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Optimal density evolution with congestion: L 8 bounds via flow interchange techniques and applications to variational Mean Field Games

We consider minimization problems for curves of measure, with kinetic and potential energy and a congestion penalization, as in the functionals that appear in Mean Field Games with a variational structure. We prove L 8 regularity results for the optimal density, which can be applied to the rigorous derivations of equilibrium conditions at the level of each agent's trajectory, via timediscretization arguments, displacement convexity, and suitable Moser iterations. Similar L 8 results have already been found by P.-L. Lions in his course on Mean Field Games, using a proof based on the use of a (very degenerate) elliptic equation on the dual potential (the value function) ϕ, in the case where the initial and final density were prescribed (planning problem). Here the strategy is highly different, and allows for instance to prove local-in-time estimates without assumptions on the initial and final data, and to insert a potential in the dynamics.

This forward-backward system is composed of a Hamilton-Jacobi equation for the value function ϕ of the above optimization problem where the density ρ appears at the right-hand side and of a continuity equation for ρ which is advected by the vector field v " ´∇ϕ. Taking the gradient of the HJ equation gives a formula for the Lagrangian acceleration B t v t `pv t ¨∇qv t " ∇pV `gpρ t qq, where gpρ t q plays the role of a pressure to be added to the potential V, as it is typical in compressible fluid mechanics. Alternatively, the same equilibrium problem can be formulated in terms of a probability measure Q on the set H 1 pr0, T s; Ωq of paths

Introduction

The problem of optimal density evolution with congestion is a very natural question where an initial distribution ρ 0 of mass (particles, individuals. . . ) is given, and it has to evolve from time t " 0 to time t " T by minimizing an overall energy. This typically involves its kinetic energy expenditure and a cost depending on congestion effects, i.e. on how much it is concentrated along its trajectory. Then, at time t " T , either the final configuration ρ T is prescribed, or a final cost depending on ρ T is also considered.

When ρ T is fixed and no congestion effect is present, the only quantity to be minimized is the kinetic energy and this boils down to what is usually known as the dynamic formulation of the optimal transport problem, studied by Benamou and Brenier in [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF]. From the fluid mechanics point of view, this model corresponds to that of particles of a pressureless gas moving without acceleration in straight lines, and without interaction with each other. From the geometric point of view, this variational problem consists in looking for a geodesic in the Wasserstein space W 2 (for references on optimal transport and Wasserstein spaces, see [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]). Inserting congestion effects corresponds to looking at deformed geodesics, i.e. curves which are optimal for other criteria which do not involve only their length (weighted lengths, length + penalizations. . . ), and to add pressure terms in the corresponding gas equations. For instance, in [START_REF] Brancolini | Path functionals over Wasserstein spaces[END_REF][START_REF] Ambrosio | Necessary optimality conditions for geodesics in weighted Wasserstein spaces[END_REF] geodesics in the Wasserstein space for different weights, minimizing energies of the form ş Epρptqq| 9 ρ t | dt were considered, including cases where E penalized congestion. Yet, the case which is now the most studied is the one where a penalization on congestion is added to the kinetic energy, thus minimizing ş p| 9 ρ t | 2 `Epρptqqq dt, as it was done in [START_REF] Buttazzo | An optimization problem for mass transportation with congested dynamics[END_REF]. Since this is the kind of problems this paper will be devoted to, it is important to clarify precisely its form. We can either look for a curve ρ : r0, T s Ñ PpΩq which minimizes

ρ Þ Ñ ż T 0 1 2 | 9 ρ t | 2 dt `ż T 0 Epρ t q dt `Ψpρ T q (1.1)
with ρ 0 prescribed (here | 9 ρ t | is the metric derivative, i.e. the speed of this curve for the distance W 2 , see Section 2.2), or look for a pair pρ, vq minimizing

ρ Þ Ñ ż T 0 ż Ω 1 2 ρ t |v t | 2 dt `ż T 0 Epρ t q dt `Ψpρ T q (1.2)
under the same constraint on ρ 0 and a differential constraint B t ρ t `∇ ¨pρ t v t q " 0. Here Ω Ă R d is a bounded and connected domain and the continuity equation is satisfied in the weak sense on r0, T sˆR d (which corresponds to imposing no-flux boundary conditions on BΩ), The equivalence between the two formulations essentially comes from [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] and from the characterization of absolutely continuous curves in the Wasserstein space studied in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF].The functional E usually takes the form of an integral functional such as Epρq :"

ż Ω f pρpxqq dx `żΩ Vpxqρpxq dx,
for a convex function f and a given potential V (where we identify measures with their densities; for the definition for measures which are not absolutely continuous, see Section 2.3). The final penalization Ψ can be either a functional of the same form of E, or a constraint which prescribes ρ T . The interest for this minimization problem, which is already very natural in itself, has increased a lot after the introduction in 2006 of the theory of Mean Field Games (MFG) (introduced essentially at the same time by Lasry and Lions,[START_REF] Lasry | Jeux à champ moyen. I-le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. II-Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF], and by Huang, Malhamé and Caines [START_REF] Huang | Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF]). In the easiest version of these games, we consider a population of agents where everybody chooses its own trajectory, solving min ż T 0 ˆ|x 1 ptq| 2 2 `Vpxptqq `gpρ t pxptqqq ˙dt `ΨpxpT qq,

with given initial point xp0q. Here g is a given increasing function of the density ρ t at time t, i.e. an individual cost for each agent penalizing congested areas. The difficulty in the model is that every agent optimizes given the density of all agents ρ t , but this density depends on turn on the choices of all the agents. An equilibrium problem arises, and we look for a Nash equilibrium in this continuum game (with infinitely many negligible players, who move continuously in time in a continuous space). This can be translated into a system of PDEs $ ' & valued in Ω, defining ρ t " pe t q # Q (where e t : H 1 pr0, T s; Ωq Ñ Ω is the evaluation map at time t), and requiring pe 0 q # Q " ρ 0 and that Q-a.e. curve is optimal for (1.3) with this choice of ρ t . For a general introduction to mean field games, other than the papers by Lasry-Lions and Huang-Malhamé-Caines, the reader can consult the lecture notes by Cardaliaguet [START_REF] Cardaliaguet | Notes on mean field games[END_REF], based on the lectures given by P.-L. Lions at Collège de France between 2006 and 2012 ( [START_REF] Lions | Jeux à champ moyen et applications[END_REF]). In particular, for the simple model which is the object of this paper, and which is deterministic and first-order (no random effect in the motion of the agents, and no diffusion in the equations), we also refer to [START_REF] Cardaliaguet | Mean field games systems of first order[END_REF]. The remarkable fact is that this class of equilibrium problem has a variational origin, and one can find an equilibrium by minimizing (1.2) choosing Epρq :" ş f pρq `Vpxqρ with f 1 " g (for a review on variational mean field games and on these questions, we refer to [START_REF] Benamou | Variational Mean Field Games[END_REF]). The optimality condition on the optimal pρ, vq will indeed show that we have v " ´∇ϕ where ϕ solves the HJ part of (1), thus getting a solution of the system. The same can also be formally formulated in terms of probabilities Q on the set of path.

Yet, these considerations are essentially formal and not rigorous, so far. Indeed, the difficulty is the following: the function hpt, xq :" Vpxq `gpρ t pxqq is obtained from the density of a measure, and hence it is only defined a.e. Integrating it on a curve, as we do when we consider the action ş T 0 hpt, xptqq dt in (1.3) has absolutely no meaning! Of course, it would be different if we could prove some regularity (for instance, continuity) on ρ t . The question of the regularity in mean field games is a very challenging one and deserves high attention. In [START_REF] Cardaliaguet | First order mean field games with density constraints: pressure equals price[END_REF] a stategy to overcome this difficulty, taken from [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF], is used: indeed, it is sufficient to chose a suitable representative of h to give a precise meaning to the integral of h on a curve, and the correct choice is ĥpt, xq :" lim sup rÑ0 h r pt, xq :" Bpx,rq hpt, yq dy; to prove that Q is concentrated on optimal curves for ĥ it is then enough to write estimates with h r and then pass to the limit as r Ñ 0. This requires an upper bound on h r , and the natural assumption is to require that the maximal function Mh :" sup r h r is L 1 in space and time. Thanks to well-known results in harmonic analysis, h P L 1 is not enough for this but h P L m for m ą 1 is instead enough. Once integrability of Mh is obtained, then one can say that the optimal measure Q is concentrated on curves which minimize in (1.3) in the class of curves xp¨q such that ş T 0 Mhpt, xptqq dt ă `8. These curves are almost all curves in a suitable sense, thanks to the integrability properties of Mh in space-time, but they are in general not all curves.

It is interesting to observe that the strategy of [START_REF] Cardaliaguet | First order mean field games with density constraints: pressure equals price[END_REF] and [START_REF] Ambrosio | Geodesics in the space of measure-preserving maps and plans[END_REF] was first used in the framework of variational models for the incompressible Euler equation, in the sense of Brenier [START_REF] Brenier | The least action principle and the related concept of generalized flows for incompressible perfect fluids[END_REF][START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations[END_REF]. Indeed, the problem of incompressible evolution has many similarities with the one of evolution with congestion effects, with the only difference that instead of penalizing high densities there is a constraint ρ " 1. Also, the precise mean field game studied in [START_REF] Cardaliaguet | First order mean field games with density constraints: pressure equals price[END_REF] is of very similar nature, since it included the constraint ρ ď 1. Moreover, the techniques used in [START_REF] Cardaliaguet | First order mean field games with density constraints: pressure equals price[END_REF] to prove this extra summability of h come from the incompressible Euler framework: they are techniques based on convex duality taken from [START_REF] Brenier | Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations[END_REF] and later improved in [START_REF] Ambrosio | On the regularity of the pressure field of Brenier's weak solutions to incompressible Euler equations[END_REF], which allow, in this case, to prove h P L 2 loc pp0, T q; BV loc pΩqq. In the framework of more standard mean field games (i.e. with density penalization instead of constraints), the same technique (presented in more generality on some simpler examples in [START_REF] Santambrogio | Regularity via duality in calculus of variations and degenerate elliptic PDEs[END_REF]) has been used in [START_REF] Prosinski | Global-in-time regularity via duality for congestion-penalized Mean Field Games[END_REF] to prove H 1 regularity results on the density ρ.

In the present paper, we present L 8 bounds on the optimal ρ. For applications to MFG, whenever L 8 results are available, it is possible to avoid all the assumptions on the maximal function Mh and obtain optimality in the larger class of all competing curves. This explains the interest of these results for MFG, but of course the reader can easily guess that they are interesting in themselves for the variational problem.

The question of the L 8 regularity of ρ was already studied, in the MFG framework, by P.-L. Lions (see the second hour of the video of the lecture of November 27, 2009, in [23]). The analysis by P.-L. Lions was more general than ours in what concerns the Hamiltonian, which was a generic function Hpx, ¨q, while the present paper sticks to the quadratic case with no x-dependence in the Hamiltonian. On the other hand, we are able to include a potential Vpxq and to obtain local regularity results, which were not present in [START_REF] Lions | Jeux à champ moyen et applications[END_REF]. Indeed, the results presented by P.-L. Lions only concerned the case where both ρ 0 and ρ T are fixed (planning problem) and L 8 , and no potential V is considered. The technique was essentially taken from maximum principles in degenerate elliptic PDEs; it could be adapted to the case where ρ T is penalized instead of fixed (which amounts to changing a Dirichlet boundary condition at t " T into a Neumann one), but adapting it in order to obtain local results seems out of reach. Indeed, local estimates in degenerate elliptic equations usually require quantitative information on the degeneracy and the growth of the different terms, which are in general not available in this setting.

Here what we do is different. The technique is based on the time-discretization of (1.1) in the form min

# N ÿ k"1 W 2 2 pρ pk´1qτ , ρ kτ q 2τ `N´1 ÿ k"1 τEpρ kτ q `Ψpρ Nτ q + , (1.4) 
where τ " T {N. The interesting fact is that, as a necessary optimality condition, each measure ρ kτ with 0

ă k ă N minimizes ρ Þ Ñ W 2 2 pρ pk´1qτ , ρq 2τ `W2 2 pρ pk`1qτ , ρq 2τ `τEpρq,
which is very similar to what we see in the so-called Jordan-Kinderlehrer-Otto scheme for the gradient flow of the functional E (see [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] and [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]). The main difference is that we have now two Wasserstein terms, one referring to the distance to the previous measure and one to the next one. Techniques from the JKO scheme can be used, and in particular the so-called flow-interchange technique (introduced in [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF]). Essentially, this technique consists in evaluating how much decreases another energy U along the gradient flow of E. In the JKO framework, it is usually used to obtain estimates of the form Upρ kτ q ´Upρ pk`1qτ q ě τ ż psomething positiveq , which allows to say that U is decreasing and to obtain integral estimates on the right hand side (r.h.s.) above. In this variational framework, which corresponds to a second-order-in-time equation, instead of monotonicity we obtain convexity:

Upρ pk´1qτ q `Upρ pk`1qτ q ´2Upρ kτ q τ 2 ě ż psomething positiveq (more precisely: the integral term in the r.h.s. is nonnegative if V " 0 and extra lower-order terms appear in presence of a potential V). This allows for instance to obtain convexity in time of all the quantities of the form ş ρ m t pxq dx when V " 0 (a similar technique was used with similar results by the first author in [START_REF] Lavenant | Time-convexity of the entropy in the multiphasic formulation of the incompressible Euler equation[END_REF]). A global L 8 result if ρ 0 , ρ T P L 8 are fixed is then easy to deduce in this case (actually, we will not even state it explicitly in this paper). Moreover, using the structure of the right-hand side and after tedious iterations inspired by Moser [START_REF] Moser | A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations[END_REF], we are also able to provide interior L 8 regularity independent of the boundary data, and regularity on intervals of the form rt 1 , T s under some assumptions on the penalization Ψ.

Our result seems to be the natural one for MFG applications, and, as we already said, improves upon the results announced in [START_REF] Lions | Jeux à champ moyen et applications[END_REF] in the dependence on x (we allow a potential Vpxq) and in its local character. On the other hand, we crucially used the quadratic form of the Hamiltonian, which gives rise to the W 2 distance terms. The adaptation to other costs Lpvq (with the Hamiltonian given by H " L ˚), different from |v| 2 {2 but not explicitly depending on x, would be possible by considering the transport cost induced by the cost function cpx, yq " Lpy ´xq (geodesic convexity in this setting would be essentially the same as in the W p case, and is true under the same condition as for p " 2, see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] or [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]), but would require non-trivial adaptations. Inserting x-dependance and studying costs of the form Lpx, vq would be more difficult to treat, since they essentially require the study of geodesic convexity in a curved setting (see [START_REF] Sturm | On the geometry of metric measure spaces[END_REF][START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF]).

