (ikI -A -n j=1 B j,k ) -1 f (k)Using again the Fejér Theorem we obtain that x n (t) → x(t) (as n → ∞) and x n (t) is strong L p -solution of Eq. (1) and x n (t) verifiedx l (t) = T (t)ϕ l + t (t -s)( n j=1 Bx l (s -r j ) + f l (s))ds (With t = 2π we obtain x l (2π) = T (2π)ϕ l + 2π (2π -s)( n j=1 Bx l (s -r j ) + f l (s))ds.from which we infer that the sequence (ϕ l ) n is convergent to some element ϕ as l → ∞( ϕ l = x l (0) = x l (2π)). Moreover, ϕ satisfies the conditionϕ = T (2π)ϕ + 2π (2π -s)( n j=1
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