The paper is organized as follows: after this brief introduction Section 1 also contains a short summary of the main ideas of the proof, so that the reader does not get lost in the technical details. Then, in Section 2 we summarize the preliminaries about curves and functionals on the Wasserstein space, and give a precise statement for the variational problem we consider and the results we prove, distinguishing into two cases depending on the convexity of the congestion penalization f (in terms of lower bounds on f 2 ). In Section 3 we present and prove the estimates that are obtained in this framework via the flow interchange technique. These estimates allow to bound increasing L m norms of the solution, and in Section 4 we explain how to iterate in order to transform them into L 8 estimates on the limit of the discretized problems. This involves a technical difficulty, as one needs a reverse Jensen inequality in time (passing from

ş ||ρ t || m L βm dt to ´ş ||ρ t || βm L βm dt ¯1{β 
); this can be fixed because we already proved a convexity-like property for t Þ Ñ ||ρ t || βm L βm , but is quite technical. In Section 5 we detail how to pass to the limit from the time-discretization to the continuous problem, and in the Appendix we give a proof of the reverse Jensen inequality.

Structure of the proof

As the structure of the proof of L 8 bounds may be hidden behind the technical details, we sketch in this subsection the formal computations on which our main results rely. Let us consider the simplest case, the one where there is no interior potential, and let us not worry about the temporal boundary terms for the moment. The variational problem reads min

"ż T 0 1 2 | 9 ρ t | 2 dt `ż T 0 ż Ω f pρ t pxqq dx dt `Ψpρ T q : ρ : r0 , T s Ñ PpΩq, ρ 0 " ρ 0 * .
First, we consider the time-discretization in (1.4) and, we apply the flow-interchange technique that we mentioned before (and that will be detailed later, see Section 3) to the functional U " U m , where

U m pρq :" 1 mpm ´1q ż Ω ρpxq m dx,
when m ą 1 (U 1 pρq can be defined as the Boltzmann entropy of ρ, and the normalization constants are chosen for coherence with this case). The flow interchange technique will allow to obtain an estimate of the form

U m pρ pk´1qτ q `Um pρ pk`1qτ q ´2U m pρ kτ q τ 2 ě Cpmq ż f 2 pρ kτ qρ m´1 k |∇ρ kτ | 2 ě 0. (1.5)
This gives a discrete-in-time convex behavior for the quantity U m pρ t q. In the case f " 0, this is basically a restatement of McCann convexity principle [START_REF] Robert | A convexity principle for interacting gases[END_REF]. It is easy to see that, if ρ 0 , ρ T P L m (which is an assumption on ρ 0 and on Ψ), then automatically the same L m bound is satisfied by all measures ρ t . If ρ 0 , ρ T P L 8 , the same easily passes to the limit as m Ñ 8 thus providing L 8 bounds.

Moreover, the flow interchange applied to the last time step k " N (with Nτ " T ), gives a result of the form U m pρ Nτ q ´Um pρ pN´1qτ q τ ď bpmqU m pρ Nτ q, (1.6)

where the constant bpmq depends on the penalization Ψ. This acts as a sort of Neumann condition for the function t Þ Ñ U m pρ t q and allows to obtain the bound on U m pρ t q with the only assumption ρ 0 P L m , with no need to assume the same for ρ T . However, this can only be adapted to the limit m Ñ 8 in the case where Ψ has the form Ψpρq :" ş gpρpxqq dx for a convex g, without potential terms, so that bpmq " 0. Otherwise, the dependence of bpmq upon m prevents from letting m Ñ 8.

Our paper includes L m and L 8 results which do not require assumptions on ρ 0 , and which will be, of course, only of local nature on p0, T s. Our proof will look like Moser's proof of regularity for elliptic equations [START_REF] Moser | A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations[END_REF], as it will rely on a fine analysis of the growth (when m Ñ `8) of quantities of the form ş T 2 T 1 ρ m t . Indeed, one can guess from (1.5) that we may write (at the limit when τ Ñ 0) 

d 2 dt 2 U m pρ t q ě ż Ω |∇ρ t | 2 ρ m´1 t f 2 pρ t q. ( 1 
T 1 ´ε U βm pρ t q 1{β dt ď Cpm, εq ż T 2 `2ε T 1 ´2ε U m pρ t q dt,
where the constant Cpm, εq grows not faster than a polynomial function of m and ε ´1. We have to work a little bit more on the l.h.s. because we want to exchange the power 1{β and the integral sign, and unfortunately Jensen's inequality gives it the other way around. To this extent, we rely on the following observation: as the function U βm is convex (this can be seen in (1.7)) and positive, it is bounded on rT 1 , T 2 s either by its values on rT 1 , T 1 ´εs or on rT 2 , T 2 `εs, thus we have a "reverse Jensen's inequality"

ˆż T 2 T 1 U βm pρ t q dt ˙1{β ď pT 2 ´T1 q 1{β ε ˆż T 1 T 1 ´ε U βm pρ t q 1{β dt `ż T 2 `ε T 2 U βm pρ t q 1{β
˙.

Combining this inequality with the estimation we have on the r.h.s., we deduce that

ˆż T 2 T 1 U βm pρ t q dt ˙1{β ď Cpm, εq ż T 2 `2ε T 1 ´2ε U m pρ t q dt,
where the new constant Cpm, εq has also a polynomial behavior in m and ε ´1. This estimation is ready to be iterated. Indeed, setting m n :" β n m 0 and ε n " 2 ´nε 0 , given the moderate growth of Cpm, εq, it is not difficult to conclude that lim sup nÑ`8 ˆż T 2 `εn

T 1 ´εn U mn pρ t q dt ˙1{mn ă `8.
As the l.h.s. controls the L 8 norm of ρ on rT 1 , T 2 s ˆΩ, this is enough to conclude that ρ is bounded locally in time and globally in space.

Let us comment the technical refinements and generalization of the above argument that are used in the present article:

• As we do not have enough time regularity to differentiate twice w.r.t. time, we decided to work with a time discretization of the problem. Hence, instead of(1.7) we use (1.5).

• If we add an interior potential, the r.h.s. of (1.7) contains lower order terms that are controlled by the term involving f 2 . However, the sign of the l.h.s. is no longer known and the function U m is no longer convex but rather satisfies d 2 dt 2 U m pρ t q `ω2 U m pρ t q ě 0, where ω grows linearly with m. In particular, the "reverse Jensen inequality" becomes more difficult to prove, but it is still doable.

• With assumptions on the final penalization, the regularity can be extended to the final time. More precisely, if we assume that the final penalization is given by the sum of a potential term and a congestion term, then formally (and this can be proven by taking the limit τ Ñ 0 of (1.6)),

d dt U m pρ t q ˇˇˇt "T ď bpmqU m pρ T q, (1.8) 
where the constant bpmq depends on the potential and can be taken equal to 0 if there is no potential. This inequality enables to control the value of U m at the boundary t " T by its values in the interior. Thus the same kind of iterations can be performed and gives L 8 regularity up to the boundary.

• If α ă ´1, we only have a control of U m by U βpm`1`αq . Thus we must start the iterative procedure with a value m such that m ă βpm `1 `αq, i.e. we must impose a priori some L m regularity on ρ (with a m which depends on α and β, the latter depending itself only on the dimension of the ambient space). Such a regularity is imposed by assuming that ρ 0 (which is fixed) is in L m pΩq and that the boundary penalization in t " T is the sum of a potential and a congestion term. Indeed, if this is the case, the boundary condition (1.8) combined with the interior estimate (1.7) shows that if T is small enough (given the potentials and the congestion function f ), the L m norm of ρ on r0 , T s ˆΩ must be bounded.

Notation and presentation of the optimal density evolution problem

In all the sequel, Ω will denote the closure of an open bounded convex domain of R d with smooth boundary. To avoid normalization constants, we will assume that its Lebesgue measure is 1. The generalization to the case where Ω is the d-dimensional torus is straightforward and we do not address it explicitly. The space of probability measures on Ω will be denoted by PpΩq. The Lebesgue measure restricted to Ω, which is therefore a probability measure, will be denoted by L. The space PpΩq is endowed with the weak-* topology, i.e. the topology coming from the duality with CpΩq (the continuous functions from Ω valued in R).

The Wasserstein space

The space PpΩq of probability measures on Ω is endowed with the Wasserstein distance: if µ and ν are two elements of PpΩq, the 2-Wasserstein distance W 2 pµ, νq between µ and ν is defined by For general results about optimal transport, the reader might refer to [START_REF] Villani | Topics in optimal transportation[END_REF] or [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]. We recall that W 2 admits a dual formulation: for any µ, ν P PpΩq,

W 2 pµ
W 2 pµ, νq " d max "ż ϕ dµ `ż ϕ c dν : ϕ P CpΩq * , (2.2) 
where ϕ c pyq :" inf xPΩ p|x ´y| 2 ´ϕpxqq for any y P Ω. A function ϕ P CpΩq which is optimal in (2.2) is called a Kantorovitch potential for the transport from µ to ν. The following result, giving the derivative of the Wasserstein distance, can be found in [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Propositions 7.18 and 7.19].

Proposition 2.1. Let µ, ν P PpΩq and assume that µ is absolutely continuous w.r.t. L and that its density is strictly positive a.e. Then there exists a unique Kantorovitch potential ϕ for the transport from µ to ν. Moreover, ϕ is Lipschitz and if μ P PpΩq X L 8 pΩq, then

lim εÑ0 W 2 2 pp1 ´εqµ `ε μ, νq ´W2 2 pµ, νq ε " ż Ω ϕ dp μ ´µq.
We recall that W 2 defines a metric on PpΩq that metrizes the weak-* topology. Therefore, thanks to Prokhorov Theorem, the space pPpΩq, W 2 q is a compact metric space. We also recall that pPpΩq, W 2 q is a geodesic space. If µ and ν are probability measures such that µ admits a strictly positive density w.r.t. L, then there exists a unique constant-speed geodesic ρ : r0 , 1s Ñ PpΩq joining µ to ν and it is given by ρptq " pId ´t∇ϕq#µ, where ϕ is the unique Kantorovitch potential for the transport from µ to ν.

We will need to define functionals of the form µ P PpΩq Þ Ñ ş Ω hpµq dL. To this extent, we rely on the following proposition (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Chapter 7]; see also [START_REF] Bouchitté | New lower semicontinuity results for nonconvex functionals defined on measures[END_REF] for the most advanced results on the semicontinuity of this kind of functionals on measures) Proposition 2.2. Let h : r0 , `8q Ñ R be a convex function bounded from below. Let h 1 p`8q P p´8 , `8s be the limit of h 1 ptq as t Ñ `8. Then, the functional

ρ P PpΩq Þ Ñ ż Ω hpρ ac q `h1 p`8qρ sing pΩq, (2.3) 
(where ρ ": ρ ac L `ρsing is the decomposition of ρ as an absolutely continuous part ρ ac L and a singular part ρ sing w.r.t. L) is convex and l.s.c.

In particular, we will make a strong use of the following functionals.

Definition 2.3. For any m ě 1, we define u m : r0 , `8q Ñ R for any t ě 0 through u m ptq :"

$ & % t ln t `1 if m " 1 t m mpm ´1q if m ą 1 .
For any m ě 1, the functional U m : PpΩq Ñ R is defined, for ρ P PpΩq, via U m pρq :"

$ & % ż Ω u m pρq if ρ is absolutely continuous w.r.t. L `8 else .
One can notice that u 2 m ptq " t m´2 for any m ě 1 and any t ą 0, hence the functions u m are convex for all m. One can also notice that U 1 is (up to an additive constant) the entropy w.r.t. L. Moreover, some useful properties of U m are summarized below.

Proposition 2.4. For any m ě 1,

1. One has m 2 U m ě 1.
2. The functional U m is convex and l.s.c.

3.

The functional U m is geodesically convex: it is convex along every constant-speed geodesic of pPpΩq, W 2 q.

Proof. The first point derives from Jensen's inequality. The second point is an application of Proposition 2.2. To prove the third point, recall that Ω is convex: thus it is enough to check that the functions u m satisfy McCann's conditions (see [START_REF] Robert | A convexity principle for interacting gases[END_REF] or [START_REF] Villani | Topics in optimal transportation[END_REF]Theorem 5.15]), which is the case.

Absolutely continuous curves in the Wasserstein space

We will denote by Γ the space of continuous curves from r0 , T s to PpΩq. This space will be equipped with the distance d of the uniform convergence, i.e. dpρ 1 , ρ 2 q :" max tPr0,T s W 2 pρ 1 ptq, ρ 2 ptqq.

Following [3, Definition 1.1.1], we will use the following definition.

Definition 2.5. We say that a curve ρ P Γ is 2-absolutely continuous if there exists a function λ P L 2 pr0 , T sq such that, for every

0 ď t ď s ď T , W 2 pρ t , ρ s q ď ż s t λprq dr.
The main interest of this notion lies in the following theorem that we recall.

Theorem 2.6. If ρ P Γ is a 2-absolutely continuous curve, then the quantity

| 9 ρ t | :" lim hÑ0 W 2 pρ t`h , ρ t q h
exists and is finite for a.e. t. Moreover, The quantity | 9 ρ t | is called the metric derivative of the curve ρ and heuristically corresponds to the norm of the derivative of ρ at time t in the metric space pPpΩq, W 2 q. Thus, the quantity ş T 0 | 9 ρ t | 2 dt behaves like a H 1 norm. In particular, we have the following.

ż T 0 | 9 ρ t | 2 dt " sup Ně2 sup 0ďt 1 ăt 2 ă...ăt N ďT N ÿ k"2 W 2 2 pρ t k´1 , ρ t k q t k ´tk´1 . ( 2 
Proposition 2.7. The function ρ

P Γ Þ Ñ ş T 0 | 9 ρ t | 2 dt is l.s.c.
, convex, and its sublevel sets are compact.

Proof. The lower semi-continuity and convexity are a consequence of the representation formula (2.4) (because the square of the Wasserstein distance is a continuous convex function of its two arguments, see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Chapter 7]).

Moreover if ρ P Γ is a curve with finite action and s ă t, then, again with (2.4), one can see that

W 2 pρ s , ρ t q ď b ş T 0 | 9 ρ t | 2 dt ? t ´s.
This shows that the sublevel sets of ş T 0 | 9 ρ t | 2 dt are uniformly equicontinuous, therefore they are relatively compact thanks to Ascoli-Arzela's theorem. As we know moreover that the sublevel sets are closed (by the lower semi-continuity we just proved), we can conclude that they are compact.

Continuous and discrete problems

In all the sequel, we will make the following assumptions:

1. Recall that Ω is the closure of an open convex bounded domain with smooth boundary.

2. We assume that f : r0 , `8q Ñ R is a strictly convex function, bounded from below and C 2 on p0 , `8q. We define the congestion penalization F by, for any ρ P PpΩq,

Fpρq :" ż Ω f pρ ac q `f 1 p`8qρ sing pΩq,
where ρ ": ρ ac L `ρsing is the decomposition of ρ as an absolutely continuous part ρ ac (identified with its density) and a singular part ρ sing w.r.t. L. Thanks to Proposition 2.2, we know that F is a convex l.s.c. functional on PpΩq.

3. We assume that V : Ω Ñ R is a Lipschitz function.

4. We assume that Ψ : PpΩq Ñ R is a l.s.c. and convex functional, bounded from below.

We will consider variational problems with a running cost of the form ρ Þ Ñ Epρq :" Fpρq `şΩ V dρ, while Ψ will penalize the final density, and the initial one will be prescribed.

Definition 2.8. We define the the functional A : Γ Ñ R by Apρq :"

ż T 0 1 2 | 9 ρ t | 2 dt `ż T 0 Epρ t q dt `Ψpρ T q.
We state the continuous problem as mintApρq : ρ P Γ, ρ 0 " ρ 0 u.

(ContPb)

A curve ρ that minimizes A will be called a solution of the continuous problem.

Proposition 2.9. Let us assume that there exists ρ P Γ with ρ 0 " ρ 0 such that Apρq ă `8. Then the problem (ContPb) admits a unique solution.

Proof. The functional A is the sum of l.s.c., convex and bounded functionals. Moreover, as Apρq ě

ş T 0 1 2 | 9 ρ t | 2 dt
´C (where C depends on the lower bounds of f, V and Ψ), we see (thanks to Proposition 2.7) that the sublevel sets of A are compact. The existence of a solution to (ContPb) follows from the direct method of calculus of variations.

To prove uniqueness, we need to prove that A is strictly convex. If ρ 1 and ρ 2 are two distinct minimizers of A, we define ρ :" pρ 1 `ρ2 q{2. As ρ 1 and ρ 2 are distinct, by continuity there exists T 1 ă T 2 such that ρ 1 t and ρ 2 t differ for every t P rT 1 , T 2 s. In particular, for any t P rT 1 , T 2 s, by strict convexity of F, Fpρq ă pFpρ 1 q `Fpρ 2 qq{2. Thus,

ż T 0 Fpρ t q dt ă 1 2 ż T 0 Fpρ 1 t q dt `1 2 ż T 0 Fpρ 2 t q dt.
As all the other terms appearing in A are convex, one concludes that Apρq ă pApρ 1 q `Apρ 2 qq{2, which contradicts the optimality of ρ 1 and ρ 2 .

In order to get the L 8 bounds, we will consider two different cases (strong and weak congestion), depending on the second derivative of f . This allows to quantify how much F penalizes concentrated measures.

Assumption 1 (strong congestion).

There exists α ě ´1 and C f ą 0 such that f 2 ptq ě C f t α for any t ą 0.

Assumption 2 (strong congestion-variant).

There exist α ě ´1, t 0 ą 0 and C f ą 0 such that f 2 ptq ě C f t α for any t ě t 0 .

In particular, integrating twice, we see that under either of the above assumptions, for ρ P PpΩq we have U α`2 pρq ď C f Fpρq`C, where C is a constant that depends on f (but not on ρ). One can also see that f 1 p`8q " `8. The function u m is the typical example of a function satisfying Assumption 1 with α " m ´2. To produce functions satisfying Assumption 2 but not Assumption 1, think at f ptq " ? 1 `t4 (if we try to satisfy Assumption 1 we need α ď 0 for large t, and α ě 2 for small t) or at f ptq " pt ´1q 2 `(the difference between these two examples is that in the first case on could choose an aribtrary t 0 ą 0, while in the second it is necessary to use t 0 ě 1).

Assumption 3 (weak congestion).

There exist α ă ´1, t 0 ą 0 and C f ą 0 such that f 2 ptq ě C f t α for any t ě t 0 .

For example, f ptq :" ? 1 `t2 satisfies f 2 ptq ě C f t α for t ě 1 with α " ´3.

Assumption 4 (higher regularity of the potential). The potential V is of class C 1,1 (it is C 1 and its gradient is Lipschitz) and ∇V ¨n ě 0 on BΩ, where n is the outward normal to Ω.

We will see that only Assumption 1, where we require a control of f 2 everywhere, allows to deal with Lipschitz potentials, while in general we will need the use of Assumption 4. The condition ∇V ¨n ě 0 on BΩ can be interpreted by the fact that the minimum of V is reached in the interior of Ω: it prevents the mass of ρ to concentrate on the boundaries.

Assumption 5 (final penalization). The penalization Ψ is of the following form

Ψpρ T q " $ & % ż Ω gpρ T q `żΩ W dρ T if ρ T is absolutely continuous w.r.t. L `8 if ρ T is singular w.r.t. L,
where g : r0 , `8q Ñ R is a convex and superlinear (i.e. g 1 p`8q " `8) function, bounded from below, and W :

Ω Ñ R is a potential of class C 1,1 satisfying ∇W ¨n ě 0 on BΩ.
The mains results of this paper can be stated as follows.

Theorem 2.10 (strong congestion, interior regularity). Suppose that either Assumption 1 holds or Assumption 2 and 4 hold, and that Apρq ă `8 for some ρ P Γ with ρ 0 " ρ 0 . Let ρ be the unique solution to (ContPb). Then for any 0 ă T 1 ă T 2 ă T , the restriction of ρ to rT 1 , T 2 s belongs to L 8 prT 1 , T 2 s ˆΩq.

Theorem 2.11 (strong congestion, boundary regularity). Suppose that either Assumption 1 holds or Assumption 2 and 4 hold, and that Assumption 5 holds as well, and that Apρq ă `8 for some ρ P Γ with ρ 0 " ρ 0 . Let ρ be the unique solution to (ContPb). Then, for any 0 ă T 1 ă T , the restriction of ρ to rT 1 , T s belongs to L 8 prT 1 , T s ˆΩq.

Theorem 2.12 (weak congestion case). Suppose Assumptions 5, 3 and 4 hold and that Apρq ă `8 for some ρ P Γ with ρ 0 " ρ 0 . We assume that the prescribed initial measure ρ 0 satisfies ρ 0 P L m 0 with m 0 ą d|α `1|{2 and Fpρ 0 q ă `8, and that T is small enough (smaller than a constant that depends on f, g, V, W and ρ 0 ). Let ρ be the unique solution to (ContPb). Then ρ P L m 0 pr0 , T s ˆΩq and for any 0 ă T 1 ă T , the restriction of ρ to rT 1 , T s belongs to L 8 prT 1 , T s ˆΩq.

The rest of the paper is devoted to the proof of these theorems. In particular, we will always assume in the sequel that there exists ρ P Γ with ρ 0 " ρ 0 such that Apρq ă `8. In order to prove these theorems, we will introduce a discrete (in time) variational problem that will approximate the continuous one. For this problem, we will be able to show the existence of a unique smooth (in space) solution and write down the optimality conditions. From these optimality conditions, we will be able to derive a flow interchange estimate whose iteration will give uniform (in the approximation parameters, and in p) L p estimates.

Let us introduce the discrete problem here. We will use two approximations parameters:

• N `1 ě 2 will denote the number of time steps. We will write τ :" T {N for the distance between two time steps. The set T N will stand for the set of all time steps, namely

T N :" tkτ; k " 0, 1, . . . , Nu .
We set Γ N :" PpΩq T N » PpΩq N`1 (i.e. an element ρ P Γ N is a N `1-uplet pρ 0 , ρ τ , . . . , ρ kτ , . . . , ρ T q of probability measures indexed by T N ). A natural discretization of the action of a curve is

ż T 0 1 2 | 9 ρ t | 2 dt » N ÿ k"1 W 2 2 pρ pk´1qτ , ρ kτ q 2τ .
• We will also add a (vanishing) entropic penalization (recall that U 1 denotes the entropy w.r.t. L). It will ensure that the solution of the discrete problem is smooth. The penalization will be a discretized version of

λ ż T 0 U 1 pρ t q dt,
where λ is a parameter that will be sent 0.

Let us state formally our problem. We fix N ě 1 (τ :" T {N) and λ ą 0, and we set λ N " λ if Assumption 5 is satisfied, λ N " 0 otherwise. We define A N,λ : Γ N Ñ R by

A N,λ pρq :" N ÿ k"1 W 2 2 pρ pk´1qτ , ρ kτ q 2τ `N´1 ÿ k"1 τ pEpρ kτ q `λU 1 pρ kτ qq `Ψpρ T q `λN U 1 pρ T q.
This means that in the case of Assumption 5 we penalize ρ T by ş Ω gpρ T q `λU 1 pρ T q `şΩ W dρ T , while we do not modify the boundary condition otherwise (the reason for not always adding λU 1 pρ T q lies in the possibility of having a prescribed value for ρ T with infinite entropy). In all the cases, we enforce strictly ρ 0 " ρ 0 . The discrete minimization problem reads mintA N,λ pρq : ρ P Γ N , ρ 0 " ρ 0 u, (DiscrPb) and a ρ P Γ N which minimizes A N,λ will be called a solution of (DiscrPb).

Theorem 2.13. For any N ě 1 and any λ ą 0, the discrete problem (DiscrPb) admits a solution.

Proof. The functional A N,λ is a sum of convex and l.s.c. functionals, bounded from below, hence it is itself convex, l.s.c. and bounded from below. Moreover, the space Γ N " PpΩq N`1 is compact (for the weak-* convergence). Thus, to use the direct method of calculus of variations, it is enough to show that A N,λ pρq ă `8 for some ρ P Γ N . This is easy in this discrete framework: just take ρ kτ " L if k P t1, 2, . . . , N ´1u, ρ 0 " ρ 0 and ρ Nτ equal to an arbitrary measure ρ such that Ψpρq `λN U 1 pρq ă `8.

Remark 2.14. We did not adress the uniqueness of the minimizer in the above problem since we do not really care about it, but indeed it also holds. Indeed, the strict convexity of F (or the term λU 1 that we added) guarantees uniqueness of ρ kτ for all k ď N ´1. The uniqueness of the last measure (which cannot be deducted from strict convexity for an arbitrary functional Ψ, as we do not always add a term of the form λU 1 pρ T q) can be obtained from the strict convexity of the last Wasserstein distance term ρ Þ Ñ W 2 2 pρ, ρ pN´1qτ q, as ρ pN´1qτ is absolutely continuous (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Proposition 7.19]). In all the following, for any N ě 1 and λ ą 0, we denote by ρN,λ P Γ N the unique solution of (DiscrPb) with parameters N and λ. Moreover, In all the sequel, we fix 1 ă β ă d{pd ´2q. It is well known that the space H 1 pΩq is continuously embedded into L 2β pΩq. Moreover, in the case where the assumptions of Theorem 2.12 are satisfied, we choose β in such a way that

β β ´1 m 0 ą |α `1|.
(2.5)

3 Flow interchange estimate

Interior flow interchange

In this subsection, we study the optimality conditions of (DiscrPb) away from the temporal boundaries. We fix for the rest of the subsection N ě 1, 0 ă λ ď 1 and 0 ă k ă N, and we use the shortcut ρ :" ρN,λ kτ . Let us also denote µ :" ρN,λ pk´1qτ and ν :" ρN,λ pk`1qτ . As ρN,λ is a solution of the discrete problem, we know that ρ is a minimizer (among all probability measures) of

ρ Þ Ñ W 2 2 pµ, ρq `W2 2 pρ, νq 2τ `τ ˆFpρq `λU 1 pρq `żΩ V dρ ˙.
In particular, we know that U 1 p ρq ă `8, thus ρ is absolutely continuous w.r.t. L.

Lemma 3.1. The density ρ is strictly positive a.e.

Proof. For 0 ă ε ă 1, we define ρ ε :" p1 ´εq ρ `εL. As L is a probability measure, we know that ρ ε is a probability measure too. Thus, using ρ ε as a competitor, we get

λpU 1 p ρq ´U1 pρ ε qq ď W 2 2 pµ, ρ ε q `W2 2 pρ ε , νq 2τ `τEpρ ε q ´W2 2 pµ, ρq `W2 2 p ρ, νq 2τ 
´τEp ρq.

We estimate the r.h.s. by convexity (as W 2 2 and F are convex) to see that

U 1 p ρq ´U1 pρ ε q ď ε λ ˜W2 2 pµ, Lq `W2 2 pL, νq 2τ `τEpLq ´W2 2 pµ, ρq `W2 2 p ρ, νq 2τ ´τEp ρq ¸.
Thus, there exists a constant C, independent of ε, such that U 1 p ρq ´U1 pρ ε q ď Cε. This can be easily seen to imply (see for instance the proof of [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Lemma 8.6]) that ρ is strictly positive a.e.

We can then write the first-order optimality conditions.

Proposition 3.2. The measure ρ (or more precisely its density w.r.t. L) is Lipschitz and bounded away from 0 and 8. Moreover, let us denote by ϕ µ and ϕ ν the Kantorovitch potentials for the transport from ρ to respectively µ and ν. Then the following identity holds a.e.: ∇ϕ µ `∇ϕ ν τ 2 `ˆf 2 p ρq `λ ρ ˙∇ ρ `∇V " 0.

(3.1)

Proof. Let ρ P PpΩq X L 8 pΩq and for 0 ă ε ă 1 define ρ ε " p1 ´εq ρ `ε ρ. We use ρ ε as a competitor. We use Proposition 2.1: as ρ ą 0 a.e., the Kantorovitch potentials ϕ µ and ϕ ν for the transport from ρ to respectively µ and ν are unique and

lim εÑ0 W 2 2 pµ, ρq ´W2 2 pµ, ρ ε q `W2 2 p ρ, νq ´W2 2 pρ ε , νq 2τ 2 " ż Ω ϕ µ `ϕν τ p ρ ´ρq.
The term involving V is straightforward to handle as it is linear. Hence, by optimality of ρ we get

ż Ω ˆϕµ `ϕν τ 2 `V˙p ρ ´ρq ď lim inf εÑ0
Fpρ ε q `λU 1 pρ ε q ´Fp ρq ´λU 1 p ρq ε .

(3.2)

Fpρ ε q `λU 1 pρ ε q ´Fp ρq ´λU 1 p ρq ε " ż Ω f λ rp1 ´εq ρ `ε ρs ´fλ r ρs ε .
The integrand of the integral of the r.h.s. converges pointewisely, as ε Ñ 0, to p f 1 p ρq `λ ln ρqp ρ ´ρq. Moreover, as the function f λ is convex, we see that for 0 ă ε ă 1,

f λ rp1 ´εq ρ `ε ρs ´fλ r ρs ε ď f λ p ρq ´fλ p ρq.
As ρ P L 8 pΩq and Fp ρq `λU 1 p ρq ă `8, the r.h.s. of the equation is integrable on Ω. Thus, by a reverse Fatou's lemma,

lim sup εÑ0 ż Ω Fpρ ε q `λU 1 pρ ε q ´Fp ρq ´λU 1 p ρq ε ď ż Ω p f 1 p ρq `λ ln ρq p ρ ´ρq.
Combing this equation with (3.2), we see that ş Ω h dp ρ ´ρq ě 0 with

h :" ϕ µ `ϕν τ 2 `f 1 p ρq `λ ln ρ `V.
We know that h is finite a.e., thus its essential infimum cannot be `8. Moreover, starting from ρ f 1 p ρq ě f p ρq ´f p0q, we see that ş Ω h ρ ą ´8. Taking probability measures ρ concentrated on sets where h is close to its essential infimum, we see that the essential infimum of h cannot be `8 and that h coincides with its essential infimum ρ-a.e. As ρ ą 0 a.e., there exists C such that we have a.e. on Ω f 1 p ρq `λ ln ρ " C ´ϕµ `ϕν τ 2 ´V.

(3.3)
As f 1 is C 1 and increasing, it is easy to see that f 1 `λ ln is an homeomorphism of p0 , `8q on p´8 , `8q which is bilipschitz on compact sets. As the function C ´pϕ µ `ϕν q{τ 2 ´V takes its values in a compact set and is Lispchitz, we see that ρ is bounded away from 0 and 8 and is Lipschitz. With all this regularity (recall that f is assumed to be C 2 on p0 , `8q), we can take the gradient of (3.3) to obtain (3.1).

Theorem 3.3 (Flow interchange inequality).

For any m ě 1, the following inequality holds:

ż Ω |∇ ρ| 2 f 2 p ρq ρm´1 `żΩ p∇ ρ ¨∇Vq ρm´1 ď U m pµq `Um pνq ´2U m p ρq τ 2 .
Proof. We multiply pointewisely (3.1) by ρm´1 ∇ ρ and integrate over Ω. Dropping the entropic term, we easily get

ż Ω |∇ ρ| 2 f 2 p ρq ρm´1 `żΩ p∇ ρ ¨∇Vq ρm´1 ď ´1 τ 2 ż Ω r∇ ρ ¨p∇ϕ µ `∇ϕ ν qs ρm´1 .
To prove the flow interchange inequality, it is enough to show that ´żΩ p∇ ρ ¨∇ϕ µ q ρm´1 ď U m pµq ´Um p ρq, as a similar inequality will hold for the term involving ϕ ν . To this purpose, we denote by ρ : r0 , 1s Ñ PpΩq the constant-speed geodesic joining ρ to µ. We know that it is given by ρptq " pId ´t∇ϕ µ q# ρ. From the result of Theorem 3.3 we need to deduce estimates on improved L m norms. To this aim, we treat in a slightly different way the cases of weak and strong congestion even if the result are similar. The main issue is to control the term involving ∇V. where C ą 0 depends only on f, V and Ω.

Proof. Let us start from the case of Assumption 1. In this case, we recall that C f is the constant such that f 2 ptq ě C f t α for any t ą 0. We transform the term involving ∇V in the following way:

ż Ω p∇ ρ ¨∇Vq ρm´1 " ż Ω p ρα{2 ∇ ρq ¨p ρ´α{2 ∇Vq ρm´1 ě ´C f 2 ż Ω | ρα{2 ∇ ρ| 2 ρm´1 ´1 2C f ż Ω | ρ´α{2 ∇V| 2 ρm´1 " ´C f 2 ż Ω |∇ ρ| 2 ρm´1`α ´1 2C f ż Ω |∇V| 2 ρm´1´α ě ´C f 2 ż Ω |∇ ρ| 2 ρm´1`α ´}∇V} 2 8 m 2 2C f U m p ρq.
For the last inequality, we have used the fact that

ż Ω ρm´1´α ď ˆżΩ ρm ˙pm´1´αq{m ď ż Ω ρm ď m 2 U m p ρq,
which is valid because 1 ď m ´1 ´α ď m and LpΩq " 1. Thus, using Theorem 3.3, we get

C f 2 ż Ω |∇ ρ| 2 ρm´1`α ď ż Ω |∇ ρ| 2 f 2 p ρq ρm´1 ´C f 2 ż Ω |∇ ρ| 2 ρm´1`α ď " U m pµq `Um pνq ´2U m p ρq τ 2 `}∇V} 2 8 2C f m 2 U m p ρq  .
We are interested only in the large values taken by ρ. Let us introduce ρ :" maxp1, ρq. This function is larger than ρ and 1 and its gradient satisfies |∇ ρ| " |∇ ρ|½ ρě1 . Thus,

ż Ω |∇ ρm{2 | 2 " m 2 4 ż Ω |∇ ρ| 2 ρm´2 ď m 2 4 ż Ω |∇ ρ| 2 ρm´1`α ď m 2 4 ż Ω |∇ ρ| 2 ρm´1`α .
(the last inequality is true since ∇ ρ " 0 on the points where ρ ą ρ, and the first inequality is exactly the point where we exploit the fact ρ ě 1, which explains the use of ρ instead of ρ). On the other hand, if we use the injection of H 1 pΩq into L 2β pΩq for the function ρm{2 , we get (with C Ω a constant that depends only on Ω),

ˆżΩ ρmβ ˙1{β ď C Ω ˆżΩ |∇ ρm{2 | 2 `żΩ ρm ˙.
As ρβm ď ρβm and ρm ď 1 `ρ m , we see that

ˆżΩ ρmβ ˙1{β ď ˆżΩ ρmβ ˙1{β ď C Ω ˆm2 4 ż Ω |∇ ρ| 2 ρm´1`α `żΩ ρm `1ď C Ω m 2 ˆ1 4 ż Ω |∇ ρ| 2 ρm´1`α `2U m p ρq ď Cm 2 " U m pµq `Um pνq ´2U m p ρq τ 2 `Cm 2 U m p ρq  .
Notice that to go from the second to the third line, we have used the fact that 1 ď ş Ω ρm ď m 2 U m p ρq. To conclude, it remains to notice that, as mβ ě β ą 1, that we can control (uniformly in m) U mβ p ρq by ş Ω ρmβ . Indeed

ˆżΩ ρmβ ˙1{β ě 1 pβpβ ´1qq 1{β U mβ p ρq 1{β .
Thus, up to a change in the constant C, we get the result we claimed. Proof. We use an integration by parts to treat the term involving ∇V. Recall that n denotes the exterior normal to Ω.

ż Ω p∇ ρ ¨∇Vq ρm´1 " 1 m ż Ω ∇p ρm q ¨∇V " 1 m ż BΩ p∇V ¨nq ρm ´1 m ż Ω ∆V ρm ě ´}∆V} 8 mU m p ρq,
where we have used the assumption ∇V ¨n ě 0 on BΩ. Thus, using Theorem 3.3, we get (recall that f 2 ptq ě C f t α but only for t ě t 0 )

C f ż t ρět 0 u |∇ ρ| 2 ρm´1`α ď C f ż Ω |∇ ρ| 2 ρm´1 f 2 p ρq (3.4) ď " U m pµq `Um pνq ´2U m p ρq τ 2 `}∆V} 8 mU m p ρq  . (3.5)
This gives us the first inequality of the corollary. In a similar manner to the strong congestion case, we introduce ρ :" maxpt 0 , ρq. This time we notice that ż

Ω |∇ ρpm`1`αq{2 | 2 ď m 2 4 ż t ρět 0 u |∇ ρ| 2 ρm´1`α .
Thus, if we use the injection of H 1 pΩq into L 2β pΩq with the function ρpm`1`αq{2 , ˆżΩ ρβpm`1`αq

˙1{β ď C Ω ˆżΩ |∇ ρpm`1`αq{2 | 2 `żΩ ρm`1`α ˙.
Then, we proceed as in the proof of the strong congestion case, but this time m `1 `α ď m and ρm`1`α ď ρm`1`α `tm`1`α 0 :

ˆżΩ ρβpm`1`αq ˙1{β ď ˆżΩ ρβpm`1`αq ˙1{β ď C Ω ˆm2 4 ż t ρě1u |∇ ρ| 2 ρm´1`α `żΩ ρm`1`α `tm`1`α 0 ď C Ω ˆm2 4 ż t ρě1u |∇ ρ| 2 ρm´1`α `żΩ ρm `tm`1`α 0 ď Cm 2 " U m pµq `Um pνq ´2U m p ρq τ 2 `CmU m p ρq  `Ct m`1`α 0 .
Notice that if t 0 ď 1, we can control t m 0 by m 2 U m p ρq (as we did in the strong congestion case), but in the general case this is not possible and we have to keep an explicit dependence in t 0 . To conclude, we notice that, thanks to (2.5), one has βpm `1 `αq ě m ě m 0 and thus ˆżΩ ρβpm`1`αq

˙1{β ě 1 pm 0 pm 0 ´1qq 1{β U βpm`1`αq p ρq 1{β .
The last case is a combination of the previous two cases. and

U βm p ρq 1{β ď Cm 2 " U m pµq `Um pνq ´2U m p ρq τ 2 `CmU m p ρq  `Ct m 0 , (3.7) 
where C depends only on f, V and Ω.

Proof. We begin with the same computations as in Corollary 3.5. We can obtain the same result as in (3.4), but on the set t ρ ě t 0 u we can use α ě ´1 to write

ż t ρět 0 u |∇ ρ| 2 ρm ď C " U m pµq `Um pνq ´2U m p ρq τ 2 `}∆V} 8 mU m p ρq  .
With ρ :" maxpt 0 , ρq we get ż

Ω |∇ ρm{2 | 2 ď C m 2 4 ż t ρět 0 u |∇ ρ| 2 ρm ,
and the conclusion comes from the same Sobolev injection, with the function ρm{2 , and similar computations as in the previous cases.

Remark 3.7. For simplicity, inequality (3.6) and (3.7) will be used by replacing the term mU m p ρq with m 2 U m p ρq, so as to allow a unified presentation with the inequality obtained in Corollary 3.4. Notice also that Corollary 3.4 is basically giving us the same inequality as (3.7), as long as we set t 0 " 0.

Boundary flow interchange

In the case of Assumption 5, we can derive some estimate right at the point T (k " N). We will only sketch the proof, at it mimicks the proof of the interior case and these computations are well-known in the case of the applications to the JKO scheme. We know that, with ρ " ρN,λ T and µ :" ρN,λ T ´τ, the measure ρ is a minimizer (among all probability measures) of

ρ Þ Ñ W 2 2 pµ, ρq 2τ `Gpρq `λU 1 pρq `żΩ W dρ.
Let us remark that it correspond to one step of the JKO scheme: it is in the context of such variational problems that the flow interchange was firstly used, see [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF]. In any case, with these notation, we obtain: 

Moser-like iterations

Corollaries 3.4, 3.5 and 3.6 allow us to control the L mβ or L pm`1`αqβ norm of ρ in terms of its L m norm. The strategy will consist in integrating w.r.t. to time and iterating such a control in order to get a bound on the L m prT 1 , T 2 s ˆΩq norm of ρN,λ that does not depend on λ and N and to control how this bounds grows in m. For any N ě 1 and any 0 ă λ ă 1, recall that ρN,λ is a solution of the discrete problem (DiscrPb).

Definition 4.1. For any m ě 1 and any 0 ď

T 1 ď T 2 ď T , we define L m T 1 ,T 2 as L m T 1 ,T 2 :" lim inf NÑ`8,λÑ0 ˜ÿ T 1 ďkτďT 2 τU m p ρN,λ kτ q ¸1{m .
The quantity L m T 1 ,T 2 can be seen as a discrete counter part of (up to a factor 1{pmpm ´1qq 1{m ) the L m norm of the restriction to rT 1 , T 2 s of the limit (whose existence will be proven in the next section) of ρN,λ when N Ñ `8 and λ Ñ 0.

The strong congestion case

First, we integrate w.r.t. time the estimate obtained in Corollary 3.4. Proposition 4.2. Suppose that either Assumption 1 holds or Assumptions 2 and 4 both hold. Then there exists two constants C 1 and C 2 (depending on f, V, T and Ω) such that, for any 0 ă ε ď C 1 {m and any 0 ă T 1 ă T 2 ă T such that rT 1 ´ε , T 2 `εs Ă p0 , T q, and any m ě α `2,

L βm T 1 ,T 2 ď " C 2 m 3 ε ˆm2 `1 ε 2 ˙1{m max `Lm T 1 ´ε,T 2 `ε, t 0 ˘.
As pointed out in Remark 3.7, in the case where Assumption 1 holds, we set t 0 " 0.

Proof. Let us recall that in Corollary 3.4 and Corollary 3.6 with Remark 3.7, we have proved (if we explicit the dependence in N and λ) that for any N ě 1, λ ą 0 and any k P t1, 2, . . . , N ´1u, one has

U βm p ρN,λ kτ q 1{β ď Cm 2 « U m p ρN,λ pk´1qτ q `Um p ρN,λ pk`1qτ q ´2U m p ρN,λ kτ q τ 2 `Cm 2 U m p ρN,λ kτ q ff `Ct m 0 . (4.1)
Let us take χ : r0 , T s Ñ r0 , 1s a positive C 1,1 cutoff function such that χptq " 1 if t P rT 1 ´ε{3 , T 2 `ε{3s and χptq " 0 if t R rT 1 ´2ε{3 , T 2 `2ε{3s. Such a function χ can be chosen with }χ 2 } 8 ď 54{ε 2 . We multiply (4.1) by τχpkτq and sum over k P t1, 2, . . . , N ´1u. After performing a discrete integration by parts, we are left with

N´1 ÿ k"1 τχpkτqU mβ p ρN,λ kτ q 1{β ď Ct m 0 `Cm 2 N´1 ÿ k"1 τU m p ρN,λ kτ q " Cm 2 `χppk `1qτq `χppk ´1qτq ´2χpkτq τ 2  .
Given the bound on the second derivative of χ, and if τ ď ε{3, we get

ÿ T 1 ´ε{3ďkτďT 2 `ε{3 τU mβ p ρN,λ kτ q 1{β ď Ct m 0 `Cm 2 ˆm2 `1 ε 2 ˙ÿ T 1 ´εďkτďT 2
´ε τU m p ρN,λ kτ q.

The l.h.s. is not exactly ´Lmβ

T 1 ,T 2 ¯1{m
as we would like to exchange the sum and the power 1{β. Unfortunately, Jensen's inequality gives the inequality the other way around. To overcome this difficulty, we will use the fact that the function k Þ Ñ U βm p ρN,λ kτ q is almost a convex function of k. More precisely, we will use the "reverse Jensen inequality", whose proof is postponed in Appendix A.

Lemma 4.3. Let pu τ k q kPZ be a family of real sequences indexed by a parameter τ. We assume that there exists ω ě 0 such that for any k P Z and any τ, one has u τ k ą 0 and

u τ k`1 `uτ k´1 ´2u τ k τ 2 `ω2 u τ k ě 0. (4.2)
Then, for any T 1 ă T 2 and any η ă π{p8ωq, there exists τ 0 (which depends on ω), such that, if τ ď τ 0 , then

˜ÿ T 1 ďkτďT 2 τu τ k ¸1{β ď C pω `1qpT 2 ´T1 `1q 1`1{β η ÿ T 1 ´ηďkτďT 2 `η τpu τ k q 1{β ,
where C is a universal constant.

To use this lemma, we observe that u τ k :" U mβ p ρN,λ kτ q satisfies (4.2) with ω 2 " Cm 2 (thanks again to Corollary 3.4 and Remark 3.7). Thus, if we take C 1 small enough, we have ε{3 ă π{p8ωq as soon as ε ď C 1 {m. If τ is small enough, we can exchange the sum and the power 1{β to get

˜ÿ T 1 ďkτďT 2 τU mβ p ρN,λ kτ q ¸1{β ď C pCm `1qpT `1q 1`1{β ε ÿ T 1 ´ε{3ďkτďT 2 `ε{3 τU mβ p ρN,λ kτ q 1{β ď C 2 m 3 ε ˆm2 `1 ε 2 ˙˜t 0 `ÿ T 1 ´εďkτďT 2 `ε τU m p ρN,λ kτ q ¸.
Notice that we have put the constant C 2 m 3 ε ´1pm 2 `ε´2 q also in factor of t m 0 , as it is anyway larger than 1 as soon as ε is small enough. Then we take the power 1{m on both sides, use the identity pa `bq 1{m ď C maxpa 1{m , b 1{m q and send N Ñ `8 and λ Ñ 0 to get the result.

In other words, on a slightly larger time interval, the L βm norm is control by the L m norm. We just have to iterate this inequality. Proposition 4.4. Suppose that either Assumption 1 holds or Assumptions 2 and 4 both hold. For any 0 ă T 1 ă T 2 ă T , there exists C (that depends on T 1 , T 2 , T, f, V and Ω) such that

lim sup mÑ`8 L m T 1 ,T 2 ď C max ´Lα`2 0,T , t 0 ¯.
Proof. Let ε 0 ą 0 be small enough such that 0 ă T 1 ´ε0 β{pβ ´1q ď T 2 `ε0 β{pβ ´1q ă 1 and ε 0 ď C 1 {pα `2q (where C 1 is the constant defined in Proposition 4.2). For any n P N, let us define

T n 1 :" T 1 ´`8 ÿ k"n ε 0 β n and T n 2 :" T 2 ``8 ÿ k"n ε 0 β n ,
and set m n :" pα `2qβ n . Using Proposition 4.2, as we have

|T n`1 i ´T n i | " ε 0 β ´n ď C 1 {m n for i P t1, 2u
, we can say that, with l n :" max ´Lmn

T n 1 ,T n 2 , t 0 ¯ln`1 ď " max " 1, C 2 m 3 n ε 0 β ´n ˆm2 n `1 pε 0 β ´nq 2 ˙* 1{mn l n ď " Cβ 6n ‰ β ´n {pα`2q l n .
One can easily check, as

β ą 1, that `8 ź n"0 " Cβ 6n ‰ β ´n {pα`2q ă `8, thus we get that sup nPN L mn T 1 ,T 2 ď sup nPN L mn T n 1 ,T n 2 ď sup nPN l n ď Cl 0 " C max ˆLm 0 T 0 1 ,T 0 2 , t 0 ˙ď C max ´Lα`2 0,T , t 0 ¯.
To conclude, we notice that, if m ą 1 and m n ě m, one has (using Jensen's inequality)

L m T 1 ,T 2 ď pm n pm n ´1qq 1{mn pmpm ´1qq 1{m L mn T 1 ,T 2 ,
thus sending m Ñ `8 (hence n Ñ `8) we conclude that lim sup

mÑ`8 L m T 1 ,T 2 ď sup nPN L mn T 1 ,T 2 . (4.3)
As we will see later, the fact that L α`2 0,T is finite is a consequence of the fact that the solution ρ of the continuous problem (ContPb) satisfies ş T 0 Fp ρt q dt ă `8.

Estimates up to the final time

In this subsection, still supposing that either Assumption 1 holds or Assumptions 2 and 4 both hold, we exploit Assumption 5 to extend the L 8 bound up to the final time t " T . We will prove a result similar to Proposition 4.2, but this time up to the boundary.

Proposition 4.5. Suppose that either Assumption 1 holds or Assumptions 2 and 4 both hold, and that Assumption 5 also holds.

Then there exists two constants C 1 and C 2 (depending on f, T, V, g, W and Ω) such that for any 0 ă ε ă C 1 {m and any 0 ă T 1 ă T with 0 ă T 1 ´ε, then for any m ě α `2,

L βm T 1 ,T ď " C 2 m 3 ε ˆm ε `m2 `1 ε 2 ˙1{m max `Lm T 1 ´ε,T , t 0 ˘.
Again, we recall (Remark 3.7) that if we are under Assumption 1, we take t 0 " 0.

Proof. Let us recall that equation (4.1) holds for any N ě 1, λ ą 0 and k P t1, 2, . . . , N ´1u. We take χ : r0 , T s Ñ r0 , 1s a positive C 1,1 cutoff function such that χptq " 1 if t P rT 1 ´ε{3 , T s and χptq " 0 if t P r0 , T 1 ´2ε{3s. Such a function χ can be chosen with }χ 2 } 8 ď 54{ε 2 . We multiply (4.1) by τχpkτq and sum over k P t1, 2, . . . , N ´1u. After performing a discrete integration by parts, we are left with (now a boundary term is appearing):

N´1 ÿ k"1 τχpkτqU mβ p ρN,λ kτ q 1{β ď Cm 2 ˜Um p ρN,λ T q´U m p ρN,λ T ´τq τ χpT q `N´1 ÿ k"1 τU m p ρN,λ kτ q " Cm 2 `χpkτ `τq`χpkτ ´τq´2χpkτq τ 2  ¸`Ct m 0 .
With the help of Proposition 3.8 and Corollary 3.4 or Corollary 3.6, and as χpT q " 1, we are able to write (provided that τ ď ε{3)

ÿ T 1 ´ε{3ďkτďT τU mβ p ρN,λ kτ q 1{β ď Cm 2 ˜mU m p ρN,λ T q `"m 2 `1 ε 2  ÿ T 1 ´εďkτďT τU m p ρN,λ kτ q ¸`Ct m 0 .
To transform the boundary term U m p ρN,λ T q into an integral term, we use the following lemma, whose proof is also postponed in Appendix A. Lemma 4.6. Let pu τ k q kPZ be a family of real sequences indexed by a parameter τ. We assume that there exists ω ě 0 such that for any k P Z and any τ, one has u τ k ą 0 and (4.2). We also assume that there exists b ě 0 such that for some N P Z,

u τ N ´uτ N´1 τ ď bu N τ.
Then, there exists C 1 and C 2 universal constants and τ 0 (which depends on ω and b), such that for any η ď mintπ{p32ωq, π{p32bqu and any τ ď τ 0 , then

u τ N ď C 1 η ÿ kN´ηďkτďkN τu τ k , (4.4) 
and for any T 1 ă Nτ,

˜ÿ T 1 ďkτďNτ τu τ k ¸1{β ď C 2 pω `1qpT ´T1 `1q 1`1{β η ÿ T 1 ´ηďkτďNτ τpu τ k q 1{β . (4.5)
We are in the case where this lemma can be applied because of Corollary 3.4 or Corollary 3.6 and Proposition 3.8 with u τ k " U m p ρN,λ kτ q, ω " Cm and b " Cm. Thus, if ε ă C{m, we can guarantee that we can use equation (4.4) of Lemma 4.6 (with ε " η), thus ÿ

T 1 ´ε{3ďkτďT τU mβ p ρN,λ kτ q 1{β ď Ct m 0 `Cm 2 " m ε `m2 `1 ε 2  ÿ T 1 ´εďkτďT τU m p ρN,λ kτ q.
Then we use equation (4.5) of Lemma 4.6 (but this time with u τ k " U βm p ρN,λ kτ q) to exchange the sum and the power 1{β on the l.h.s. to conclude that

˜ÿ T 1 ďkτďT τU mβ p ρN,λ kτ q ¸1{β ď C m 3 ε " m ε `m2 `1 ε 2  ˜tm 0 `ÿ T 1 ´εďkτďT τU m p ρN,λ kτ q ¸.
Again, we have put m 3 ε ´1pmε ´1 `m2 `ε´2 q in factor of t m 0 , which is legit because this factor is larger than 1 for ε small enough. Taking the power 1{m on each side, using the identity pa `bq 1{m ď C maxpa 1{m , b 1{m q, and letting N Ñ `8 and λ Ñ 0, we get the result.

It is then very easy to iterate this result, which looks exactly like Proposition 4.2. Thus, the proof of the following proposition, which is exactly the same as Proposition 4.4, is left to the reader. Proposition 4.7. Suppose that either Assumption 1 holds or Assumptions 2 and 4 both hold, and that Assumption 5 also holds. Then, for any 0 ă T 1 ă T , there exists C (that depends on T 1 , T, f, V and Ω) such that

lim sup mÑ`8 L m T 1 ,T ď C max ´Lα`2 0,T , t 0 ¯.

The weak congestion case

The scheme is very similar in the weak congestion case, even though the iteration is not as direct as in the strong congestion case. Moreover, we will directly prove an L 8 bound up to t " T , because, as we will see, Assumption 5 will be needed anyway to initialize the iterative process. The proofs will be less detailed in this case: the reading on the two previous subsections is advised to understand this one.

Proposition 4.8. Suppose Assumptions 3, 4 and 5 hold. Then there exist constants C 1 and C 2 (depending on f, V, T and Ω) such that, for any 0 ă ε ď C 1 {m and any 0 ă T 1 ă T such that 0 ă T 1 ´ε, then for any m ě m 0 ,

L βpm`1`αq T 1 ,T ď " C 2 m 5{2 ε ˆm ε `m `1 ε 2 ˙1{pm`1`αq max " `Lm T 1 ´ε,T ˘m{pm`1`αq , t 0 ı .
Proof. The proof starts the same way: starting from Corollary 3.5, we write

U βpm`1`αq p ρN,λ kτ q 1{β ď Cm 2 « U m p ρN,λ pk´1qτ q `Um p ρN,λ pk`1qτ q ´2U m p ρN,λ kτ q τ 2 `CmU m p ρN,λ kτ q ff `Ct m`1`α 0 . (4.6) 
Because of Assumption 5, we can also write, tanks to Proposition 3.8, that

U m p ρN,λ T ´τq ´Um p ρN,λ T q τ ě ´pm ´1q}∆W} 8 U m p ρN,λ T q.
We use the same cutoff function χ that in the proof of Proposition 4.5. We multiply (4.6) by τχpkτq, perform a discrete integration by parts and end up with

ÿ T 1 ´ε{3ďkτďT
τU βpm`1`αq p ρN,λ kτ q 1{β ď Cm 2 ˜Um p ρN,λ T q ´Um p ρN,λ

T ´τq τ `"m `1 ε 2  ÿ T 1 ´εďkτďT τU m p ρN,λ kτ q ¸`Ct m`1`α 0 ď Cm 2 ˜mU m p ρN,λ T q `"m `1 ε 2  ÿ T 1 ´εďkτďT τU m p ρN,λ kτ q ¸`Ct m`1`α 0 .
We also use Lemma 4.6 but this time with ω 2 " Cm (this is Corollary 3.5) and b " Cm. The frequency ω 2 is smaller than in the strong congestion case (where it was of the order m 2 ) because we have made stronger assumptions on the potential V, though this is not important as we only use the fact that ω grows not faster than a polynomial of m. With this lemma we can both transform the boundary term into an integral term and exchange the sum and the power 1{β: there exists C 1 such that if 0 ă ε ď C 1 {m and if τ is small enough,

˜ÿ T 1 ďkτďT τU βpm`1`αq p ρN,λ kτ q ¸1{β ď C p ? m `1qT 1`1{β ε ÿ T 1 ´ε{3ďkτďT τU βpm`1`αq p ρN,λ kτ q 1{β ď C m 5{2 ε ˆm ε `m `1 ε 2 ˙˜t m`1`α 0 `ÿ T 1 ´εďkτďT τU m p ρN,λ kτ q ¸.
We take the power 1{pm `1 `αq on both sides, use the fact that pa `bq 1{pm`1`αq ď C maxpa 1{pm`1`αq , b 1{pm`1`αq q, and let N Ñ `8, λ Ñ 0 to get the result.

We proceed the same way by iterating the inequality, even though this expressions are slightly more complicated. Let us underline that the condition (2.5) on β is precisely the one that ensures that βpm `1 `αq ą m as soon as m ě m 0 : it is only thanks to this condition that the iteration of Proposition 4.8 will give useful information.

Proposition 4.9. Suppose Assumptions 3, 4 and 5 hold. Then, there exists γ ă `8 such that, for any 0 ă T 1 ă T , there exists C (that depends on T 1 , T, f, V and Ω) such that

lim sup mÑ`8 L m T 1 ,T ď C ´max " L m 0 0,T , t 0 ı¯γ .
Proof. As we know, thanks to our normalization choices, that L m 0 0,T ě 1, it is not restrictive that assume that t 0 ě 1 (indeed, if this is not the case, Assumption 3 is still valid with t 0 " 1 and the content of Proposition 4.9 does not change).

Once we have chosen ε 0 ă βT 1 {pβ ´1q, we define T n 1 by the same formula as in the proof of Proposition 4.4. We also define m n by recurrence: for any n P N, we take m n`1 " βpm n `1 `αq. Thus, we have the explicit expression

m n " ˆm0 `pα `1q β β ´1 ˙βn ´pα `1q β β ´1 .
In particular, pm n q nPN diverges exponentially fast to `8 as n Ñ `8. Using Proposition 4.8 and as t 0 ě 1, we get

L m n`1 T n`1 1 ,T ď « C 2 m 5{2 n ε 0 β ´n ˆmn ε 0 β ´n `mn `1 pε 0 β ´nq 2 ˙ff1{pmn`1`αq max " ´Lmn T n 1 ,T ¯mn{pmn`1`αq , t 0  ď " Cβ 11n{2 ‰ 1{pmn`α`1q max ´"L mn T n 1 ,T , t 0 ı¯m n {pmn`α`1q .
Denoting by l n :" ln ´max " L mn T n 1 ,T , t 0 ı¯, we see that

l n`1 ď C 3 11n 2pm n `α `1q `C4 m n `α `1 `mn m n `α `1 l n .
Given the exponential asymptotic growth of pm n q nPN , we leave it to the reader to check that is enough to conclude that lim sup nÑ`8 l n ď γl 0 `C5 for some γ ă `8 and C 4 ă `8. Taking the exponential gives

lim sup nPN L mn T n 1 ,T ď C ´max " L m 0 0,T , t 0 ı¯γ .
To conclude, we use again (4.3), which is valid independently of Assumption 1 or Assumption 3.

However, in the weak congestion case, the fact that L m 0 0,T ă `8 will require a little bit more of work and relies on the particular form of the boundary conditions. Proposition 4.10. Suppose Assumptions 3, 4 and 5 hold. Then there exists T max (which depends on f, V, Ψ and Ω) such that, if T ď T max , L m 0 0,T ă `8.

Proof. Again we will use the almost convexity of U m 0 p ρN,λ q. Indeed, we rely on the following lemma, which has the same flavor as the "reverse Jensen inequality" and whose proof is postponed in Appendix A.

Lemma 4.11. Let a ą 0, b ě 0 and ω ě 0 and set T max " mintπ{p32ωq, π{p32bqu. Then there exist some constants C ă `8 and τ 0 ą 0 (all depending on a, b and ω) such that for any T ď T max , any N ą 1{τ 0 (τ :" T {N) and for any sequence pu τ k q k P Z of strictly positive numbers satisfying (4.2) for k P t1, 2, . . . , N ´1u, and such that u τ 0 " a and u τ

N´1 ´uτ N τ ě ´bu τ N ,
one has u τ k ď C for any k P t1, 2, . . . , Nu.

We use this lemma with u τ k " U m 0 p ρN,λ kτ q. Equation (4.2) is satisfied with ω 2 " Cm 0 (Corollary 3.5); one can take a " U m 0 p ρN,λ 0 q " U m 0 pρ 0 q "

1 m 0 pm 0 ´1q ż Ω ρ 0 m 0 ;
and we take b " pm 0 ´1q}∆W} 8 (cf. Proposition 3.8). Thus, one can conclude that if T ď T max , then U m 0 p ρN,λ kτ q is bounded independently on N. This is enough to conclude that L m 0 0,T is finite.

Limit of the discrete problems

In this section, we will see that the solutions ρN,λ of the discrete problems (DiscrPb) converge to the solution ρ of the continuous one (ContPb) when N Ñ `8 and λ Ñ 0. Then, using the results of the previous sections, we will be able to show the L 8 bound on ρ.

Building discrete curves from continuous one

In our construction we will need to work with curves with finite entropy. This is easy under Assumption 1 of 2, but requires an approximation in the case of Assumption 3. Hence, we will show that in this case we can approximate curves in Γ by curves in Γ with finite entropy. In order to do this, we will use the heat flow, whose definition and some useful properties are recalled below. For any s ě 0 and any µ P PpΩq, let us define Φ s µ :" upsq, where u is the solution of the Cauchy problem

$ ' ' & ' ' % B t u " ∆u in p0 , `8q ˆΩ ∇u ¨n " 0 on p0 , `8q ˆBΩ lim tÑ0 uptq " µ in PpΩq .
In the equation above, n stands for the normal vector to the boundary BΩ. Provided that the boundary BΩ of Ω is smooth, it is well known (see for instance [6, Section 7] and [START_REF] Pierre | Uniqueness of the solutions of u t ´∆φpuq " 0 with initial datum a measure[END_REF]) that this Cauchy problem is well-posed and admits a unique solution. Because of the no-flux boundary conditions, Φ s µ P PpΩq for any s ě 0. Let us summarize the properties of the heat flow that will be useful to us. Proposition 5.1.

1. There exists C (only depending on Ω) such that for all µ P PpΩq and any s ą 0,

}Φ s µ} L 8 ď C s ´d{2 `1.
2. If h : R Ñ R is any convex function bounded from below, ρ P PpΩq X L 1 pΩq, and s ě 0,

ż Ω h rpΦ s ρqpxqs dx ď ż Ω hrρpxqs dx;
If h is not superlinear, the same stays true for any ρ P PpΩq by replaing the integral ş Ω hrρpxqs dx with the expression in (2.3).

3. If µ and ν P PpΩq, and s ě 0, W 2 pΦ s µ, Φ s νq ď W 2 pµ, νq.

(

4. Let µ P PpΩq with U 1 pµq ă `8. Then the curve s Þ Ñ Φ s µ is 2-absolutely continuous and for any s ě 0,

ż s 0 | 9 Φ r µ| 2 dr " U 1 pµq ´U1 pΦ s pµqq. (5.2) 
Proof. The first point is a classic L 8 ´L1 estimate for the heat equation, see for instance [START_REF] Arendt | Semigroups and evolution equations: functional calculus, regularity and kernel estimates[END_REF]Section 7].

To prove the second point in the case of ρ P L 1 , let us denote by K t px, yq the heat kernel (see [START_REF] Arendt | Semigroups and evolution equations: functional calculus, regularity and kernel estimates[END_REF]Section 7]). Using in particular Jensen's inequality and the fact that ş Ω K t px, yq dx " 1 for any y and t (because L is invariant under the heat flow), The proof in the case where h is not superlinear and ρ is not absolutely continuous is obtained by writing ρ ": ρ ac L `ρsing . Observing that h 1 p8q is the Lipschitz constant of h, we have ż Ω h rpΦ s ρqpxqs dx ´żΩ h rpΦ s ρ ac qpxqs dx ď h 1 p8q ż Ω |Φ s ρ sing |pxq dx " h 1 p8qρ sing pΩq.

The proofs of the third and last points rely on the fact that the heat flow is the gradient flow of the entropy U 1 in the Wasserstein space and can be found in [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]Theorem 11.2.1].

Proposition 5.2. Suppose Assumption 5 holds and that ρ 0 is such that U 1 pρ 0 q, Fpρ 0 q ă `8, and let ρ P Γ with ρ 0 " ρ 0 . Then, for any ε ą 0, there exists ρ P Γ with ρ0 " ρ 0 and C ă `8 such that Ap ρq ď Apρq `ε and U 1 p ρt q ď C for any t P r0 , 1s.

Proof. Without loss of generality, we assume Apρq ă `8. The idea is to use the heat flow to regularize solutions. But we cannot apply the heat flow uniformly, as we would loose the boundary condition ρ 0 " ρ 0 . Consequently, for any 0 ă s ă T , we define ρs P PpΓq by ρs ptq :"

$ & % Φ t pρ 0 q if 0 ď t ď s Φ s ˆρ " t ´s T ´s T ˙i f s ď t ď T .
In other words, we take the curve Φ s ρ, squeeze it into rs , T s, and use the heat flow to join ρ 0 to ρ s on r0 , ss. In particular, ρs 0 " ρ 0 " ρ 0 and ρs T " Φ s ρ T . From U 1 pρ 0 q ă `8 and the fact that U 1 is decreasing along the heat flow (see Proposition 5.1), U 1 p ρt q is bounded by U 1 pρ 0 q if t P r0 , ss and by a constant C s (depending only on s and Ω) if t P rs , T s. Hence, for any s ą 0, there exists C ă `8 such that U 1 p ρs t q ď C for any t P r0 , 1s. It remains to show that A does not increase too much because of our regularization process. Using the second point of Proposition 5.1, one can see that ż T 0 Fp ρs t q dt `Gp ρs T q ď sFpρ 0 q `pT ´sq T ż T 0 Fpρ t q dt `Gpρ T q.

To handle the action of ρs , we remark thanks to the third point of Proposition 5.1 and the representation formula (2.4) that applying uniformly the heat flow decreases the action. Hence, performing a affine change of variables on rs , T s,

ż T 0 | 9 ρs t | 2 dt " ż s 0 | 9 Φ t ρ 0 | 2 dt `T T ´s ż T 0 | 9 Φ s ρ t | 2 dt ď U 1 pρ 0 q ´U1 pΦ s ρ 0 q `T T ´s ż T 0 | 9 ρ t | 2 dt.
By lower semi-continuity of U 1 and as U 1 pρ 0 q " U 1 pρ 0 q is finite, one concludes that lim sup

sÑ0 ż T 0 | 9 ρs t | 2 dt ď ż T 0 | 9 ρ t | 2 dt.
Finally to handle the term involving the potentials, one uses, by continuity of the heat flow, that ρs t converges to ρ t for any t P r0 , 1s as s goes to 0. As ş T 0 | 9 ρs t | 2 dt is uniformly bounded, the family p ρs q 0ďsăT is uniformly equicontinuous, hence ρs converges uniformly to ρ as s Ñ 0. This allows us to write

lim sÑ0 "ż T 0 ż Ω V d ρs t dt `żΩ W d ρs T  " ż T 0 ż Ω V dρ t dt `żΩ W dρ T .
Gluing all the inequalities that we have collected, we see that lim sup sÑ0 Ap ρs q ď Apρq. Hence, it is enough to take ρ :" ρs for s small enough. Now, let us show how one can sample a continuous curve to get a discrete one that approximates it.

Proposition 5.3. Let ρ P Γ with ρ 0 " ρ 0 be such that ş T 0 U 1 pρ t q dt ă `8 and λ ą 0 be fixed. For any N ě 1 we can build a curve ρ N P Γ N with ρ N 0 " ρ 0 in such a way that lim sup NÑ`8

A N,λ pρ N q ď Apρq `λ ż T 0 U 1 pρ t q dt `λN U 1 pρ T q.

We recall that λ N " 0 by default except if Assumption 5 holds.

Proof. We can assume Apρq ă `8. The idea is to sample ρ on a grid translated w.r.t. T N . We start with the following observation.

ż τ 0 N´1 ÿ k"1
pFpρ kτ`s q `λU 1 pρ kτ`s qq ds " ż T ´τ 0 pFpρ t q `λU 1 pρ t qq dt ď ż T 0 pFpρ t q `λU 1 pρ t qq dt `Cτ,

where C depends only on the lower bounds of F and U 1 . Therefore, there exists s N P p0 , τq such that

τ N´1 ÿ k"1
pFpρ kτ`s N q `λU 1 pρ kτ`s N qq ď ż T 0 pFpρ t q `λU 1 pρ t qq `Cτ.

Let us define ρ N P Γ N by sampling ρ on the grid translated by s N : for any k P t0, 1, . . . , Nu,

ρ N :" $ ' & ' % ρ 0 if k " 0 ρ T if k " N ρ kτ`s N if 1 ď k ď N ´1 .
As the boundary values are left unchanged and given the choice of s N , it is clear that

ˆApρq `λ ż T 0 U 1 pρ t q dt `λN U 1 pρ T q ˙´A N,λ pρ N q ě ż T 0 1 2 | 9 ρ t | 2 dt ´N ÿ k"1 W 2 2 pρ N pk´1qτ , ρ N kτ q 2τ
´Cτ.

The r.h.s. of the above equation is delicate to evaluate because of the non uniformity of the grid near the boundaries. Recall that if t ď s then W 2 2 pρ t , ρ s q ď ps ´tq

ş s t | 9 ρ r | 2 dr, hence N ÿ k"1 W 2 2 pρ N pk´1qτ , ρ N kτ q 2τ " W 2 2 pρ 0 , ρ τ`s N q 2τ `N´1 ÿ k"2 W 2 2 pρ pk´1qτ`s N , ρ kτ`s N q 2τ `W2 2 pρ pk´1qτ`s N , ρ T q 2τ ď τ `sN 2τ ż τ`s N 0 1 2 | 9 ρ t | 2 dt `N´1 ÿ k"2 ż kτ`s N pk´1qτ`sn 1 2 | 9 ρ t | 2 dt `τ ´sN 2τ ż T T ´τ`s N 1 2 | 9 ρ t | 2 dt ď ż τ`s N 0 | 9 ρ t | 2 dt `ż T ´τ`s N τ`s N 1 2 | 9 ρ t | 2 dt `ż T T ´τ`s N 1 2 | 9 ρ t | 2 dt ď ż T 0 1 2 | 9 ρ t | 2 dt `ż 2τ 0 1 2 | 9 ρ t | 2 dt.
In particular, we have used τ `sN ď 2τ and τ ´sN ď τ. Letting N Ñ `8 (hence τ Ñ 0), we end up with lim sup

NÑ`8 N ÿ k"1 W 2 2 pρ N pk´1qτ , ρ N kτ q 2τ ď ż T 0 1 2 | 9 ρ t | 2 dt,
and this is enough to conclude.

Corollary 5.4. Under the assumptions of Theorems 2.10, 2.11 or 2.12, there exists C ă `8 such that, uniformly in N ě 1 and λ P p0 , 1s, one has A N,λ p ρN,λ q ď C.

Proof. If we are under the assumptions of Theorems 2.10 ot 2.11, we take ρ P Γ such that Apρq ă `8. As U 1 ď C f F `C, we see that ş T 0 U 1 pρ t q dt ă `8. If we are under the assumptions of 2.12, we take ρ P Γ such that Apρq ă `8 and regularize it thanks to Proposition 5.2. For this regularized curve, one has ş T 0 U 1 pρ t q dt `λU 1 pρ T q ă `8. In any of these two cases, we construct ρ N as in Proposition 5.3 and define C :" sup Ně1 A N,λ pρ N q, then we use the fact that A N,λ p ρN,λ q ď A N,λ pρ N q ď C.

Solution of the continuous problem as limit of discrete curves

We will build a suitable interpolation of the discrete curves ρN,λ that will converge to some continuous curve ρ as N Ñ `8 and λ Ñ 0, and we will show that ρ is a solution of (ContPb).

As the order in which the limits N Ñ `8 and λ Ñ 0 are taken does not matter, we will do them in the same time. We take two sequences pN n q nPN and pλ n q nPN that go respectively to `8, and 0 (the second one being strictly positive). We will not relabel the sequences when extracting subsequences. Moreover, to avoid heavy notations, we will drop the index n, and lim nÑ`8 will be denoted by lim NÑ`8,λÑ0 . We will need to define two kind of interpolations: one filling the gaps with constant-speed geodesics, and the other one by using piecewise constant curves. Definition 5.5. If N ě 1 and λ ą 0, we define ρN,λ P Γ as the curve such that ρN,λ coincides with ρN,λ on T N , and such that for any k P t0, 1, . . . , N ´1u, the restriction of ρN,λ to rkτ , pk `1τqs is the constant-speed geodesic joining ρN,λ kτ to ρN,λ pk`1qτ . As ρN,λ kτ is absolutely continuous w.r.t. L for any k P t1, 2, . . . , N ´1u, the constant-speed geodesic between ρN,λ kτ and ρN,λ pk˘1qτ is always unique. From the characterization of constant-speed geodesics, one has, for any k P t0, 1, . . . , N ´1u,

ż pk`1qτ kτ 1 2 ˇˇ9 ρN,λ t ˇˇ2 dt " W 2 2 p ρN,λ kτ , ρN,λ pk`1qτ q 2τ .
Summing these identities over k,

ż T 0 1 2 ˇˇ9 ρN,λ t ˇˇ2 dt " N ÿ k"1 W 2 2 p ρN,λ pk´1qτ , ρN,λ kτ q 2τ . (5.3) 
In other words, the continuous action of the interpolated curve ρN,λ is equal to the discrete action of the discrete curve ρN,λ .

Definition 5.6. If N ě 1 and λ ą 0, we define ρN,λ : r0 , T s Ñ PpΩq as the function such that ρN,λ coincides with ρN,λ on T N , and such that for any k P t0, 1, . . . , N ´1u, the restriction of ρN,λ to rkτ , pk `1τqq is equal to ρN,λ kτ . The curve ρN,λ is not continuous as it might admit discontinuities at every point in T N . Let us underline that the following identity trivially holds: This allows to conclude that ρN,λ also converges uniformly to ρ as N Ñ `8 and λ Ñ 0.

N´1 ÿ k"1 τ ˆFp ρN,λ kτ q `żΩ V d ρN,λ kτ ˙" ż T ´τ 0 ˆFp ρN,λ t q `żΩ V d ρN,λ t ˙dt (5.4 
Proposition 5.8. Under the assumptions of Theorems 2.10, 2.11 or 2.12, the curve ρ is the solution to the continuous problem (ContPb).

Proof. Taking the limit N Ñ `8 and λ Ñ 0 in (5.3), as the action is l.s.c., we end up with

ż T 0 1 2 | 9 ρt | 2 dt ď lim inf NÑ`8,λÑ0 N ÿ k"1 W 2 2 p ρN,λ pk´1qτ , ρN,λ kτ q 2τ .
Then, to handle the terms with the potential and the congestion, one can notice that for any t P r0 , T s, by lower semi-continuity of F and the convergence of ρN,λ t to ρt ,

Fp ρt q `żΩ V d ρt ď lim inf NÑ`8,λÑ0
Fp ρN,λ t q `żΩ V d ρN,λ t .

Thus, using Fatou's lemma, as F, V and U 1 are bounded from below, one has for any τ 0 ą 0,

ż T ´τ0 0 ˆFp ρt q `żΩ V d ρt ˙ď lim inf NÑ`8,λÑ0 ż T ´τ 0 ˆFp ρN,λ t q `żΩ V d ρN,λ t ˙dt " lim inf NÑ`8,λÑ0 N´1 ÿ k"1 τ ˆFp ρN,λ kτ q `żΩ V d ρN,λ kτ ˙dt ď lim inf NÑ`8,λÑ0 N´1 ÿ k"1 τ ˆFp ρN,λ kτ q `żΩ V d ρN,λ kτ `λU 1 p ρN,λ kτ q ˙.
In the equation above, τ 0 is arbitrary thus it is still valid for τ 0 " 0. As moreover the boundary penalization Ψ is l.s.c. and the entropic penalization λ N U 1 pρ T q is positive, one is allowed to write that Ap ρq ď lim inf NÑ`8,λÑ0

A N,λ p ρN,λ q.

Let us assume by contradiction that there exists ρ P Γ such that Apρq ă Ap ρq. Using, if needed, Proposition 5.2, we can assume without loss of generality that Apρq ă Ap ρq and ş T 0 U 1 pρ t q dt `λN U 1 pρ T q ă `8. Using Proposition 5.3, for any N ě 1, we can build ρ N P Γ N in such a way that lim sup

NÑ`8 A N,λ pρ N q ď Apρq `λ ż T 0 U 1 pρ t q dt `λN U 1 pρ T q.
Taking the limit λ Ñ 0, one can see that lim sup NÑ`8,λÑ0

A N,λ pρ N q ď Apρq ă Ap ρq ď lim inf NÑ`8,λÑ0

A N,λ p ρN,λ q.

Taking N large enough and λ small enough, we conclude that A N,λ pρ N q ă A N,λ p ρN,λ q, which is a contradiction with the optimality of ρN,λ .

Uniform bounds on ρ

To conclude and prove the Theorems 2.10, 2.11 and 2.12, it is enough to show the L 8 bounds on ρ, which of course we will prove using the discrete solutions ρN,λ . The key is the following proposition.

Proposition 5.9. Let 0 ă T 1 ă T 2 ď T . Then for any 0 ă T 1 1 ă T 1 and any T 2 ă T 1 2 ă T (or T 1 2 " T 2 " T in the case T 2 " T ), ess sup

T 1 ďtďT 2 ,xPΩ | ρt pxq| ď lim sup mÑ`8 L m T 1 1 ,T 1 2 .
Proof. We rely on the well-known identity ess sup

T 1 ďtďT 2 , xPΩ | ρt pxq| " lim sup mÑ`8 ˆż T 2 T 1 ż Ω ρm t dt ˙1{m " lim sup mÑ`8 ˆż T 2 T 1 U m p ρt q dt ˙1{m .
For a fixed m ą 1 and for τ ą 0 small enough, one has

ż T 2 T 1 U m p ρN,λ t q dt ď ÿ T 1 1 ďkτďT 1 2 τU m p ρN,λ kτ q.
When sending N Ñ 8 and λ Ñ 0, by lower semi-continuity of U m and by convergence of ρN,λ to ρ, we know that

ż T 2 T 1 U m p ρt q dt ď lim inf NÑ`8,λÑ0 ż T 2 T 1 U m p ρN,λ t q dt ď lim inf NÑ`8,λÑ0 ÿ T 1 1 ďkτďT 1 2 τU m p ρN,λ kτ q.
Taking the power 1{m on each side and by definition of

L m T 1 1 ,T 1 2 , one gets ˆż T 2 T 1 U m p ρt q dt ˙1{m ď L m T 1 1 ,T 1 2 .
It is enough to take the limit m Ñ `8 to get the announced inequality.

In other words, u τ is below v between k 1 and k 2 and above outside k 1 and k 2 (as long as v ě 0).

Proof. The fact that there exists only one v P T τ such that v k 1 " u τ k 1 and v k 2 " u τ k 2 has been already observed above. Let us define w k " u τ k ´vk . By (A.1) and Lemma A.2,

w k`1 `wk´1 ´2w k τ 2 `ω2 w k ą 0 (A.2)
for any k 0 ď k ď k 3 and w k 1 " w k 2 " 0. We want to prove w k ď 0 for every k 1 ď k ď k 2 . We consider the piecewise affine interpolation w of the values w k : a function which is affine on each interval rkτ, pk `1qτs and is equal to w k at the point kτ. The condition (A.2) translates on w as differential inequality in the sense of distributions:

w2 `ω2 ÿ k τw k δ kτ ě 0. (A.3)
Let us assume by contradiction that there is an open interval I Ă pk 1 τ, k 2 τq on which w ą 0, with w " 0 on BI. We denote by |I| the length of such an interval, and we have |I| ď |k 2 ´k1 |τ. By multiplying the above inequality by w and integrating by parts we get ż

I | w1 | 2 " ´żI w2 w ď ω 2 ÿ k : kτPI τ|w k | 2 .
Then, we observe that we have, for each k s.t. kτ P I,

|w k | ď 1 2 ż I | w1 | ď 1 2 d |I| ż I | w1 | 2 .
The reason for the factor 1{2 in the above inequality is the possibility to choose to integrate w1 on an interval at the right or at the left of kτ, and to choose the one where the integral of | w1 | is smaller. This implies

ż I | w1 | 2 ď ω 2 τ #tk : kτ P Iu 1 4 |k 2 ´k1 |τ ż I | w1 | 2 .
Since tk : kτ P Iu Ă tk : k 1 ă k ă k 2 u, we have #tk : kτ P Iu ă |k 2 ´k1 | and the contradiction comes from the assumption ωτ|k 2 ´k1 | ă π{8 ă 2.

In order to prove w k ě 0 for k 0 ď k ď k 1 , we first observe that (A.2) for k " k 1 , now that we know w k 1 `1 ď 0, implies w k 1 ´1 ą 0. If for some k with k 0 ď k ď k 1 we had w k ă 0, then we could find an open interval J Ă pk 0 τ, k 1 τq where w ą 0 with w " 0 on BJ. We then apply the same approach as above, thus obtaining

ż J | w1 | 2 ď ω 2 τ #tk : kτ P Ju 1 4 |J| ż J | w1 | 2 .
It is important to not that J is contained in an interval of positivity of a function of the form A cosp2ωt `δq, whose length is π{p2ωq; the number of points of the form kτ contained in an interval of such a length is at most π{p2ωτq `1 but for k " k 1 , k 2 the point kτ does not belong to the open interval J. Hence #tk : kτ P Ju ď π{p2ωτq, and we have a contradiction since π 2 ă 16.

We provide now a variant in the case where on the interval pk 1 τ, k 2 τq we impose a different boundary condition on the right end side.

Lemma A.4. Let k 1 ă N and b ě 0 such that |N ´k1 |τ ă mintπ{p8ωq, π p8bqu and assume τ ď τ 0 . Suppose pu N ´uN´1 q{τ ď bu N . Let v P T τ the unique element of T τ such that v k 1 " u τ k 1 and pv N ´vN´1 q{τ " bv N . Let k 0 be the largest (resp. the smallest) index smaller that k 1 such that v k 0 ´1 ă 0.

Then u τ k ď v τ k for any k 1 ď k ď N and u τ k ě v τ k for any k 0 ď k ď k 1 .

Proof. The argument is very similar to the one in Lemma A.3. We first define w k " u k ´vk , as well as the piecewise affine interpolation w of the values w k , which satisfies again (A.3), but also w 1 pT q ď bwpT q, where T " Nτ. Then, we assume by contradiction that there is an open interval I Ă pk 1 τ, Nτq on which w ą 0. If w " 0 on BI (i.e., on both points on the boundary), the argument is really the same. Otherwise, we can assume I " pt, T q, with wptq " 0. By multiplying by w and integrating by parts we get ż I | w1 | 2 " wpT q w1 pT q ´ż w2 w ď b| wpT q| 2 `ω2 ÿ

k : kτPI τ|w k | 2 .
Then, we use that on I we have With the two lemma above, we are able to deduce some Harnack-type inequality, which means that we can control the values of a u satisfying (A.1) in the interior of an interval with the values of u outside the interval.

|
Lemma A.5. Let k 1 ă k 2 such that |k 2 ´k1 |τω ă π{8 and assume τ ď τ 0 . Let k 0 (resp. k 3 ) be the smallest (resp. largest) integer smaller than k 1 (resp. larger than k 2 ) such that pk 1 ´k0 qτω ă π{8 (resp. pk 3 ´k2 qτω ă π{8). Then one has

sup k 1 ďkďk 2 u τ k ď C max ˆinf k 0 ďkďk 1 u τ k , inf k 2 ďkďk 3 u τ k ˙,
where the constant C is universal.

Proof. Given the symmetry of the property we want to prove w.r.t. to time reversal, we can assume that u τ k 1 ď u τ k 2 . Let v P T τ be the unique element of T τ such that v k 1 " u τ k 1 and v k 2 " u τ k 2 . We know that it can be written in the form v k " A cospkτω `δq with A ě 0. In particular, A ě |v k | for any k P Z. Up to a time translation, we can assume that δ " 0 and k 1 ď 0 ď k 2 . By the hypothesis u τ k 1 ď u τ k 2 , and |k 2 ´k1 |τω ă π{8, we can even say that |k 2 | ď |k 1 |; thus, one has k 2 τ ď π{p16ωq. In particular, for any k 2 ď k ď k 3 , we can say more than v k ą 0: v k ě A cos p2ωk 3 τq ě A cos p2k 2 ωτ `2pk 3 ´k2 qωτq ě cos ´π 8 `π 4 ¯sup

k 1 PZ |v k 1 | ě 1 C sup k 1 PZ |v k 1 |,
with C " cosp3π{8q ´1 ă `8. Thus, by using the comparison between u τ and v (Lemma A.3), one can say that, for any k 2 ď k ď k 3 ,

u τ k ě 1 C sup k 1 ďk 1 τďk 2 u τ k 1 ,
which easily implies the claim.

We also provide the same type of lemma but where a different condition is imposed on the right end side, namely a Neumanntype boundary condition.

Lemma A.6. Let k 1 ă N and b ě 0 such that |N´k 1 |τ ď mintπ{p32ωq, π{p32bqu and assume τ ď τ 0 . Suppose pu N ´uN´1 q{τ ď bu N . Let k 0 be the smallest integer smaller than k 1 such that pk 1 ´k0 qτ ď mintπ{p32ωq, π{p32bqu. Then one has

sup k 1 ďkďN u τ k ď C inf k 0 ďkďk 1 u τ k ,
where the constant C is universal.

Proof. The strategy of the proof is the same than for Lemma A.5. We take v to be the unique element of T τ such that v k 1 " u τ k 1 and pv N ´vN´1 q{τ " bv N . We know that v is of the form v k " A cosp2kτω `δq. Up to a time translation, we can assume that Nτ " 0 and take δ P p´π{2 , π{2q. Starting from pv N ´vN´1 q{τ " bv N and using well known factorization formulas, one ends up with b " ´2ω tanpδq `Opωτq.

Thus, if τ ď τ 0 , one can say that arctanp´b{ωq ď δ ď arctanp´b{p4ωqq. Hence, using the fact that arctanptq `arctanp1{tq " ´π{2 (if t ă 0) and that mintπt{4, π{4u ď arctanptq ď t (if t ě 0), one concludes that min

! ´π 2 `πω 4b , ´π 4 
) ď δ ď min " ´π 2 `4ω b , 0 
* .
In other words, δ cannot be too close to ´π{2, the point where the cosine vanishes. Given the information that we have on k 1 and k 0 , one can check that δ ´2ωτk 0 " δ ´2ωτk 1 ´2ωτpk 0 ´k1 q

ě min ! ´π 2 `πω 4b , ´π 4 
) ´2 min ! π 16 , πω 16b 
)

ě min " ´π 2 `πω 8b , ´3π 8 
* .

As, for every k 0 ď k ď N, one has A cospδ ´2ωτk 0 q ď v k ď A cospδq, it is easy to conclude that sup k 0 ďkďN v k

inf k 0 ďkďN v k ď cospmint´π 2 `4ω b , 0uq cospmint´π 2 `πω 8b , 3π 8 uq ď C,
where the value of C can be estimated by noting that if ω{b ! 1 both the numerator and the denominator are of the order of ω{b and if ω{b is not small the denominator is far from 0 and the numerator is bounded by 1. This proves that C is a universal constant. It remains to use Lemma A.4 to transfer the above inequality into an information on u τ .

To conclude, we can prove the Lemmas 4.3, 4.6 and 4.11 that we used throughout the paper, by using the above results. To prove Lemma 4.3, we cut the interval rT 1 , T 2 s into several pieces of length of order 1{ω, on each piece we use the Harnack inequality to exchange the sum and the power 1{β, and we use rough comparisons to put the pieces together.

Proof of Lemma 4.3. Let M be the smallest integer larger than 8ωpT 2 ´T1 q{π `1. We cut the interval rT 1 , T 2 s into M closed intervals I 1 , I 2 , . . . , I M of equal length (all equal to pT 2 ´T1 q{M ă π{p8ωq). Let us choose an interval I i , we can use Lemma A. ď Cp|I i | `τq 1{β ˜inf `η τ pu τ k q 1{β , where we have used the fact that Mτ ď 1 if τ ď τ 0 (where τ 0 depends on ω) and also that M can be estimated by a constant times ω `1.

T i 1 ´ηďkτďT i 1 pu τ k q 1{β `inf
Proof of Lemma 4.6. For the first part, we apply Lemma A.6 with k 1 " N. With the choice of η, one has pk 1 ´k0 qτ ď mintπ{p32ωq, π{p32bqu. Thus, one can write that

u τ N ď C inf T ´ηďkτďT u τ k ,
which is enough to to conclude as the r.h.s. is bounded by the mean of u τ k , for T ´η ď kτ ď T .

For the second part (which is a variant of Lemma 4. ď C|T ´k1 τ `τ| 1{β inf

k 1 τ´ηďkτďk 1 τ pu τ k q 1{β ď C|T ´k1 τ `τ| 1{β η ÿ k 1 τ´ηďkτďk 1 τ τpu τ k q 1{β .
Then, we combine this estimate with the interior estimate Lemma 4.3 (with T 2 " T ´k1 τ) to end up with the announced result.

Proof of Lemma 4.11. We apply Lemma A.6 with k 1 " 0. Thus if T " kN ď mintπ{p32ωq, π{p32bqu, one has sup 0ďkτďT u τ k ď Cu τ 0 " Ca.

Thus, the l.h.s. is bounded by a constant which does not depend on N.

. 4 )

 4 Proof. The first part is just[START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] Theorem 1.1.2]. The proof of the representation formula (2.4) can easily be obtained by adapting the proof of[START_REF] Ambrosio | Topics on Analysis in Metric Spaces[END_REF] Theorem 4.1.6].

Corollary 3 . 4 ( 2 " 2 `

 3422 Strong congestion case). Suppose that Assumption 1 holds. Then, for any m ě α `2 one has U βm p ρq 1{β ď Cm U m pµq `Um pνq ´2U m p ρq τ Cm 2 U m p ρq  ,

Corollary 3 . 5 ( 2 `CmU m p ρq ě 0 andU βpm` 1 `αq p ρq 1{β ď Cm 2 " 2 `

 3520122 Weak congestion case). Suppose Assumption 3 and 4 both hold. Then, for any m ě 1 such that βpm `α `1q ě 1 one has U m pµq `Um pνq ´2U m p ρq τ U m pµq `Um pνq ´2U m p ρq τ CmU m p ρq  `Ct m`1`α 0 , where C depends only on f, V and Ω.

Corollary 3 . 6 ( 2 `

 362 Strong congestion case-variant). Suppose that Assumption 2 and 4 both hold. Then, for any m ě m 0 one has U m pµq `Um pνq ´2U m p ρq τ CmU m p ρq ě 0 (3.6)

w| ď ż I|I| w1 | 2 .I| w1 | 2 .I| w1 | 2 ď ˆπ 8

 ż228 w1 | ď d |I| ż We do not have anymore the factor 1{2 because w only vanishes at one end, now. This implies ż I | w1 | 2 ď |I| `ω2 τ #tk : kτ P Iu `b˘ż Since #tk : kτ P Iu ă |N ´k1 | and |I| ď |N ´k1 |τ, using the assumptions on |N ´k1 | we have ż

k : kτPI i ˘η τ pu τ k q 1{β ď C MpT 2 ´T1 `Mτq 1{β η ÿ T 1 ´ηďkτďT 2 `η τ pu τ k q 1{β ď C pω `1qpT 2 ´T1 `1q 1`1{β η ÿ T 1 ´ηďkτďT 2

 2222 ,where I i ˘η denotes the set of real numbers which are at a distance at most η of I i . Then we put together the estimate for each I i :˜ÿ T 1 ďkτďT 2

  In the case α ě ´1, we see that the r.h.s. is larger than U βm pρ t q 1{β . In other words, we have obtained a control of U βm pρq in terms of U m pρq. Such a control can be iterated. If we take a positive cutoff function χ which is equal to 1 on rT 1 ´ε , T 2 `εs and which is null outside rT 1 ´2ε , T 2 `2εs, multiply (1.7) by χ and integrate the left hand side (l.h.s.) by parts twice, we can say that ż T 2

							.7)
	To estimate more precisely the r.h.s. of (1.7), a natural assumption is f 2 psq ě s α (with α which could be negative, of course): if this is the case, one can check that the integrand of the r.h.s. is larger than |∇pρ pm`1`αq{2 t q| 2 (up to a constant depending polynomially in m). Using the Sobolev injection H 1 ãÑ L 2d{pd´2q , one can conclude (neglecting the 0-order term of
	the H 1 norm of ρ	pm`1`αq{2 t	), with 1 ă β ă d{pd ´2q, that		
			Cpmq	dt 2 U m pρ t q ě d 2	ˆżΩ	ρ	t βpm`1`αq	˙1{β
			`ε			

  By geodesic convexity of U m , the function t Þ Ñ U m pρptqq is convex. Hence, U m pµq ´Um p ρq " U m pρp1qq ´Um pρp0qq }∇ ρ} 8 }∇ϕ µ } 8 .At this point, one can remember that u 2 m pxq " x m´2 . Moreover, as ρ is bounded away from 0 and 8 and Lipschitz, the r.h.s. of the equation above is finite. Thus, by dominated convergence,

		ě lim sup tÑ0	U m pρptqq ´Um pρp0qq t
		" lim sup tÑ0	ż	Ω	u m pρptqq ´um p ρq t
		ě lim sup tÑ0	ż	Ω	pρptq ´ρqu 1 m p ρq t
		" lim sup tÑ0	ż	Ω	u 1 m p ρrx ´t∇ϕ µ pxqsq ´u1 m p ρrxsq t	ρpxq dx,
	where we also have used that u m is convex. It is clear that for a.e. x P Ω,
	lim tÑ0	u 1 m p ρrx ´t∇ϕ µ pxqsq ´u1 m p ρrxsq t	" ´rp∇ ρ ¨∇ϕ µ qu 2 m p ρqs pxq.
	Moreover, we have the uniform (in t) bound			
	ˇˇˇu 1 m p ρrx ´t∇ϕ µ pxqsq ´u1 m p ρrxsq t m p ρq} 8 lim sup ˇˇˇď }u 2 tÑ0 ż Ω u 1 m p ρrx ´t∇ϕ µ pxqsq ´u1 m p ρrxsq t ρpxq dx "	´żΩ	p∇ ρ ¨∇ϕ

µ q ρm´1 .

  Proposition 3.8. Suppose Assumption 5 holds. Then, for any m ě 1 , U m pµq ´Um p ρq τ ě ´pm ´1q}∆W} 8 U m p ρq. where ϕ µ is the unique Kantorovitch potential for the transport from ρ to µ. Thus, if we multiply by ρm´1 ∇ ρ, we get, by the same estimation than in Theorem 3.3 (we drop both the entropic penalization and the congestion term),

	Proof. Following the same strategy than in Lemma 3.1 and Proposition 3.2, we know that ρ is bounded away from 0 and 8, is a Lipschitz function, and that
	∇ϕ µ τ	`ˆg 2 p ρq	`λ ρ ˙∇ ρ `∇W " 0
	a.e. on Ω, U m pµq ´Um p ρq τ	ě	ż Ω	p∇W ¨∇ ρq ρm´1 .
	It remains to perform an integration by parts, using the sign of ∇W ¨n on BΩ, to conclude that
	U m pµq ´Um p ρq τ	ě	´1 m	ż Ω	∆W ρm ě ´pm ´1q}∆W} 8 U m p ρq.

  3, but with Neumann boundary conditions on one side), we can say with the help of Lemma A.6 that with k 1 the smallest integer smaller than N such that |N ´k1 |τ maxtω, bu ă π{32,

	˜ÿ k 1 τďkτďT	τu τ k	¸1{β	ď |T ´k1 τ `τ| 1{β sup k 1 τďkτďT	pu τ k q 1{β
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We can now conclude the desired bounds:

Proof of Theorem 2.10. Combining Proposition 5.9 and Proposition 4.4, it is enough to show that L α`2 0,T ă `8. Because of Assumption 1 or 2, we know that U α`2 ď C 1 F `C2 with C 1 ą 0. Hence, in order to conclude that L α`2 0,T ă `8, it is enough to use Corollary 5.4, which provides a constant C ă `8 such that for any N ě 1 and any λ P p0 , 1s we have

Proof of Theorem 2.11. We combine Proposition 5.9 and Proposition 4.7, as we saw that L α`2 0,T ă `8 (in the proof of Theorem 2.10).

Proof of Theorem 2.12. It is enough to combine Proposition 5.9 with Propositions 4.9 and 4.10.

A Reverse Jensen inequality

In this section, we prove Lemma 4.3 (the "reverse Jensen inequality") as well as Lemmas 4.6 and 4.11, whose proofs were postponed in order not to overload the key arguments of the paper. In all the sequel, we consider a family of sequences pu τ k q kPZ indexed by a parameter τ ą 0. We assume that there exists ω ě 0 such that for any k P Z, one has u τ k ą 0 and

This inequation is a discrete counterpart of the differential inequality u 2 `ω2 u ě 0. Let us remark, by the positivity of u τ k , that we can assume without loss of generality that ω ą 0, even though the proofs are considerably simpler if ω " 0: the constants would be better, and the strategy of the proof would be slightly different. The key point to handle u τ k is to compare it with explicit sequences realizing the opposite inequality in (A.1).

Definition A.1. For any τ ą 0, let T τ be the set of sequences pv k q kPZ of the form v k " A cosp2ωkτ `δq.

Lemma A.2. There exists τ 0 ą 0 such that for any τ ď τ 0 , if pv k q kPZ P T τ and k is such that v k ą 0 then

Proof. This is a consequence of the trigonometric identity

˙vk and the fact that 2 cosp2ωτq ´1 τ 2 `ω2 " ´3ω 2 as τ goes to 0.

We also note the following properties on the sequences in T τ , that we do not prove and leave to the reader as an exercise.

• if k 1 ă k 2 are fixed with |k 2 ´k1 |τω ă π{8 and τ is small enough, then for every fixed positive values a 1 , a 2 ą 0 there exists a unique sequence in T τ with v k 1 " a 1 and v k 2 " a 2 . Moreover, such a sequence pv k q kPZ is such that there exists an open interval I of the form either pk 0 τ, k 1 τq or pk 2 τ, k 3 τq, with length at least π{p8ωq, with v k ą 0 for all the indices k such that kτ P I.

• if k 1 ă N and b ě 0 are fixed and |N ´k1 |τ ă mintπ{p8ωq, π{p8bqu and τ is small enough, then for every a ą 0 there exists a unique sequence in T τ with v k 1 " a and pv N ´vN´1 q{τ " bv N . Moreover, such a sequence pv k q kPZ is such that there exists an open interval I of the form pk 0 τ, k 1 τq with length at least mintπ{p32ωq, π{p32bqu, with v k ą 0 for all the indices k such that kτ P I.

Note that, for the purpose of Lemma A.2 and of the subsequent observations other choices of v k were possible, such as v k " A cospp1 `εqωkτ `δq for some ε ą 0, but we chose ε " 1 for simplicity in the next computations (more generally in this appendix we have not been looking for the sharpest constants). Indeed, all these results are not surprising: at the continuous level v solves v 2 `4ω 2 v " 0 and most of the discrete results are just an adaptation of this property. The important point is the following comparision principle between pu τ k q kPZ and pv k q kPZ . Lemma A.3. Let k 1 ă k 2 such that |k 2 ´k1 |τω ă π{8 and assume τ ď τ 0 . Let v P T τ the unique element of T τ such that v k 1 " u τ k 1 and v k 2 " u τ k 2 . Let k 0 (resp. k 3 ) be the largest (resp. the smallest) index smaller that k 1 (resp. larger than k 2 ) such that v k 0 ´1 ă 0 (resp. v k 3 `1 ă 0).

Then u τ k ď v k for any k 1 ď k ď k 2 and u τ k ě v k for any k 0 ď k ď k 1 and any k 2 ď k ď k 3 .